-
Story
-
Resolution: Unresolved
-
Undefined
-
None
-
None
-
None
-
2
-
False
-
-
False
-
-
-
PyTorch Sprint 18, PyTorch Sprint 19, PyTorch Sprint 20, PyTorch Sprint 21, PyTorch Sprint 22, PyTorch Sprint 23, PyTorch Sprint 24
There is the following issue on this page: https://docs.pytorch.org/docs/stable/generated/torch.unique.html
The documentation does not mention the important nuance when using the argument dim - since the output has to have equal sizes in the dimensions not specified by dim , we will get some repetitions, rather than a unique set of values, to force all the unique sets to be represented in equal length torch tensors.
Example:
```
>>> import torch
>>> x = torch.tensor([[1, 3, 2, 3], [1,2,1,2]], dtype=torch.long)
>>> torch.unique(x,dim=0)
tensor([[1, 2, 1, 2],
[1, 3, 2, 3]])
>>> torch.unique(x,dim=1)
tensor([[1, 2, 3],
[1, 1, 2]])
```
cc @svekars @sekyondaMeta @AlannaBurke
- clones
-
AIPCC-7168 `torch.utils.data.default_collate` raises misleading warning for read-only NumPy arrays
-
- Review
-