XMLWordPrintable

    • False
    • Hide

      None

      Show
      None
    • False
    • Approved

      From: https://gitlab.com/redhat/rhel-ai/diip/-/jobs/10000155067

      dk-bench is failing with:

      ERROR 2025-05-12 06:16:58,330 instructlab.cli.model.evaluate:313: An error occurred during evaluation: zstd C API versions mismatch; Python bindings were not compiled/linked against expected zstd version (10501 returned by the lib, 10501 hardcoded in zstd headers, 10506 hardcoded in the cext)

      running:

       

      curl -s https://raw.githubusercontent.com/instructlab/instructlab/main/scripts/test-data/dk-bench-questions.jsonl > ${HOME_DIR}/dk-bench-questions.jsonl
      curl -s https://raw.githubusercontent.com/instructlab/instructlab/main/scripts/test-data/dk-bench-questions-with-responses.jsonl > ${HOME_DIR}/dk-bench-questions-with-responses.jsonl
      export ILAB_ADDITIONAL_ENV="OPENAI_API_KEY='$OPENAI_API_KEY'" && ilab model evaluate --model ${trained_model} --benchmark dk_bench --input-questions ${HOME_DIR}/dk-bench-questions.jsonl --output-file-formats ${dk_bench_output_formats} 2>&1 | tee dk_bench.log
      export ILAB_ADDITIONAL_ENV="OPENAI_API_KEY='$OPENAI_API_KEY'" && ilab model evaluate --model ${trained_model} --benchmark dk_bench --input-questions ${HOME_DIR}/dk-bench-questions-with-responses.jsonl --output-file-formats ${dk_bench_output_formats} 2>&1 | tee dk_bench_with_responses.log
      ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
      ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
      ggml_cuda_init: found 8 CUDA devices:
      Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 1: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 2: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 3: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 4: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 5: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 6: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 7: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Platform:
      sys.version: 3.11.7 (main, Jan 8 2025, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)]
      sys.platform: linux
      os.name: posix
      platform.release: 5.14.0-427.65.1.el9_4.x86_64
      platform.machine: x86_64
      platform.node: instructlab-ci-8xa100-preserve
      platform.python_version: 3.11.7
      os-release.ID: rhel
      os-release.VERSION_ID: 9.4
      os-release.PRETTY_NAME: Red Hat Enterprise Linux 9.4 (Plow)
      memory.total: 1259.87 GB
      memory.available: 1250.45 GB
      memory.used: 2.45 GB
      InstructLab:
      instructlab.version: 0.26.1
      instructlab-dolomite.version: 0.2.0
      instructlab-eval.version: 0.5.1
      instructlab-quantize.version: 0.1.0
      instructlab-schema.version: 0.4.2
      instructlab-sdg.version: 0.8.2
      instructlab-training.version: 0.10.2
      Torch:
      torch.version: 2.6.0
      torch.backends.cpu.capability: AVX512
      torch.version.cuda: 12.4
      torch.version.hip: None
      torch.cuda.available: True
      torch.backends.cuda.is_built: True
      torch.backends.mps.is_built: False
      torch.backends.mps.is_available: False
      torch.cuda.bf16: True
      torch.cuda.current.device: 0
      torch.cuda.0.name: NVIDIA A100-SXM4-80GB
      torch.cuda.0.free: 78.7 GB
      torch.cuda.0.total: 79.1 GB
      torch.cuda.0.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.1.name: NVIDIA A100-SXM4-80GB
      torch.cuda.1.free: 78.7 GB
      torch.cuda.1.total: 79.1 GB
      torch.cuda.1.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.2.name: NVIDIA A100-SXM4-80GB
      torch.cuda.2.free: 78.7 GB
      torch.cuda.2.total: 79.1 GB
      torch.cuda.2.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.3.name: NVIDIA A100-SXM4-80GB
      torch.cuda.3.free: 78.7 GB
      torch.cuda.3.total: 79.1 GB
      torch.cuda.3.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.4.name: NVIDIA A100-SXM4-80GB
      torch.cuda.4.free: 78.7 GB
      torch.cuda.4.total: 79.1 GB
      torch.cuda.4.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.5.name: NVIDIA A100-SXM4-80GB
      torch.cuda.5.free: 78.7 GB
      torch.cuda.5.total: 79.1 GB
      torch.cuda.5.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.6.name: NVIDIA A100-SXM4-80GB
      torch.cuda.6.free: 78.7 GB
      torch.cuda.6.total: 79.1 GB
      torch.cuda.6.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.7.name: NVIDIA A100-SXM4-80GB
      torch.cuda.7.free: 78.7 GB
      torch.cuda.7.total: 79.1 GB
      torch.cuda.7.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      llama_cpp_python:
      llama_cpp_python.version: 0.3.6
      llama_cpp_python.supports_gpu_offload: True
      

       

              cheimes@redhat.com Christian Heimes
              dmcphers@redhat.com Dan McPherson
              Votes:
              0 Vote for this issue
              Watchers:
              6 Start watching this issue

                Created:
                Updated:
                Resolved: