Uploaded image for project: 'Red Hat Enterprise Linux AI'
  1. Red Hat Enterprise Linux AI
  2. RHELAI-3443

mmlu fails with 500 server error

XMLWordPrintable

    • False
    • Hide

      None

      Show
      None
    • False
    • Rejected

      To Reproduce Steps to reproduce the behavior:

      1. Run mmlu with ilab trained model on 1.4.1
        ilab model evaluate --model /mnt/4TB/.local/share/instructlab/phased/phase2/checkpoints/hf_format/samples_379162 --benchmark mmlu

      Example run:
      https://gitlab.com/redhat/rhel-ai/diip/-/jobs/9177408895

      Failed with:

      Requesting API:   1% 363/56168 [01:19<3:10:06,  4.89it/s]WARNING 2025-02-19 08:01:10,797 lm-eval:453: Context length (3397) + continuation length (2) > max_length (2047). Left truncating context.
      Requesting API:   1% 364/56168 [01:19<3:06:50,  4.98it/s]WARNING 2025-02-19 08:01:10,990 lm-eval:453: Context length (3395) + continuation length (2) > max_length (2047). Left truncating context.
      WARNING 2025-02-19 08:01:11,174 lm-eval:374: API request failed with error message: Internal Server Error. Retrying...
      WARNING 2025-02-19 08:01:12,353 lm-eval:374: API request failed with error message: Internal Server Error. Retrying...
      WARNING 2025-02-19 08:01:13,535 lm-eval:374: API request failed with error message: Internal Server Error. Retrying...
      INFO 2025-02-19 08:01:22,117 instructlab.model.backends.vllm:494: Waiting for GPU VRAM reclamation...
      ERROR 2025-02-19 08:01:29,489 instructlab.cli.model.evaluate:272: An error occurred during evaluation: 500 Server Error: Internal Server Error for url: http://127.0.0.1:39329/v1/completions
      Requesting API:   1% 364/56168 [01:38<4:10:25,  3.71it/s]
      

      Expected behavior

      • <your text here>

      Screenshots

      • Attached Image

      Device Info (please complete the following information):

      • Hardware Specs: [e.g. Apple M2 Pro Chip, 16 GB Memory, etc.]

      8xA100 in IBM Cloud

      • OS Version: [e.g. Mac OS 14.4.1, Fedora Linux 40]
      • InstructLab Version: [output of \\\{{{}ilab --version{}}}]

      ilab, version 0.23.2

      "registry.stage.redhat.io/rhelai1/bootc-nvidia-rhel9:1.4"

        • ilab system info to print detailed information about InstructLab version, OS, and hardware – including GPU / AI accelerator hardware

      [cloud-user@instructlab-ci-8xa100-preserve cloud-user]$ ilab system info
      ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
      ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
      ggml_cuda_init: found 8 CUDA devices:
      Device 0: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 1: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 2: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 3: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 4: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 5: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 6: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Device 7: NVIDIA A100-SXM4-80GB, compute capability 8.0, VMM: yes
      Platform:
      sys.version: 3.11.7 (main, Jan 8 2025, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)]
      sys.platform: linux
      os.name: posix
      platform.release: 5.14.0-427.50.2.el9_4.x86_64
      platform.machine: x86_64
      platform.node: instructlab-ci-8xa100-preserve
      platform.python_version: 3.11.7
      os-release.ID: rhel
      os-release.VERSION_ID: 9.4
      os-release.PRETTY_NAME: Red Hat Enterprise Linux 9.4 (Plow)
      memory.total: 1259.87 GB
      memory.available: 1248.21 GB
      memory.used: 3.74 GB

      InstructLab:
      instructlab.version: 0.23.2
      instructlab-dolomite.version: 0.2.0
      instructlab-eval.version: 0.5.1
      instructlab-quantize.version: 0.1.0
      instructlab-schema.version: 0.4.2
      instructlab-sdg.version: 0.7.1
      instructlab-training.version: 0.7.0

      Torch:
      torch.version: 2.5.1
      torch.backends.cpu.capability: AVX512
      torch.version.cuda: 12.4
      torch.version.hip: None
      torch.cuda.available: True
      torch.backends.cuda.is_built: True
      torch.backends.mps.is_built: False
      torch.backends.mps.is_available: False
      torch.cuda.bf16: True
      torch.cuda.current.device: 0
      torch.cuda.0.name: NVIDIA A100-SXM4-80GB
      torch.cuda.0.free: 78.7 GB
      torch.cuda.0.total: 79.1 GB
      torch.cuda.0.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.1.name: NVIDIA A100-SXM4-80GB
      torch.cuda.1.free: 78.7 GB
      torch.cuda.1.total: 79.1 GB
      torch.cuda.1.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.2.name: NVIDIA A100-SXM4-80GB
      torch.cuda.2.free: 78.7 GB
      torch.cuda.2.total: 79.1 GB
      torch.cuda.2.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.3.name: NVIDIA A100-SXM4-80GB
      torch.cuda.3.free: 78.7 GB
      torch.cuda.3.total: 79.1 GB
      torch.cuda.3.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.4.name: NVIDIA A100-SXM4-80GB
      torch.cuda.4.free: 78.7 GB
      torch.cuda.4.total: 79.1 GB
      torch.cuda.4.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.5.name: NVIDIA A100-SXM4-80GB
      torch.cuda.5.free: 78.7 GB
      torch.cuda.5.total: 79.1 GB
      torch.cuda.5.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.6.name: NVIDIA A100-SXM4-80GB
      torch.cuda.6.free: 78.7 GB
      torch.cuda.6.total: 79.1 GB
      torch.cuda.6.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
      torch.cuda.7.name: NVIDIA A100-SXM4-80GB
      torch.cuda.7.free: 78.7 GB
      torch.cuda.7.total: 79.1 GB
      torch.cuda.7.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)

      llama_cpp_python:
      llama_cpp_python.version: 0.3.2
      llama_cpp_python.supports_gpu_offload: True

      Bug impact

      • Please provide information on the impact of this bug to the end user.

      Unable to eval knowledge regression

      Known workaround

      • Please add any known workarounds.

      Additional context

      • I have reran mmlu after the failed run and the issue seems consistent

              osilkin@redhat.com Oleg Silkin
              dmcphers@redhat.com Dan McPherson
              Kamesh Akella Kamesh Akella
              Votes:
              0 Vote for this issue
              Watchers:
              8 Start watching this issue

                Created:
                Updated:
                Resolved: