+ ilab data generate + tee iso-testrun/ilab-data-generate INFO 2025-05-19 17:06:46,604 instructlab.process.process:300: Started subprocess with PID 1. Logs are being written to /mnt/.local/share/instructlab/logs/generation/generation-a5644c96-34d3-11f0-b209-0200057a353b.log. INFO 2025-05-19 17:06:50,492 instructlab.model.backends.vllm:115: Trying to connect to model server at http://127.0.0.1:8000/v1 INFO 2025-05-19 17:06:52,069 instructlab.model.backends.vllm:332: vLLM starting up on pid 5 at http://127.0.0.1:42445/v1 INFO 2025-05-19 17:06:52,069 instructlab.model.backends.vllm:123: Starting a temporary vLLM server at http://127.0.0.1:42445/v1 INFO 2025-05-19 17:06:52,069 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 1/120 INFO 2025-05-19 17:06:55,529 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 2/120 INFO 2025-05-19 17:06:58,856 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 3/120 INFO 2025-05-19 17:07:02,205 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 4/120 INFO 2025-05-19 17:07:05,591 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 5/120 INFO 2025-05-19 17:07:08,918 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 6/120 INFO 2025-05-19 17:07:12,362 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 7/120 INFO 2025-05-19 17:07:15,592 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 8/120 INFO 2025-05-19 17:07:18,931 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 9/120 INFO 2025-05-19 17:07:22,406 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 10/120 INFO 2025-05-19 17:07:25,796 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 11/120 INFO 2025-05-19 17:07:29,077 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 12/120 INFO 2025-05-19 17:07:32,405 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 13/120 INFO 2025-05-19 17:07:35,729 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 14/120 INFO 2025-05-19 17:07:39,033 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 15/120 INFO 2025-05-19 17:07:42,345 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 16/120 INFO 2025-05-19 17:07:45,547 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 17/120 INFO 2025-05-19 17:07:48,743 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 18/120 INFO 2025-05-19 17:07:51,920 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 19/120 INFO 2025-05-19 17:07:55,323 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 20/120 INFO 2025-05-19 17:07:58,601 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 21/120 INFO 2025-05-19 17:08:01,877 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 22/120 INFO 2025-05-19 17:08:05,107 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 23/120 INFO 2025-05-19 17:08:08,457 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 24/120 INFO 2025-05-19 17:08:11,695 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 25/120 INFO 2025-05-19 17:08:14,979 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 26/120 INFO 2025-05-19 17:08:18,199 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 27/120 INFO 2025-05-19 17:08:21,543 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 28/120 INFO 2025-05-19 17:08:24,783 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 29/120 INFO 2025-05-19 17:08:28,024 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 30/120 INFO 2025-05-19 17:08:31,392 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 31/120 INFO 2025-05-19 17:08:34,731 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 32/120 INFO 2025-05-19 17:08:38,046 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 33/120 INFO 2025-05-19 17:08:41,218 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 34/120 INFO 2025-05-19 17:08:44,507 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 35/120 INFO 2025-05-19 17:08:47,782 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 36/120 INFO 2025-05-19 17:08:51,029 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 37/120 INFO 2025-05-19 17:08:54,307 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 38/120 INFO 2025-05-19 17:08:57,685 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 39/120 INFO 2025-05-19 17:09:00,843 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 40/120 INFO 2025-05-19 17:09:04,297 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 41/120 INFO 2025-05-19 17:09:07,683 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 42/120 INFO 2025-05-19 17:09:10,939 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 43/120 INFO 2025-05-19 17:09:14,177 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 44/120 INFO 2025-05-19 17:09:17,363 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 45/120 INFO 2025-05-19 17:09:20,722 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 46/120 INFO 2025-05-19 17:09:24,054 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 47/120 INFO 2025-05-19 17:09:27,248 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 48/120 INFO 2025-05-19 17:09:30,653 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 49/120 INFO 2025-05-19 17:09:33,903 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 50/120 INFO 2025-05-19 17:09:37,301 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 51/120 INFO 2025-05-19 17:09:40,711 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 52/120 INFO 2025-05-19 17:09:44,095 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 53/120 INFO 2025-05-19 17:09:47,350 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 54/120 INFO 2025-05-19 17:09:50,605 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 55/120 INFO 2025-05-19 17:09:53,961 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 56/120 INFO 2025-05-19 17:09:57,239 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 57/120 INFO 2025-05-19 17:10:00,525 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 58/120 INFO 2025-05-19 17:10:03,798 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 59/120 INFO 2025-05-19 17:10:07,185 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 60/120 INFO 2025-05-19 17:10:10,621 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 61/120 INFO 2025-05-19 17:10:13,916 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 62/120 INFO 2025-05-19 17:10:17,101 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 63/120 INFO 2025-05-19 17:10:20,457 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 64/120 INFO 2025-05-19 17:10:23,644 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 65/120 INFO 2025-05-19 17:10:26,917 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 66/120 INFO 2025-05-19 17:10:30,218 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 67/120 INFO 2025-05-19 17:10:33,509 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 68/120 INFO 2025-05-19 17:10:36,923 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 69/120 INFO 2025-05-19 17:10:40,232 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 70/120 INFO 2025-05-19 17:10:43,662 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 71/120 INFO 2025-05-19 17:10:46,906 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 72/120 INFO 2025-05-19 17:10:50,263 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 73/120 INFO 2025-05-19 17:10:53,530 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 74/120 INFO 2025-05-19 17:10:56,757 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 75/120 INFO 2025-05-19 17:11:00,073 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 76/120 INFO 2025-05-19 17:11:03,348 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 77/120 INFO 2025-05-19 17:11:06,565 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 78/120 INFO 2025-05-19 17:11:09,963 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 79/120 INFO 2025-05-19 17:11:13,230 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 80/120 INFO 2025-05-19 17:11:16,496 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 81/120 INFO 2025-05-19 17:11:19,922 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 82/120 INFO 2025-05-19 17:11:23,127 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 83/120 INFO 2025-05-19 17:11:26,430 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 84/120 INFO 2025-05-19 17:11:29,635 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 85/120 INFO 2025-05-19 17:11:32,978 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 86/120 INFO 2025-05-19 17:11:36,286 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 87/120 INFO 2025-05-19 17:11:39,640 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 88/120 INFO 2025-05-19 17:11:42,941 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 89/120 INFO 2025-05-19 17:11:46,172 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 90/120 INFO 2025-05-19 17:11:49,334 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 91/120 INFO 2025-05-19 17:11:52,736 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 92/120 INFO 2025-05-19 17:11:56,045 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 93/120 INFO 2025-05-19 17:11:59,464 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 94/120 INFO 2025-05-19 17:12:02,712 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 95/120 INFO 2025-05-19 17:12:05,884 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 96/120 INFO 2025-05-19 17:12:09,302 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 97/120 INFO 2025-05-19 17:12:12,719 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 98/120 INFO 2025-05-19 17:12:15,972 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 99/120 INFO 2025-05-19 17:12:19,161 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 100/120 INFO 2025-05-19 17:12:22,462 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 101/120 INFO 2025-05-19 17:12:25,946 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 102/120 INFO 2025-05-19 17:12:29,229 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 103/120 INFO 2025-05-19 17:12:32,525 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 104/120 INFO 2025-05-19 17:12:35,669 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 105/120 INFO 2025-05-19 17:12:38,999 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 106/120 INFO 2025-05-19 17:12:42,299 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 107/120 INFO 2025-05-19 17:12:45,524 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 108/120 INFO 2025-05-19 17:12:48,846 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 109/120 INFO 2025-05-19 17:12:52,307 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 110/120 INFO 2025-05-19 17:12:55,453 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 111/120 INFO 2025-05-19 17:12:58,702 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 112/120 INFO 2025-05-19 17:13:01,996 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 113/120 INFO 2025-05-19 17:13:05,354 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 114/120 INFO 2025-05-19 17:13:08,591 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 115/120 INFO 2025-05-19 17:13:12,072 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 116/120 INFO 2025-05-19 17:13:15,286 instructlab.model.backends.vllm:138: Waiting for the vLLM server to start at http://127.0.0.1:42445/v1, this might take a moment... Attempt: 117/120 INFO 2025-05-19 17:13:16,660 instructlab.model.backends.vllm:145: vLLM engine successfully started at http://127.0.0.1:42445/v1 INFO 2025-05-19 17:13:16,872 numexpr.utils:146: Note: detected 208 virtual cores but NumExpr set to maximum of 64, check "NUMEXPR_MAX_THREADS" environment variable. INFO 2025-05-19 17:13:16,873 numexpr.utils:149: Note: NumExpr detected 208 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 16. INFO 2025-05-19 17:13:16,873 numexpr.utils:162: NumExpr defaulting to 16 threads. INFO 2025-05-19 17:13:17,147 datasets:54: PyTorch version 2.6.0 available. INFO 2025-05-19 17:13:18,532 instructlab:206: Generating synthetic data using '/usr/share/instructlab/sdg/pipelines/agentic' pipeline, '/mnt/.cache/instructlab/models/mixtral-8x7b-instruct-v0-1' model, '/mnt/.local/share/instructlab/taxonomy' taxonomy, against http://127.0.0.1:42445/v1 server INFO 2025-05-19 17:13:18,533 root:356: Converting taxonomy to samples INFO 2025-05-19 17:13:19,360 instructlab.sdg.utils.taxonomy:143: Processing files... INFO 2025-05-19 17:13:19,360 instructlab.sdg.utils.taxonomy:148: Pattern 'swifties.md' matched 1 files. INFO 2025-05-19 17:13:19,360 instructlab.sdg.utils.taxonomy:152: Processing file: /mnt/.local/share/instructlab/datasets/2025-05-19_170646/preprocessed_2025-05-19T17_13_18/documents/knowledge_arts_music_fandom_swifties_tcuccifb/swifties.md INFO 2025-05-19 17:13:19,360 instructlab.sdg.utils.taxonomy:156: Added file path: /mnt/.local/share/instructlab/datasets/2025-05-19_170646/preprocessed_2025-05-19T17_13_18/documents/knowledge_arts_music_fandom_swifties_tcuccifb/swifties.md INFO 2025-05-19 17:13:19,726 instructlab.sdg.utils.taxonomy:143: Processing files... INFO 2025-05-19 17:13:19,726 instructlab.sdg.utils.taxonomy:148: Pattern 'chickadee.md' matched 1 files. INFO 2025-05-19 17:13:19,726 instructlab.sdg.utils.taxonomy:152: Processing file: /mnt/.local/share/instructlab/datasets/2025-05-19_170646/preprocessed_2025-05-19T17_13_18/documents/knowledge_science_animals_birds_black_capped_chickadee_kmuo5n83/chickadee.md INFO 2025-05-19 17:13:19,726 instructlab.sdg.utils.taxonomy:156: Added file path: /mnt/.local/share/instructlab/datasets/2025-05-19_170646/preprocessed_2025-05-19T17_13_18/documents/knowledge_science_animals_birds_black_capped_chickadee_kmuo5n83/chickadee.md INFO 2025-05-19 17:14:01,038 instructlab.sdg.utils.chunkers:144: Found the docling models INFO 2025-05-19 17:14:01,642 instructlab.sdg.utils.chunkers:249: Successfully loaded tokenizer from: /mnt/.cache/instructlab/models/mixtral-8x7b-instruct-v0-1 INFO 2025-05-19 17:14:01,857 docling.document_converter:269: Going to convert document batch... INFO 2025-05-19 17:14:01,857 docling.document_converter:304: Initializing pipeline for SimplePipeline with options hash 4cc01982ae99b46a2a63fcda46c47c35 INFO 2025-05-19 17:14:01,857 docling.pipeline.base_pipeline:39: Processing document swifties.md INFO 2025-05-19 17:14:02,305 docling.document_converter:284: Finished converting document swifties.md in 0.45 sec. INFO 2025-05-19 17:14:02,541 instructlab.sdg.utils.chunkers:144: Found the docling models INFO 2025-05-19 17:14:02,918 instructlab.sdg.utils.chunkers:249: Successfully loaded tokenizer from: /mnt/.cache/instructlab/models/mixtral-8x7b-instruct-v0-1 INFO 2025-05-19 17:14:02,918 docling.document_converter:269: Going to convert document batch... INFO 2025-05-19 17:14:02,918 docling.document_converter:304: Initializing pipeline for SimplePipeline with options hash 4cc01982ae99b46a2a63fcda46c47c35 INFO 2025-05-19 17:14:02,918 docling.pipeline.base_pipeline:39: Processing document chickadee.md INFO 2025-05-19 17:14:04,080 docling.document_converter:284: Finished converting document chickadee.md in 1.16 sec. INFO 2025-05-19 17:14:04,182 instructlab.sdg.generate_data:405: Taxonomy converted to samples and written to /mnt/.local/share/instructlab/datasets/2025-05-19_170646/preprocessed_2025-05-19T17_13_18 INFO 2025-05-19 17:14:04,217 instructlab.sdg.generate_data:441: Synthesizing new instructions. If you aren't satisfied with the generated instructions, interrupt training (Ctrl-C) and try adjusting your YAML files. Adding more examples may help. INFO 2025-05-19 17:14:04,271 instructlab.sdg.checkpointing:59: No existing checkpoints found in /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_grounded_linguistics_inclusion, generating from scratch INFO 2025-05-19 17:14:04,271 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:14:06,892 instructlab.sdg.blocks.llmblock:56: LLM server supports batched inputs: True INFO 2025-05-19 17:14:06,892 instructlab.sdg.pipeline:199: Running block: gen_contexts INFO 2025-05-19 17:14:18,409 instructlab.sdg.pipeline:199: Running block: gen_grounded_questions INFO 2025-05-19 17:14:27,780 instructlab.sdg.pipeline:199: Running block: eval_grounded_questions INFO 2025-05-19 17:14:32,800 instructlab.sdg.pipeline:199: Running block: filter_grounded_questions Map (num_proc=8): 100%|##########| 153/153 [00:00<00:00, 487.34 examples/s] Filter (num_proc=8): 100%|##########| 153/153 [00:00<00:00, 685.67 examples/s] INFO 2025-05-19 17:14:33,890 instructlab.sdg.pipeline:199: Running block: gen_grounded_responses INFO 2025-05-19 17:14:43,849 instructlab.sdg.pipeline:199: Running block: evaluate_grounded_qa_pair INFO 2025-05-19 17:14:48,442 instructlab.sdg.pipeline:199: Running block: filter_grounded_qa_pair Map (num_proc=8): 100%|##########| 135/135 [00:00<00:00, 427.79 examples/s] Filter (num_proc=8): 100%|##########| 135/135 [00:00<00:00, 619.49 examples/s] INFO 2025-05-19 17:14:49,509 instructlab.sdg.pipeline:199: Running block: combine_question_and_context Map (num_proc=8): 100%|##########| 133/133 [00:00<00:00, 397.80 examples/s] INFO 2025-05-19 17:14:50,133 instructlab.sdg.pipeline:199: Running block: router INFO 2025-05-19 17:14:52,934 instructlab.sdg.pipeline:199: Running block: icl_populator Map (num_proc=8): 100%|##########| 133/133 [00:00<00:00, 351.03 examples/s] INFO 2025-05-19 17:14:53,607 instructlab.sdg.pipeline:199: Running block: analyzer INFO 2025-05-19 17:15:02,708 instructlab.sdg.pipeline:199: Running block: critic INFO 2025-05-19 17:15:17,080 instructlab.sdg.pipeline:199: Running block: planner INFO 2025-05-19 17:15:30,492 instructlab.sdg.pipeline:199: Running block: revised_responder INFO 2025-05-19 17:15:51,211 instructlab.sdg.pipeline:199: Running block: judge INFO 2025-05-19 17:15:59,525 instructlab.sdg.pipeline:199: Running block: filter_judgement Map (num_proc=8): 100%|##########| 128/128 [00:00<00:00, 322.45 examples/s] Filter (num_proc=8): 100%|##########| 128/128 [00:00<00:00, 560.22 examples/s] INFO 2025-05-19 17:16:00,695 instructlab.sdg.pipeline:199: Running block: response_selector Map (num_proc=8): 100%|##########| 128/128 [00:00<00:00, 264.44 examples/s] INFO 2025-05-19 17:16:01,469 instructlab.sdg.checkpointing:44: Saving checkpoint to /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_grounded_linguistics_inclusion/data_checkpoint_cf8a889d935a476cb5e05a49f25978d4.jsonl Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 70.47ba/s] INFO 2025-05-19 17:16:01,531 instructlab.sdg.generate_data:478: Generated 128 samples INFO 2025-05-19 17:16:01,589 instructlab.sdg.checkpointing:59: No existing checkpoints found in /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_grounded_linguistics_writing_rewriting, generating from scratch INFO 2025-05-19 17:16:01,589 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:16:01,593 instructlab.sdg.pipeline:199: Running block: gen_contexts INFO 2025-05-19 17:16:03,656 instructlab.sdg.pipeline:199: Running block: gen_grounded_questions INFO 2025-05-19 17:16:09,719 instructlab.sdg.pipeline:199: Running block: eval_grounded_questions INFO 2025-05-19 17:16:14,633 instructlab.sdg.pipeline:199: Running block: filter_grounded_questions Map (num_proc=8): 100%|##########| 140/140 [00:00<00:00, 456.68 examples/s] Filter (num_proc=8): 100%|##########| 140/140 [00:00<00:00, 638.06 examples/s] INFO 2025-05-19 17:16:15,730 instructlab.sdg.pipeline:199: Running block: gen_grounded_responses INFO 2025-05-19 17:16:22,524 instructlab.sdg.pipeline:199: Running block: evaluate_grounded_qa_pair INFO 2025-05-19 17:16:25,485 instructlab.sdg.pipeline:199: Running block: filter_grounded_qa_pair Map (num_proc=8): 100%|##########| 95/95 [00:00<00:00, 315.49 examples/s] Filter (num_proc=8): 100%|##########| 95/95 [00:00<00:00, 442.37 examples/s] INFO 2025-05-19 17:16:26,534 instructlab.sdg.pipeline:199: Running block: combine_question_and_context Map (num_proc=8): 100%|##########| 95/95 [00:00<00:00, 139.10 examples/s] INFO 2025-05-19 17:16:27,476 instructlab.sdg.pipeline:199: Running block: router INFO 2025-05-19 17:16:29,977 instructlab.sdg.pipeline:199: Running block: icl_populator Map (num_proc=8): 100%|##########| 95/95 [00:00<00:00, 264.75 examples/s] INFO 2025-05-19 17:16:30,646 instructlab.sdg.pipeline:199: Running block: analyzer INFO 2025-05-19 17:16:37,791 instructlab.sdg.pipeline:199: Running block: critic INFO 2025-05-19 17:16:55,274 instructlab.sdg.pipeline:199: Running block: planner INFO 2025-05-19 17:17:05,051 instructlab.sdg.pipeline:199: Running block: revised_responder INFO 2025-05-19 17:17:17,985 instructlab.sdg.pipeline:199: Running block: judge INFO 2025-05-19 17:17:22,597 instructlab.sdg.pipeline:199: Running block: filter_judgement Map (num_proc=8): 100%|##########| 88/88 [00:00<00:00, 234.91 examples/s] Filter (num_proc=8): 100%|##########| 88/88 [00:00<00:00, 380.04 examples/s] INFO 2025-05-19 17:17:23,806 instructlab.sdg.pipeline:199: Running block: response_selector Map (num_proc=8): 100%|##########| 87/87 [00:00<00:00, 186.27 examples/s] INFO 2025-05-19 17:17:24,565 instructlab.sdg.checkpointing:44: Saving checkpoint to /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_grounded_linguistics_writing_rewriting/data_checkpoint_0eb9a3b39962496095e6a773043fcf2e.jsonl Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 133.61ba/s] INFO 2025-05-19 17:17:24,599 instructlab.sdg.generate_data:478: Generated 87 samples INFO 2025-05-19 17:17:24,656 instructlab.sdg.checkpointing:59: No existing checkpoints found in /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_linguistics_synonyms, generating from scratch INFO 2025-05-19 17:17:24,656 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:17:24,661 instructlab.sdg.pipeline:199: Running block: gen_questions INFO 2025-05-19 17:17:36,622 instructlab.sdg.pipeline:199: Running block: eval_questions INFO 2025-05-19 17:17:42,275 instructlab.sdg.pipeline:199: Running block: filter_questions Map (num_proc=8): 100%|##########| 168/168 [00:00<00:00, 580.19 examples/s] Filter (num_proc=8): 100%|##########| 168/168 [00:00<00:00, 756.90 examples/s] INFO 2025-05-19 17:17:43,370 instructlab.sdg.pipeline:199: Running block: gen_responses INFO 2025-05-19 17:17:45,428 instructlab.sdg.pipeline:199: Running block: evaluate_qa_pair INFO 2025-05-19 17:17:49,874 instructlab.sdg.pipeline:199: Running block: filter_qa_pair Map (num_proc=8): 100%|##########| 98/98 [00:00<00:00, 339.83 examples/s] Filter (num_proc=8): 100%|##########| 98/98 [00:00<00:00, 448.83 examples/s] INFO 2025-05-19 17:17:50,946 instructlab.sdg.pipeline:199: Running block: router INFO 2025-05-19 17:17:52,967 instructlab.sdg.pipeline:199: Running block: icl_populator Map (num_proc=8): 100%|##########| 98/98 [00:00<00:00, 294.72 examples/s] INFO 2025-05-19 17:17:53,614 instructlab.sdg.pipeline:199: Running block: analyzer INFO 2025-05-19 17:17:59,700 instructlab.sdg.pipeline:199: Running block: critic INFO 2025-05-19 17:18:09,454 instructlab.sdg.pipeline:199: Running block: planner INFO 2025-05-19 17:18:18,659 instructlab.sdg.pipeline:199: Running block: revised_responder INFO 2025-05-19 17:18:27,126 instructlab.sdg.pipeline:199: Running block: judge INFO 2025-05-19 17:18:31,251 instructlab.sdg.pipeline:199: Running block: filter_judgement Map (num_proc=8): 100%|##########| 91/91 [00:00<00:00, 261.67 examples/s] Filter (num_proc=8): 100%|##########| 91/91 [00:00<00:00, 380.50 examples/s] INFO 2025-05-19 17:18:32,431 instructlab.sdg.pipeline:199: Running block: response_selector Map (num_proc=8): 100%|##########| 66/66 [00:00<00:00, 165.57 examples/s] INFO 2025-05-19 17:18:33,115 instructlab.sdg.checkpointing:44: Saving checkpoint to /mnt/.local/share/instructlab/datasets/checkpoints/compositional_skills_linguistics_synonyms/data_checkpoint_37e10b84461c476a81de7b672a7bd8ca.jsonl Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 224.39ba/s] INFO 2025-05-19 17:18:33,138 instructlab.sdg.generate_data:478: Generated 66 samples INFO 2025-05-19 17:18:33,216 instructlab.sdg.checkpointing:59: No existing checkpoints found in /mnt/.local/share/instructlab/datasets/checkpoints/knowledge_arts_music_fandom_swifties, generating from scratch INFO 2025-05-19 17:18:33,216 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:18:33,222 instructlab.sdg.pipeline:199: Running block: router INFO 2025-05-19 17:18:38,588 instructlab.sdg.pipeline:199: Running block: SetClassifierValue INFO 2025-05-19 17:18:38,601 instructlab.sdg.pipeline:199: Running block: duplicate_document_col INFO 2025-05-19 17:18:38,610 instructlab.sdg.pipeline:199: Running block: gen_detailed_summary INFO 2025-05-19 17:18:49,164 instructlab.sdg.pipeline:199: Running block: gen_atomic_facts INFO 2025-05-19 17:19:01,028 instructlab.sdg.pipeline:199: Running block: gen_extractive_summary INFO 2025-05-19 17:19:09,513 instructlab.sdg.pipeline:199: Running block: flatten_summary_columns INFO 2025-05-19 17:19:09,536 instructlab.sdg.pipeline:199: Running block: rename_to_document_column INFO 2025-05-19 17:19:09,554 instructlab.sdg.pipeline:199: Running block: knowledge generation INFO 2025-05-19 17:21:21,331 instructlab.sdg.pipeline:199: Running block: eval_faithfulness_qa_pair INFO 2025-05-19 17:24:40,483 instructlab.sdg.pipeline:199: Running block: filter_faithfulness Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 615.33 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1057.24 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 646.48 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1068.77 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 670.27 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1097.79 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 657.10 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1075.95 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 654.97 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1099.50 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 678.11 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1112.28 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 661.70 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1056.11 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 666.18 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1100.83 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 653.34 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1144.87 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 649.32 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1141.75 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 680.65 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1094.50 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 673.49 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1166.65 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 680.50 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1162.23 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 666.04 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1164.05 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 673.11 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1114.31 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 651.72 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1140.77 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 658.05 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1110.13 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 664.31 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1083.70 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 659.98 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1146.14 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 606.05 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1121.00 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.24 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1155.99 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.45 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1151.71 examples/s] Map (num_proc=8): 100%|##########| 170/170 [00:00<00:00, 459.15 examples/s] Filter (num_proc=8): 100%|##########| 170/170 [00:00<00:00, 768.86 examples/s] INFO 2025-05-19 17:25:07,226 instructlab.sdg.pipeline:199: Running block: eval_relevancy_qa_pair INFO 2025-05-19 17:26:45,377 instructlab.sdg.pipeline:199: Running block: filter_relevancy Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 564.55 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1070.40 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 624.11 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1137.28 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 628.89 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1097.43 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 659.15 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1140.75 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 631.12 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1134.07 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 628.81 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1143.62 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 659.24 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1100.01 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 640.68 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1115.93 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 647.62 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1103.75 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 622.18 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1124.28 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 661.84 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1105.88 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 641.68 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1096.04 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 644.27 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1132.84 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 625.18 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1114.05 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 660.76 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1093.90 examples/s] Map (num_proc=8): 100%|##########| 189/189 [00:00<00:00, 509.23 examples/s] Filter (num_proc=8): 100%|##########| 189/189 [00:00<00:00, 850.31 examples/s] INFO 2025-05-19 17:27:04,105 instructlab.sdg.pipeline:199: Running block: eval_verify_question INFO 2025-05-19 17:28:47,452 instructlab.sdg.pipeline:199: Running block: filter_verify_question Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 581.37 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1042.23 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 622.48 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1132.59 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 627.60 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1132.19 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 663.03 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1016.81 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 634.09 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1115.45 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.72 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1130.49 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 618.75 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1129.24 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 653.78 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1031.15 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 631.40 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1096.11 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 632.21 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1127.24 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 610.10 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1109.97 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 640.24 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1095.17 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 629.59 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1120.87 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 640.59 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1140.01 examples/s] Map (num_proc=8): 100%|##########| 153/153 [00:00<00:00, 412.39 examples/s] Filter (num_proc=8): 100%|##########| 153/153 [00:00<00:00, 695.58 examples/s] INFO 2025-05-19 17:29:05,079 instructlab.sdg.checkpointing:44: Saving checkpoint to /mnt/.local/share/instructlab/datasets/checkpoints/knowledge_arts_music_fandom_swifties/data_checkpoint_8d10b62125e34b4daca25d4c0bbb30e2.jsonl Creating json from Arrow format: 100%|##########| 3/3 [00:00<00:00, 26.79ba/s] INFO 2025-05-19 17:29:05,806 instructlab.sdg.generate_data:478: Generated 2924 samples INFO 2025-05-19 17:29:05,959 instructlab.sdg.checkpointing:59: No existing checkpoints found in /mnt/.local/share/instructlab/datasets/checkpoints/knowledge_science_animals_birds_black_capped_chickadee, generating from scratch INFO 2025-05-19 17:29:05,959 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:29:05,964 instructlab.sdg.pipeline:199: Running block: router INFO 2025-05-19 17:29:09,213 instructlab.sdg.pipeline:199: Running block: SetClassifierValue INFO 2025-05-19 17:29:09,227 instructlab.sdg.pipeline:199: Running block: duplicate_document_col INFO 2025-05-19 17:29:09,234 instructlab.sdg.pipeline:199: Running block: gen_detailed_summary INFO 2025-05-19 17:29:17,181 instructlab.sdg.pipeline:199: Running block: gen_atomic_facts INFO 2025-05-19 17:29:33,047 instructlab.sdg.pipeline:199: Running block: gen_extractive_summary INFO 2025-05-19 17:29:39,996 instructlab.sdg.pipeline:199: Running block: flatten_summary_columns INFO 2025-05-19 17:29:40,019 instructlab.sdg.pipeline:199: Running block: rename_to_document_column INFO 2025-05-19 17:29:40,036 instructlab.sdg.pipeline:199: Running block: knowledge generation INFO 2025-05-19 17:31:41,269 instructlab.sdg.pipeline:199: Running block: eval_faithfulness_qa_pair INFO 2025-05-19 17:34:29,339 instructlab.sdg.pipeline:199: Running block: filter_faithfulness Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 578.98 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1016.84 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 609.15 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1022.99 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 605.67 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1051.52 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 650.05 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1058.71 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 635.63 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1054.21 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 653.80 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1062.74 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 652.15 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1072.13 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 632.10 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1078.34 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 633.55 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1061.65 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 647.61 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1014.04 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 650.32 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1061.78 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 658.00 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1063.45 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 632.92 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1043.08 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 635.57 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1007.17 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.21 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1073.74 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 635.53 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1068.12 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 634.64 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1060.38 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.58 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1027.09 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 635.48 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1014.34 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 639.26 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1034.60 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 602.03 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1059.80 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 620.43 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1060.27 examples/s] Map (num_proc=8): 100%|##########| 137/137 [00:00<00:00, 380.51 examples/s] Filter (num_proc=8): 100%|##########| 137/137 [00:00<00:00, 600.42 examples/s] INFO 2025-05-19 17:34:57,891 instructlab.sdg.pipeline:199: Running block: eval_relevancy_qa_pair INFO 2025-05-19 17:36:00,691 instructlab.sdg.pipeline:199: Running block: filter_relevancy Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 560.42 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 999.54 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 595.32 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1011.27 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 622.29 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 992.14 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 599.22 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1008.91 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 604.65 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1052.53 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 594.77 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1041.96 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 612.65 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1040.16 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 608.01 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 997.98 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 605.01 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1039.61 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 616.80 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1025.16 examples/s] Map (num_proc=8): 100%|##########| 44/44 [00:00<00:00, 127.17 examples/s] Filter (num_proc=8): 100%|##########| 44/44 [00:00<00:00, 195.13 examples/s] INFO 2025-05-19 17:36:14,782 instructlab.sdg.pipeline:199: Running block: eval_verify_question INFO 2025-05-19 17:37:11,999 instructlab.sdg.pipeline:199: Running block: filter_verify_question Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 565.44 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 978.01 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 609.26 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1047.27 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 610.62 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1048.55 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 601.51 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1029.44 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 621.97 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1036.55 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 604.50 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1044.07 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 601.31 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1038.32 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 599.70 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1042.09 examples/s] Map (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 590.70 examples/s] Filter (num_proc=8): 100%|##########| 256/256 [00:00<00:00, 1042.90 examples/s] Map (num_proc=8): 100%|##########| 180/180 [00:00<00:00, 443.18 examples/s] Filter (num_proc=8): 100%|##########| 180/180 [00:00<00:00, 755.82 examples/s] INFO 2025-05-19 17:37:24,834 instructlab.sdg.checkpointing:44: Saving checkpoint to /mnt/.local/share/instructlab/datasets/checkpoints/knowledge_science_animals_birds_black_capped_chickadee/data_checkpoint_467b3815096e4a5087506e6317f2ea7b.jsonl Creating json from Arrow format: 100%|##########| 3/3 [00:00<00:00, 29.29ba/s] INFO 2025-05-19 17:37:25,457 instructlab.sdg.generate_data:478: Generated 2423 samples INFO 2025-05-19 17:37:25,490 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:37:25,496 instructlab.sdg.pipeline:199: Running block: gen_mmlu_knowledge Filter: 100%|##########| 358/358 [00:00<00:00, 36471.32 examples/s] Filter: 100%|##########| 357/357 [00:00<00:00, 24203.38 examples/s] Flattening the indices: 100%|##########| 357/357 [00:00<00:00, 40904.95 examples/s] Map: 100%|##########| 357/357 [00:00<00:00, 10587.71 examples/s] Map: 100%|##########| 357/357 [00:00<00:00, 10058.28 examples/s] Map: 100%|##########| 357/357 [00:00<00:00, 9873.12 examples/s] Filter: 100%|##########| 357/357 [00:00<00:00, 38605.85 examples/s] Filter: 100%|##########| 357/357 [00:00<00:00, 20408.15 examples/s] Filter: 100%|##########| 351/351 [00:00<00:00, 20494.20 examples/s] Flattening the indices: 100%|##########| 351/351 [00:00<00:00, 38156.72 examples/s] Casting to class labels: 100%|##########| 351/351 [00:00<00:00, 10468.91 examples/s] INFO 2025-05-19 17:37:41,195 instructlab.sdg.eval_data:126: Saving MMLU Dataset /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/mmlubench_knowledge_arts_music_fandom_swifties.jsonl Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 121.18ba/s] INFO 2025-05-19 17:37:41,204 instructlab.sdg.eval_data:130: Saving MMLU Task yaml /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_arts_music_fandom_swifties_task.yaml INFO 2025-05-19 17:37:41,215 instructlab.sdg.pipeline:161: Running pipeline with multi-threaded batching. Using 2 workers for batches of size 256 INFO 2025-05-19 17:37:41,219 instructlab.sdg.pipeline:199: Running block: gen_mmlu_knowledge Filter: 100%|##########| 365/365 [00:00<00:00, 49254.26 examples/s] Filter: 100%|##########| 365/365 [00:00<00:00, 26112.45 examples/s] Flattening the indices: 100%|##########| 365/365 [00:00<00:00, 40658.67 examples/s] Map: 100%|##########| 365/365 [00:00<00:00, 10622.69 examples/s] Map: 100%|##########| 365/365 [00:00<00:00, 10289.00 examples/s] Map: 100%|##########| 365/365 [00:00<00:00, 10038.04 examples/s] Filter: 100%|##########| 365/365 [00:00<00:00, 40024.08 examples/s] Filter: 100%|##########| 365/365 [00:00<00:00, 20387.81 examples/s] Filter: 100%|##########| 363/363 [00:00<00:00, 20843.19 examples/s] Flattening the indices: 100%|##########| 363/363 [00:00<00:00, 40055.05 examples/s] Casting to class labels: 100%|##########| 363/363 [00:00<00:00, 10605.10 examples/s] INFO 2025-05-19 17:37:56,150 instructlab.sdg.eval_data:126: Saving MMLU Dataset /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/mmlubench_knowledge_science_animals_birds_black_capped_chickadee.jsonl Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 107.39ba/s] INFO 2025-05-19 17:37:56,160 instructlab.sdg.eval_data:130: Saving MMLU Task yaml /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_science_animals_birds_black_capped_chickadee_task.yaml Map (num_proc=8): 100%|##########| 128/128 [00:00<00:00, 295.91 examples/s] Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 78.10ba/s] Map (num_proc=8): 100%|##########| 87/87 [00:00<00:00, 216.42 examples/s] Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 134.08ba/s] Map (num_proc=8): 100%|##########| 66/66 [00:00<00:00, 192.07 examples/s] Creating json from Arrow format: 100%|##########| 1/1 [00:00<00:00, 199.72ba/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 8485.96 examples/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 32040.42 examples/s] Filter: 100%|##########| 2924/2924 [00:00<00:00, 58569.15 examples/s] Map: 100%|##########| 73/73 [00:00<00:00, 10230.01 examples/s] Map: 100%|##########| 73/73 [00:00<00:00, 17509.25 examples/s] Creating json from Arrow format: 100%|##########| 3/3 [00:00<00:00, 36.00ba/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 8756.86 examples/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 8559.47 examples/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 8867.28 examples/s] Map: 100%|##########| 2924/2924 [00:00<00:00, 32529.16 examples/s] Filter: 100%|##########| 2924/2924 [00:00<00:00, 58858.95 examples/s] Map: 100%|##########| 73/73 [00:00<00:00, 10586.55 examples/s] INFO 2025-05-19 17:40:36,088 instructlab.sdg.datamixing:774: Knowledge detected to be less than 3.00% of skills (1.50%), upsampling to: 11824 Creating json from Arrow format: 100%|##########| 6/6 [00:00<00:00, 24.62ba/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 8482.36 examples/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 30406.24 examples/s] Filter: 100%|##########| 2423/2423 [00:00<00:00, 57942.02 examples/s] Map: 100%|##########| 66/66 [00:00<00:00, 10234.93 examples/s] Map: 100%|##########| 66/66 [00:00<00:00, 16732.60 examples/s] Creating json from Arrow format: 100%|##########| 3/3 [00:00<00:00, 46.24ba/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 8577.45 examples/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 4517.48 examples/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 8551.00 examples/s] Map: 100%|##########| 2423/2423 [00:00<00:00, 30936.98 examples/s] Filter: 100%|##########| 2423/2423 [00:00<00:00, 58240.53 examples/s] Map: 100%|##########| 66/66 [00:00<00:00, 9995.09 examples/s] INFO 2025-05-19 17:40:38,267 instructlab.sdg.datamixing:774: Knowledge detected to be less than 3.00% of skills (1.25%), upsampling to: 11824 Creating json from Arrow format: 100%|##########| 5/5 [00:00<00:00, 25.02ba/s] INFO 2025-05-19 17:40:39,205 instructlab.sdg.datamixing:158: Loading dataset from /usr/share/instructlab/sdg/datasets/skills.jsonl ... Generating train split: 394141 examples [00:18, 20786.64 examples/s] INFO 2025-05-19 17:40:58,399 instructlab.sdg.datamixing:160: Dataset columns: ['messages', 'metadata', 'id'] INFO 2025-05-19 17:40:58,399 instructlab.sdg.datamixing:161: Dataset loaded with 394141 samples Map (num_proc=8): 100%|##########| 394141/394141 [00:39<00:00, 9931.41 examples/s] INFO 2025-05-19 17:41:40,677 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/compositional_skills_grounded_linguistics_inclusion.jsonl ... Generating train split: 128 examples [00:00, 16691.15 examples/s] INFO 2025-05-19 17:41:40,735 instructlab.sdg.datamixing:160: Dataset columns: ['task_description', 'seed_context', 'seed_question', 'seed_response', 'leaf_node_type', 'leaf_node_path', 'context', 'question', 'response', 'evaluation', 'score', 'route', 'analysis', 'rubric', 'critique', 'plan', 'revised_response', 'chosen_response', 'id', 'messages', 'unmask'] INFO 2025-05-19 17:41:40,735 instructlab.sdg.datamixing:161: Dataset loaded with 128 samples INFO 2025-05-19 17:41:40,735 instructlab.sdg.datamixing:44: Rebalancing dataset to have 30 samples ... Map (num_proc=8): 100%|##########| 30/30 [00:00<00:00, 79.65 examples/s] INFO 2025-05-19 17:41:41,505 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/compositional_skills_grounded_linguistics_writing_rewriting.jsonl ... Generating train split: 87 examples [00:00, 13936.69 examples/s] INFO 2025-05-19 17:41:41,530 instructlab.sdg.datamixing:160: Dataset columns: ['task_description', 'seed_context', 'seed_question', 'seed_response', 'leaf_node_type', 'leaf_node_path', 'context', 'question', 'response', 'evaluation', 'score', 'route', 'analysis', 'rubric', 'critique', 'plan', 'revised_response', 'chosen_response', 'id', 'messages', 'unmask'] INFO 2025-05-19 17:41:41,530 instructlab.sdg.datamixing:161: Dataset loaded with 87 samples INFO 2025-05-19 17:41:41,530 instructlab.sdg.datamixing:44: Rebalancing dataset to have 30 samples ... Map (num_proc=8): 100%|##########| 30/30 [00:00<00:00, 83.97 examples/s] INFO 2025-05-19 17:41:42,277 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/compositional_skills_linguistics_synonyms.jsonl ... Generating train split: 66 examples [00:00, 17324.24 examples/s] INFO 2025-05-19 17:41:42,299 instructlab.sdg.datamixing:160: Dataset columns: ['task_description', 'seed_question', 'seed_response', 'leaf_node_type', 'leaf_node_path', 'question', 'response', 'route', 'analysis', 'rubric', 'critique', 'plan', 'revised_response', 'chosen_response', 'id', 'messages', 'unmask'] INFO 2025-05-19 17:41:42,299 instructlab.sdg.datamixing:161: Dataset loaded with 66 samples INFO 2025-05-19 17:41:42,300 instructlab.sdg.datamixing:44: Rebalancing dataset to have 30 samples ... Map (num_proc=8): 100%|##########| 30/30 [00:00<00:00, 69.23 examples/s] INFO 2025-05-19 17:41:43,115 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_arts_music_fandom_swifties_p10.jsonl ... Generating train split: 5921 examples [00:00, 56489.10 examples/s] INFO 2025-05-19 17:41:43,237 instructlab.sdg.datamixing:160: Dataset columns: ['messages', 'metadata', 'id', 'unmask'] INFO 2025-05-19 17:41:43,237 instructlab.sdg.datamixing:161: Dataset loaded with 5921 samples INFO 2025-05-19 17:41:43,237 instructlab.sdg.datamixing:44: Rebalancing dataset to have 11824 samples ... Map (num_proc=8): 100%|##########| 11824/11824 [00:07<00:00, 1570.98 examples/s] INFO 2025-05-19 17:41:51,732 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_science_animals_birds_black_capped_chickadee_p10.jsonl ... Generating train split: 4912 examples [00:00, 68004.22 examples/s] INFO 2025-05-19 17:41:51,848 instructlab.sdg.datamixing:160: Dataset columns: ['messages', 'metadata', 'id', 'unmask'] INFO 2025-05-19 17:41:51,848 instructlab.sdg.datamixing:161: Dataset loaded with 4912 samples INFO 2025-05-19 17:41:51,848 instructlab.sdg.datamixing:44: Rebalancing dataset to have 11824 samples ... Map (num_proc=8): 100%|##########| 11824/11824 [00:08<00:00, 1438.91 examples/s] Map (num_proc=8): 100%|##########| 417879/417879 [00:36<00:00, 11525.07 examples/s] Creating json from Arrow format: 100%|##########| 418/418 [01:08<00:00, 6.13ba/s] INFO 2025-05-19 17:43:45,948 instructlab.sdg.datamixing:235: Mixed Dataset saved to /mnt/.local/share/instructlab/datasets/2025-05-19_170646/skills_train_msgs_2025-05-19T17_13_18.jsonl INFO 2025-05-19 17:43:46,071 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_arts_music_fandom_swifties_p07.jsonl ... Generating train split: 2997 examples [00:00, 98295.54 examples/s] INFO 2025-05-19 17:43:46,157 instructlab.sdg.datamixing:160: Dataset columns: ['messages', 'metadata', 'id', 'unmask'] INFO 2025-05-19 17:43:46,157 instructlab.sdg.datamixing:161: Dataset loaded with 2997 samples Map (num_proc=8): 100%|##########| 2997/2997 [00:00<00:00, 6657.48 examples/s] INFO 2025-05-19 17:43:47,038 instructlab.sdg.datamixing:158: Loading dataset from /mnt/.local/share/instructlab/datasets/2025-05-19_170646/node_datasets_2025-05-19T17_13_18/knowledge_science_animals_birds_black_capped_chickadee_p07.jsonl ... Generating train split: 2489 examples [00:00, 77356.90 examples/s] INFO 2025-05-19 17:43:47,087 instructlab.sdg.datamixing:160: Dataset columns: ['messages', 'metadata', 'id', 'unmask'] INFO 2025-05-19 17:43:47,087 instructlab.sdg.datamixing:161: Dataset loaded with 2489 samples Map (num_proc=8): 100%|##########| 2489/2489 [00:00<00:00, 6192.64 examples/s] Map (num_proc=8): 100%|##########| 5486/5486 [00:00<00:00, 10302.19 examples/s] Creating json from Arrow format: 100%|##########| 6/6 [00:00<00:00, 34.01ba/s] INFO 2025-05-19 17:43:49,030 instructlab.sdg.datamixing:235: Mixed Dataset saved to /mnt/.local/share/instructlab/datasets/2025-05-19_170646/knowledge_train_msgs_2025-05-19T17_13_18.jsonl INFO 2025-05-19 17:43:49,031 instructlab.sdg.generate_data:757: Generation took 1830.50s INFO 2025-05-19 17:43:53,953 instructlab.model.backends.vllm:512: Waiting for GPU VRAM reclamation... ᕦ(òᴗóˇ)ᕤ Data generate completed successfully! ᕦ(òᴗóˇ)ᕤ real 37m22.716s user 0m1.063s sys 0m0.696s