-
Story
-
Resolution: Unresolved
-
Undefined
-
None
-
None
-
None
-
PyTorch Sprint 15, PyTorch Sprint 16, PyTorch Sprint 17
-
-
- 🐛 Describe the bug
-
The following code reproduces the bug:
```python
import torch
x = torch.tensor([0.0, -0.0])
print(torch.pow(x, 0.5), torch.pow(x, 0.6))
```
prints
```
tensor([0., -0.]) tensor([0., 0.])
```
According to IEEE spec as well as Array API spec, `pow(-0.0, 0.5)` should return `+0.0`. But the above code returns `-0.0`.
-
-
- Versions
-
PyTorch version: 2.3.0
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: macOS 14.4.1 (arm64)
GCC version: Could not collect
Clang version: 15.0.0 (clang-1500.3.9.4)
CMake version: version 3.25.2
Libc version: N/A
Python version: 3.11.9 (main, Apr 2 2024, 08:25:04) [Clang 15.0.0 (clang-1500.3.9.4)] (64-bit runtime)
Python platform: macOS-14.4.1-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Apple M1
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.3.0
[conda] Could not collect
cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @albanD @malfet
- clones
-
AIPCC-5609 Memory leak when using mark_dirty in Python custom autograd.Function
-
- Closed
-
- is cloned by
-
AIPCC-5717 `torch.nn.LPPool2d` throws inconsistent error on CPU and GPU
-
- Review
-