Uploaded image for project: 'Infinispan'
  1. Infinispan
  2. ISPN-16487

Branchless varint decoding for Hot Rod

This issue belongs to an archived project. You can view it, but you can't modify it. Learn more

XMLWordPrintable

    • Icon: Enhancement Enhancement
    • Resolution: Done
    • Icon: Major Major
    • None
    • None
    • Hot Rod
    • None

      We can utilize a branchless parser for VarInt instead of a while loop for decoding. This should help the CPU with branch prediction. A JMH benchmark is available on [1] with the following results:

      Benchmark                                     (elementType)  (inputDistribution)  (inputs)  Mode  Cnt   Score   Error  Units
      NumericParserBenchmark.parseNumberBranchless            INT                SMALL         1  avgt   20   4.810 ± 0.223  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                SMALL         1  avgt   20   5.298 ± 0.539  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                SMALL       128  avgt   20   4.164 ± 0.195  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                SMALL       128  avgt   20   6.688 ± 2.269  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                SMALL    128000  avgt   20   9.111 ± 0.593  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                SMALL    128000  avgt   20  15.544 ± 1.132  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                LARGE         1  avgt   20   6.619 ± 0.289  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                LARGE         1  avgt   20  14.317 ± 1.525  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT               MEDIUM         1  avgt   20   3.613 ± 0.129  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT               MEDIUM         1  avgt   20   4.670 ± 0.533  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT               MEDIUM       128  avgt   20   4.772 ± 1.000  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT               MEDIUM       128  avgt   20   7.183 ± 1.055  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT               MEDIUM    128000  avgt   20  11.379 ± 0.620  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT               MEDIUM    128000  avgt   20  16.079 ± 0.971  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                  ALL         1  avgt   20   3.759 ± 0.267  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                  ALL         1  avgt   20   5.182 ± 0.792  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                  ALL       128  avgt   20   5.842 ± 0.149  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                  ALL       128  avgt   20   8.953 ± 1.271  ns/op
      
      NumericParserBenchmark.parseNumberBranchless            INT                  ALL    128000  avgt   20  16.172 ± 1.114  ns/op
      NumericParserBenchmark.parseNumberInfinispan            INT                  ALL    128000  avgt   20  17.555 ± 1.504  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                SMALL         1  avgt   20   5.394 ± 0.255  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                SMALL         1  avgt   20   7.804 ± 0.524  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                SMALL       128  avgt   20   5.676 ± 0.396  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                SMALL       128  avgt   20   7.493 ± 1.073  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                SMALL    128000  avgt   20  12.252 ± 1.023  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                SMALL    128000  avgt   20  16.152 ± 0.754  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                LARGE         1  avgt   20   6.225 ± 0.232  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                LARGE         1  avgt   20  18.368 ± 1.396  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG               MEDIUM         1  avgt   20   4.283 ± 0.129  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG               MEDIUM         1  avgt   20   6.546 ± 0.623  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG               MEDIUM       128  avgt   20   6.917 ± 0.386  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG               MEDIUM       128  avgt   20  10.355 ± 1.676  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG               MEDIUM    128000  avgt   20  14.167 ± 0.840  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG               MEDIUM    128000  avgt   20  18.337 ± 1.120  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                  ALL         1  avgt   20   6.648 ± 0.169  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                  ALL         1  avgt   20  16.557 ± 2.431  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                  ALL       128  avgt   20   6.811 ± 0.096  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                  ALL       128  avgt   20  12.062 ± 1.354  ns/op
      
      NumericParserBenchmark.parseNumberBranchless           LONG                  ALL    128000  avgt   20  14.776 ± 0.908  ns/op
      NumericParserBenchmark.parseNumberInfinispan           LONG                  ALL    128000  avgt   20  20.272 ± 1.042  ns/op
      

      This new approach saves a few NSs in all the cases we test.

      [1] https://github.com/infinispan/infinispan-benchmarks/pull/23

              rh-ee-jbolina Jose Bolina
              rh-ee-jbolina Jose Bolina
              Archiver:
              rhn-support-adongare Amol Dongare

                Created:
                Updated:
                Resolved:
                Archived: