Uploaded image for project: 'AI Platform Core Components'
  1. AI Platform Core Components
  2. AIPCC-5876

inconsistency in ```torch.nn.functional.adaptive_avg_pool3d``` on CPU and GPU

    • Icon: Story Story
    • Resolution: Unresolved
    • Icon: Undefined Undefined
    • None
    • None
    • PyTorch
    • None
    • PyTorch Sprint 15, PyTorch Sprint 16, PyTorch Sprint 18, PyTorch Sprint 19, PyTorch Sprint 20, PyTorch Sprint 21, PyTorch Sprint 22, PyTorch Sprint 23, PyTorch Sprint 24

          1. 🐛 Describe the bug

      consistency check of function ```torch.nn.functional.adaptive_avg_pool3d``` between CPU and GPU using a bfloat16 tensor.
      ```python
      import torch

      input_tensor = torch.tensor([
      [
      [
      [-1.4062, 1.4609, 0.6797],
      [-0.6875, -0.9492, 0.4434],
      [-1.0312, -0.3730, 0.9453]
      ],
      [
      [0.9766, 0.2070, 0.8242],
      [-1.6484, 1.4531, 1.7891],
      [0.3945, 0.5352, -0.8711]
      ]
      ],
      [
      [
      [-2.5000, 0.2617, -0.3613],
      [-1.6094, -1.4219, -0.3281],
      [-1.3594, -2.3594, -0.5312]
      ],
      [
      [-1.9375, 1.0938, 1.5547],
      [-0.5820, -0.1167, 1.3438],
      [1.1953, -1.3750, -1.3438]
      ]
      ]
      ], dtype=torch.bfloat16)

      output_size = (None, 1, None)

      result_cpu = torch.nn.functional.adaptive_avg_pool3d(input_tensor, output_size)

      input_cuda = input_tensor.cuda()
      result_gpu = torch.nn.functional.adaptive_avg_pool3d(input_cuda, output_size)

      print("CPU result:\n", result_cpu)
      print("GPU result:\n", result_gpu.cpu())

      inconsistent = not torch.allclose(result_cpu, result_gpu.cpu(), atol=1e-02, rtol=1e-03)
      print("Inconsistency with atol=1e-02 and rtol=1e-03:", inconsistent)
      ```
      outputs:
      ```
      CPU result:
      tensor([[[[-1.0391, 0.0461, 0.6875]],

      [[-0.0923, 0.7305, 0.5781]]],

      [[[-1.8359, -1.1719, -0.4062]],

      [[-0.4395, -0.1328, 0.5195]]]], dtype=torch.bfloat16)

      GPU result:
      tensor([[[[-1.0391, 0.0461, 0.6875]],

      [[-0.0923, 0.7305, 0.5820]]],

      [[[-1.8203, -1.1719, -0.4062]],

      [[-0.4414, -0.1328, 0.5195]]]], dtype=torch.bfloat16)

      Inconsistency with atol=1e-02 and rtol=1e-03: True
      ```

          1. Versions

      (executed on google colab)
      PyTorch version: 2.5.0+cu121
      Is debug build: False
      CUDA used to build PyTorch: 12.1
      ROCM used to build PyTorch: N/A

      OS: Ubuntu 22.04.3 LTS (x86_64)
      GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
      Clang version: 14.0.0-1ubuntu1.1
      CMake version: version 3.30.5
      Libc version: glibc-2.35

      Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
      Python platform: Linux-6.1.85+-x86_64-with-glibc2.35
      Is CUDA available: True
      CUDA runtime version: 12.2.140
      CUDA_MODULE_LOADING set to: LAZY
      GPU models and configuration: GPU 0: Tesla T4
      Nvidia driver version: 535.104.05
      cuDNN version: Probably one of the following:
      /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
      /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
      HIP runtime version: N/A
      MIOpen runtime version: N/A
      Is XNNPACK available: True

      CPU:
      Architecture: x86_64
      CPU op-mode(s): 32-bit, 64-bit
      Address sizes: 46 bits physical, 48 bits virtual
      Byte Order: Little Endian
      CPU(s): 2
      On-line CPU(s) list: 0,1
      Vendor ID: GenuineIntel
      Model name: Intel(R) Xeon(R) CPU @ 2.00GHz
      CPU family: 6
      Model: 85
      Thread(s) per core: 2
      Core(s) per socket: 1
      Socket(s): 1
      Stepping: 3
      BogoMIPS: 4000.31
      Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities
      Hypervisor vendor: KVM
      Virtualization type: full
      L1d cache: 32 KiB (1 instance)
      L1i cache: 32 KiB (1 instance)
      L2 cache: 1 MiB (1 instance)
      L3 cache: 38.5 MiB (1 instance)
      NUMA node(s): 1
      NUMA node0 CPU(s): 0,1
      Vulnerability Gather data sampling: Not affected
      Vulnerability Itlb multihit: Not affected
      Vulnerability L1tf: Mitigation; PTE Inversion
      Vulnerability Mds: Vulnerable; SMT Host state unknown
      Vulnerability Meltdown: Vulnerable
      Vulnerability Mmio stale data: Vulnerable
      Vulnerability Reg file data sampling: Not affected
      Vulnerability Retbleed: Vulnerable
      Vulnerability Spec rstack overflow: Not affected
      Vulnerability Spec store bypass: Vulnerable
      Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
      Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled)
      Vulnerability Srbds: Not affected
      Vulnerability Tsx async abort: Vulnerable

      Versions of relevant libraries:
      [pip3] numpy==1.26.4
      [pip3] nvidia-cublas-cu12==12.6.3.3
      [pip3] nvidia-cuda-cupti-cu12==12.6.80
      [pip3] nvidia-cuda-runtime-cu12==12.6.77
      [pip3] nvidia-cudnn-cu12==9.5.1.17
      [pip3] nvidia-cufft-cu12==11.3.0.4
      [pip3] nvidia-curand-cu12==10.3.7.77
      [pip3] nvidia-cusolver-cu12==11.7.1.2
      [pip3] nvidia-cusparse-cu12==12.5.4.2
      [pip3] nvidia-nccl-cu12==2.23.4
      [pip3] nvidia-nvjitlink-cu12==12.6.77
      [pip3] nvtx==0.2.10
      [pip3] optree==0.13.0
      [pip3] pynvjitlink-cu12==0.4.0
      [pip3] torch==2.5.0+cu121
      [pip3] torchaudio==2.5.0+cu121
      [pip3] torchsummary==1.5.1
      [pip3] torchvision==0.20.0+cu121
      [conda] Could not collect

      cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @ptrblck @msaroufim

              rh-ee-visgoyal Vishal Goyal
              rh-ee-visgoyal Vishal Goyal
              PyTorch Core
              Votes:
              0 Vote for this issue
              Watchers:
              3 Start watching this issue

                Created:
                Updated: