-
Bug
-
Resolution: Unresolved
-
Undefined
-
None
-
rhelai-1.5
-
None
-
False
-
-
False
-
-
To Reproduce Steps to reproduce the behavior:
- Configure system as per Config
- do [ilab config init]
- start SDG process - ilab data generate --pipeline full --gpus 2
- See error
INFO 2025-08-01 15:01:07,676 instructlab.model.backends.vllm:148: Gave up waiting for vLLM server to start at http://127.0.0.1:48703/v1 after 1200 attempts INFO 2025-08-01 15:01:12,795 instructlab.model.backends.vllm:512: Waiting for GPU VRAM reclamation... [31mfailed to generate data with exception: Failed to start server: vLLM failed to start up in 3479.3 seconds[0m
Expected behavior
- It should run without error
Device Info (please complete the following information):
- Hardware Specs: HPE DL384 Gen12 2xNVIDIA GH200 144G HBM3e
- OS Version: Rhel AI 1.5
- InstructLab Version: [instructlab.version: 0.26.1]
- Provide the output of these two commands:
- registry.redhat.io/rhelai1/bootc-nvidia-rhel9:1.5
- ilab system info
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 2 CUDA devices: Device 0: NVIDIA GH200 144G HBM3e, compute capability 9.0, VMM: yes Device 1: NVIDIA GH200 144G HBM3e, compute capability 9.0, VMM: yes Platform: sys.version: 3.11.7 (main, Jan 8 2025, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)] sys.platform: linux os.name: posix platform.release: 5.14.0-427.65.1.el9_4.aarch64 platform.machine: aarch64 platform.node: dl384rhelai platform.python_version: 3.11.7 os-release.ID: rhel os-release.VERSION_ID: 9.4 os-release.PRETTY_NAME: Red Hat Enterprise Linux 9.4 (Plow) memory.total: 1227.71 GB memory.available: 1213.35 GB memory.used: 8.49 GB InstructLab: instructlab.version: 0.26.1 instructlab-dolomite.version: 0.2.0 instructlab-eval.version: 0.5.1 instructlab-quantize.version: 0.1.0 instructlab-schema.version: 0.4.2 instructlab-sdg.version: 0.8.2 instructlab-training.version: 0.10.2 Torch: torch.version: 2.6.0 torch.backends.cpu.capability: DEFAULT torch.version.cuda: 12.4 torch.version.hip: None torch.cuda.available: True torch.backends.cuda.is_built: True torch.backends.mps.is_built: False torch.backends.mps.is_available: False torch.cuda.bf16: True torch.cuda.current.device: 0 torch.cuda.0.name: NVIDIA GH200 144G HBM3e torch.cuda.0.free: 142.1 GB torch.cuda.0.total: 142.6 GB torch.cuda.0.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.1.name: NVIDIA GH200 144G HBM3e torch.cuda.1.free: 142.1 GB torch.cuda.1.total: 142.6 GB torch.cuda.1.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) llama_cpp_python: llama_cpp_python.version: 0.3.6 llama_cpp_python.supports_gpu_offload: True
Bug impact
- Validation efforts are blocked
Known workaround
- None