Uploaded image for project: 'AI Platform Core Components'
  1. AI Platform Core Components
  2. AIPCC-8344

Negative values in stride causing error in `avg_pool2d` (on both CPU and CUDA)

XMLWordPrintable

    • Icon: Story Story
    • Resolution: Unresolved
    • Icon: Undefined Undefined
    • None
    • None
    • PyTorch
    • None
    • PyTorch Sprint 23

          1. 🐛 Describe the bug

      Passing a tuple with negative values (such as sym_6) as the stride parameter to the `torch.nn.functional.avg_pool2d` function causes an error on both CPU and CUDA. The function currently checks for zero values but does not handle negative values, leading to unexpected behavior when negative stride values are passed.

      For example:

      ```python
      import torch

      print(torch._version_)

      sym_0 = (8, 2, 1, 1)
      sym_1 = torch.float32
      sym_2 = torch.device("cpu")
      sym_3 = 0
      sym_4 = True
      sym_5 = (9223372036854775807, 5868783964474102731)
      sym_6 = (-1, 3010182406857593769)
      sym_7 = (0,)
      sym_8 = True
      sym_9 = True
      sym_10 = 33554427

      var_546 = torch.randn(size=sym_0, dtype=sym_1, device=sym_2)
      var_124 = torch.ops.aten.alias(var_546)
      var_360 = torch.argmax(var_124, dim=sym_3, keepdim=sym_4)
      torch.nn.functional.avg_pool2d(var_360, kernel_size=sym_5, stride=sym_6, padding=sym_7, ceil_mode=sym_8, count_include_pad=sym_9, divisor_override=sym_10)
      ```

      output:
      ```
      2.7.0.dev20250116+cu124
      fish: Job 2, 'python3 test.py' terminated by signal SIGFPE (Floating point exception)
      ```

          1. Versions

      ```
      Collecting environment information...
      PyTorch version: 2.7.0.dev20250116+cu124
      Is debug build: False
      CUDA used to build PyTorch: 12.4
      ROCM used to build PyTorch: N/A

      OS: Manjaro Linux (x86_64)
      GCC version: (GCC) 14.2.1 20240805
      Clang version: 18.1.8
      CMake version: version 3.30.2
      Libc version: glibc-2.40

      Python version: 3.11.11 | packaged by conda-forge | (main, Dec 5 2024, 14:17:24) [GCC 13.3.0] (64-bit runtime)
      Python platform: Linux-6.6.47-1-MANJARO-x86_64-with-glibc2.40
      Is CUDA available: True
      CUDA runtime version: Could not collect
      CUDA_MODULE_LOADING set to: LAZY
      GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070
      Nvidia driver version: 550.107.02
      cuDNN version: Probably one of the following:
      /usr/lib/libcudnn.so.9.2.1
      /usr/lib/libcudnn_adv.so.9.2.1
      /usr/lib/libcudnn_cnn.so.9.2.1
      /usr/lib/libcudnn_engines_precompiled.so.9.2.1
      /usr/lib/libcudnn_engines_runtime_compiled.so.9.2.1
      /usr/lib/libcudnn_graph.so.9.2.1
      /usr/lib/libcudnn_heuristic.so.9.2.1
      /usr/lib/libcudnn_ops.so.9.2.1
      HIP runtime version: N/A
      MIOpen runtime version: N/A
      Is XNNPACK available: True

      CPU:
      架构: x86_64
      CPU 运行模式: 32-bit, 64-bit
      Address sizes: 39 bits physical, 48 bits virtual
      字节序: Little Endian
      CPU: 16
      在线 CPU 列表: 0-15
      厂商 ID: GenuineIntel
      型号名称: 13th Gen Intel(R) Core(TM) i5-13400F
      CPU 系列: 6
      型号: 191
      每个核的线程数: 2
      每个座的核数: 10
      座: 1
      步进: 2
      CPU(s) scaling MHz: 25%
      CPU 最大 MHz: 4600.0000
      CPU 最小 MHz: 800.0000
      BogoMIPS: 4993.00
      标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities
      虚拟化: VT-x
      L1d 缓存: 416 KiB (10 instances)
      L1i 缓存: 448 KiB (10 instances)
      L2 缓存: 9.5 MiB (7 instances)
      L3 缓存: 20 MiB (1 instance)
      NUMA 节点: 1
      NUMA 节点0 CPU: 0-15
      Vulnerability Gather data sampling: Not affected
      Vulnerability Itlb multihit: Not affected
      Vulnerability L1tf: Not affected
      Vulnerability Mds: Not affected
      Vulnerability Meltdown: Not affected
      Vulnerability Mmio stale data: Not affected
      Vulnerability Reg file data sampling: Mitigation; Clear Register File
      Vulnerability Retbleed: Not affected
      Vulnerability Spec rstack overflow: Not affected
      Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
      Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
      Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
      Vulnerability Srbds: Not affected
      Vulnerability Tsx async abort: Not affected

      Versions of relevant libraries:
      [pip3] numpy==2.1.2
      [pip3] nvidia-cublas-cu12==12.4.5.8
      [pip3] nvidia-cuda-cupti-cu12==12.4.127
      [pip3] nvidia-cuda-nvrtc-cu12==12.4.127
      [pip3] nvidia-cuda-runtime-cu12==12.4.127
      [pip3] nvidia-cudnn-cu12==9.1.0.70
      [pip3] nvidia-cufft-cu12==11.2.1.3
      [pip3] nvidia-curand-cu12==10.3.5.147
      [pip3] nvidia-cusolver-cu12==11.6.1.9
      [pip3] nvidia-cusparse-cu12==12.3.1.170
      [pip3] nvidia-cusparselt-cu12==0.6.2
      [pip3] nvidia-nccl-cu12==2.21.5
      [pip3] nvidia-nvjitlink-cu12==12.4.127
      [pip3] nvidia-nvtx-cu12==12.4.127
      [pip3] pytorch-triton==3.2.0+git0d4682f0
      [pip3] torch==2.7.0.dev20250116+cu124
      [pip3] torchaudio==2.6.0.dev20250116+cu124
      [pip3] torchvision==0.22.0.dev20250116+cu124
      [conda] numpy 2.1.2 pypi_0 pypi
      [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
      [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
      [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
      [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
      [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
      [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
      [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
      [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
      [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
      [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
      [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
      [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
      [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
      [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi
      [conda] torch 2.7.0.dev20250116+cu124 pypi_0 pypi
      [conda] torchaudio 2.6.0.dev20250116+cu124 pypi_0 pypi
      [conda] torchvision 0.22.0.dev20250116+cu124 pypi_0 pypi
      ```

      cc @malfet

              rh-ee-visgoyal Vishal Goyal
              rh-ee-visgoyal Vishal Goyal
              PyTorch Core
              Votes:
              0 Vote for this issue
              Watchers:
              2 Start watching this issue

                Created:
                Updated: