-
Bug
-
Resolution: Unresolved
-
Critical
-
RHELAI 1.3 GA
To Reproduce Steps to reproduce the behavior:
**
Run full scale agnetic SDG
You will see that the pretraining output does not use the appropriate legacy template for sdg that should be used with the granite-8b-starter and granite-7b-starter model. (It will have <|start_of_role|>user<|end_of_role|> tags versus the appropriate legacy tags of
'<|user|> <|assistant|>'
Expected behavior
- With granite-8b-starter: the legacy template should be used in sdg.
Device Info (please complete the following information):
- Hardware Specs: 8x A100 machine IBM Cloud
- OS Version: RHEL AI 1.3
- InstructLab Version:
ilab, version 0.21.0
- Provide the output of these two commands:
- "registry.redhat.io/rhelai1/bootc-ibm-nvidia-rhel9:1.3"
Platform:
sys.version: 3.11.7 (main, Oct 9 2024, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)]
sys.platform: linux
os.name: posix
platform.release: 5.14.0-427.42.1.el9_4.x86_64
platform.machine: x86_64
platform.node: tyler-machine-boot-6
platform.python_version: 3.11.7
os-release.ID: rhel
os-release.VERSION_ID: 9.4
os-release.PRETTY_NAME: Red Hat Enterprise Linux 9.4 (Plow)
memory.total: 1259.87 GB
memory.available: 1196.92 GB
memory.used: 38.83 GB
InstructLab:
instructlab.version: 0.21.0
instructlab-dolomite.version: 0.2.0
instructlab-eval.version: 0.4.1
instructlab-quantize.version: 0.1.0
instructlab-schema.version: 0.4.1
instructlab-sdg.version: 0.6.1
instructlab-training.version: 0.6.1
Torch:
torch.version: 2.4.1
torch.backends.cpu.capability: AVX512
torch.version.cuda: 12.4
torch.version.hip: None
torch.cuda.available: True
torch.backends.cuda.is_built: True
torch.backends.mps.is_built: False
torch.backends.mps.is_available: False
torch.cuda.bf16: True
torch.cuda.current.device: 0
torch.cuda.0.name: NVIDIA A100-SXM4-80GB
torch.cuda.0.free: 69.5 GB
torch.cuda.0.total: 79.1 GB
torch.cuda.0.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.1.name: NVIDIA A100-SXM4-80GB
torch.cuda.1.free: 69.4 GB
torch.cuda.1.total: 79.1 GB
torch.cuda.1.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.2.name: NVIDIA A100-SXM4-80GB
torch.cuda.2.free: 69.4 GB
torch.cuda.2.total: 79.1 GB
torch.cuda.2.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.3.name: NVIDIA A100-SXM4-80GB
torch.cuda.3.free: 69.4 GB
torch.cuda.3.total: 79.1 GB
torch.cuda.3.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.4.name: NVIDIA A100-SXM4-80GB
torch.cuda.4.free: 69.4 GB
torch.cuda.4.total: 79.1 GB
torch.cuda.4.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.5.name: NVIDIA A100-SXM4-80GB
torch.cuda.5.free: 69.4 GB
torch.cuda.5.total: 79.1 GB
torch.cuda.5.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.6.name: NVIDIA A100-SXM4-80GB
torch.cuda.6.free: 69.4 GB
torch.cuda.6.total: 79.1 GB
torch.cuda.6.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
torch.cuda.7.name: NVIDIA A100-SXM4-80GB
torch.cuda.7.free: 69.3 GB
torch.cuda.7.total: 79.1 GB
torch.cuda.7.capability: 8.0 (see https://developer.nvidia.com/cuda-gpus#compute)
llama_cpp_python:
llama_cpp_python.version: 0.2.79
llama_cpp_python.supports_gpu_offload: True