Uploaded image for project: 'AI Platform Core Components'
  1. AI Platform Core Components
  2. AIPCC-6644

torch.nansum does not work with complex numbers on CPU

    • Icon: Feature Feature
    • Resolution: Unresolved
    • Icon: Undefined Undefined
    • None
    • None
    • PyTorch
    • None
    • PyTorch Sprint 18, PyTorch Sprint 19

          1. 🐛 Describe the bug

      `torch.nansum` does not work with complex tensors containing `nan` values on CPU (works on GPU) ([colab](https://colab.research.google.com/drive/1b_3zgqEQqdFjKOW-TisFy_ED47Xo522Y?usp=sharing))

      Minimal repro:
      ```python
      import torch

      input_tensor = torch.tensor([1.2+0j,1.5+0j, 1+torch.nan * 1j])
      print(torch.isnan(input_tensor)) # tensor([False, False, True])
      print(torch.isnan(input_tensor.cuda())) # tensor([False, False, True], device='cuda:0')

      print(torch.nansum(input_tensor.cuda())) # tensor(2.7000+0.j, device='cuda:0')

      output_cpu = torch.nansum(input_tensor) # RuntimeError: nansum does not support complex inputs
      ```

          1. Versions

      Collecting environment information...
      PyTorch version: 2.4.0+cu121
      Is debug build: False
      CUDA used to build PyTorch: 12.1
      ROCM used to build PyTorch: N/A

      OS: Ubuntu 20.04.6 LTS (x86_64)
      GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
      Clang version: 15.0.0 (git@github.com:llvm/llvm-project.git 4ba6a9c9f65bbc8bd06e3652cb20fd4dfc846137)
      CMake version: version 3.22.1
      Libc version: glibc-2.31

      Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
      Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.31
      Is CUDA available: True
      CUDA runtime version: 12.1.105
      CUDA_MODULE_LOADING set to: LAZY
      GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
      Nvidia driver version: 555.42.02
      cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
      HIP runtime version: N/A
      MIOpen runtime version: N/A
      Is XNNPACK available: True

      CPU:
      Architecture: x86_64
      CPU op-mode(s): 32-bit, 64-bit
      Byte Order: Little Endian
      Address sizes: 39 bits physical, 48 bits virtual
      CPU(s): 24
      On-line CPU(s) list: 0-23
      Thread(s) per core: 1
      Core(s) per socket: 16
      Socket(s): 1
      NUMA node(s): 1
      Vendor ID: GenuineIntel
      CPU family: 6
      Model: 183
      Model name: 13th Gen Intel(R) Core(TM) i7-13700KF
      Stepping: 1
      CPU MHz: 4118.642
      CPU max MHz: 5800.0000
      CPU min MHz: 800.0000
      BogoMIPS: 6835.20
      Virtualization: VT-x
      L1d cache: 384 KiB
      L1i cache: 256 KiB
      L2 cache: 16 MiB
      NUMA node0 CPU(s): 0-23
      Vulnerability Gather data sampling: Not affected
      Vulnerability Itlb multihit: Not affected
      Vulnerability L1tf: Not affected
      Vulnerability Mds: Not affected
      Vulnerability Meltdown: Not affected
      Vulnerability Mmio stale data: Not affected
      Vulnerability Reg file data sampling: Mitigation; Clear Register File
      Vulnerability Retbleed: Not affected
      Vulnerability Spec rstack overflow: Not affected
      Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
      Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
      Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
      Vulnerability Srbds: Not affected
      Vulnerability Tsx async abort: Not affected
      Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr flush_l1d arch_capabilities

      Versions of relevant libraries:
      [pip3] numpy==1.26.4
      [pip3] optree==0.11.0
      [pip3] torch==2.4.0
      [pip3] triton==3.0.0
      [conda] numpy 1.26.4 py310heeff2f4_0
      [conda] numpy-base 1.26.4 py310h8a23956_0
      [conda] optree 0.11.0 pypi_0 pypi
      [conda] torch 2.4.0 pypi_0 pypi
      [conda] triton 3.0.0 pypi_0 pypi

      cc @ezyang @anjali411 @dylanbespalko @mruberry @nikitaved @amjames

              rh-ee-visgoyal Vishal Goyal
              rh-ee-visgoyal Vishal Goyal
              PyTorch Core
              Votes:
              0 Vote for this issue
              Watchers:
              2 Start watching this issue

                Created:
                Updated: