-
Bug
-
Resolution: Done
-
Critical
-
rhelai-1.4
-
None
To Reproduce Steps to reproduce the behavior:
- On 1.4-rc0 image in GCP ( 8xH100) ( registry.stage.redhat.io/rhelai1/bootc-gcp-nvidia-rhel9:1.4-1738349195 ) download the models:
ilab model download --repository docker://registry.stage.redhat.io/rhelai1/granite-8b-lab-v1 --release 1.4 ilab model download --repository docker://registry.stage.redhat.io/rhelai1/skills-adapter-v3 --release 1.4 ilab model download --repository docker://registry.stage.redhat.io/rhelai1/knowledge-adapter-v3 --release 1.4 ilab model download --repository docker://registry.stage.redhat.io/rhelai1/mixtral-8x7b-instruct-v0-1 --release 1.4 ilab model download --repository docker://registry.stage.redhat.io/rhelai1/prometheus-8x7b-v2-0 --release 1.4 ilab model download --repository docker://registry.stage.redhat.io/rhelai1/granite-8b-starter-v1 --release 1.4
- Run SDG
- After about 75 minutes ( ran command like: `time ilab data generate` ) SDG stops with this error:
INFO 2025-02-03 11:07:04,715 instructlab.sdg.datamixing:43: Rebalancing dataset to have 10395 samples ... Map (num_proc=8): 100%|##########| 10395/10395 [00:08<00:00, 1294.75 examples/s] INFO 2025-02-03 11:07:24,745 instructlab.model.backends.vllm:494: Waiting for GPU VRAM reclamation... failed to generate data with exception: struct fields don't match or are in the wrong order: Input fields: struct<content: string, role: string> output fields: struct<role: string, content: string>
- The dataset contents:
[cloud-user@ecosystem-qe-2 2025-02-03_095244]$ pwd /var/home/cloud-user/.local/share/instructlab/datasets/2025-02-03_095244 [cloud-user@ecosystem-qe-2 2025-02-03_095244]$ ls -lsa total 9048 4 drwxr-xr-x. 5 cloud-user cloud-user 4096 Feb 3 11:06 . 0 drwxr-xr-x. 4 cloud-user cloud-user 50 Feb 3 10:00 .. 4 drwxr-xr-x. 2 cloud-user cloud-user 4096 Feb 3 11:05 generated_2025-02-03T09_55_05 4 -rw-r--r--. 1 cloud-user cloud-user 471 Feb 3 11:06 knowledge_recipe_2025-02-03T09_55_05.yaml 4324 -rw-r--r--. 1 cloud-user cloud-user 4425768 Feb 3 11:06 messages_2025-02-03T09_55_05.jsonl 4 drwxr-xr-x. 2 cloud-user cloud-user 4096 Feb 3 11:06 node_datasets_2025-02-03T09_55_05 4 drwxr-xr-x. 3 cloud-user cloud-user 4096 Feb 3 09:55 preprocessed_2025-02-03T09_55_05 4 -rw-r--r--. 1 cloud-user cloud-user 911 Feb 3 11:06 skills_recipe_2025-02-03T09_55_05.yaml 932 -rw-r--r--. 1 cloud-user cloud-user 950538 Feb 3 09:55 test_2025-02-03T09_55_05.jsonl 3768 -rw-r--r--. 1 cloud-user cloud-user 3856014 Feb 3 11:06 train_2025-02-03T09_55_05.jsonl
Expected behavior
- SDG to complete successfully
Screenshots
- Attached Image
Device Info (please complete the following information):
- Hardware Specs: GCP a3-highgpu-8g
- OS Version: RHEL AI 1.4 rc0
- InstructLab Version: ilab, version 0.23.1
- Provide the output of these two commands:
- sudo bootc status --format json | jq .status.booted.image.image.image to print the name and tag of the bootc image, should look like
- registry.stage.redhat.io/rhelai1/bootc-intel-rhel9:1.3-1732894187
-
[cloud-user@ecosystem-qe-2 2025-02-03_095244]$ ilab system info ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 8 CUDA devices: Device 0: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 1: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 2: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 3: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 4: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 5: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 6: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Device 7: NVIDIA H100 80GB HBM3, compute capability 9.0, VMM: yes Platform: sys.version: 3.11.7 (main, Jan 8 2025, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)] sys.platform: linux os.name: posix platform.release: 5.14.0-427.50.1.el9_4.x86_64 platform.machine: x86_64 platform.node: ecosystem-qe-2 platform.python_version: 3.11.7 os-release.ID: rhel os-release.VERSION_ID: 9.4 os-release.PRETTY_NAME: Red Hat Enterprise Linux 9.4 (Plow) memory.total: 1842.58 GB memory.available: 1831.53 GB memory.used: 2.89 GB InstructLab: instructlab.version: 0.23.1 instructlab-dolomite.version: 0.2.0 instructlab-eval.version: 0.5.1 instructlab-quantize.version: 0.1.0 instructlab-schema.version: 0.4.2 instructlab-sdg.version: 0.7.0 instructlab-training.version: 0.7.0 Torch: torch.version: 2.5.1 torch.backends.cpu.capability: AVX512 torch.version.cuda: 12.4 torch.version.hip: None torch.cuda.available: True torch.backends.cuda.is_built: True torch.backends.mps.is_built: False torch.backends.mps.is_available: False torch.cuda.bf16: True torch.cuda.current.device: 0 torch.cuda.0.name: NVIDIA H100 80GB HBM3 torch.cuda.0.free: 78.6 GB torch.cuda.0.total: 79.1 GB torch.cuda.0.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.1.name: NVIDIA H100 80GB HBM3 torch.cuda.1.free: 78.6 GB torch.cuda.1.total: 79.1 GB torch.cuda.1.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.2.name: NVIDIA H100 80GB HBM3 torch.cuda.2.free: 78.6 GB torch.cuda.2.total: 79.1 GB torch.cuda.2.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.3.name: NVIDIA H100 80GB HBM3 torch.cuda.3.free: 78.6 GB torch.cuda.3.total: 79.1 GB torch.cuda.3.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.4.name: NVIDIA H100 80GB HBM3 torch.cuda.4.free: 78.6 GB torch.cuda.4.total: 79.1 GB torch.cuda.4.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.5.name: NVIDIA H100 80GB HBM3 torch.cuda.5.free: 78.6 GB torch.cuda.5.total: 79.1 GB torch.cuda.5.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.6.name: NVIDIA H100 80GB HBM3 torch.cuda.6.free: 78.6 GB torch.cuda.6.total: 79.1 GB torch.cuda.6.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) torch.cuda.7.name: NVIDIA H100 80GB HBM3 torch.cuda.7.free: 78.6 GB torch.cuda.7.total: 79.1 GB torch.cuda.7.capability: 9.0 (see https://developer.nvidia.com/cuda-gpus#compute) llama_cpp_python: llama_cpp_python.version: 0.3.2 llama_cpp_python.supports_gpu_offload: True
Bug impact
- Please provide information on the impact of this bug to the end user.
Known workaround
- Please add any known workarounds.
Additional context
- <your text here>
- ...