
USING JBOSS EAP XP 5.0

FOR USE WITH JBOSS EAP XP 5.0

Red Hat Customer Content Services

Legal Notice

Abstract

This document provides general information about using JBoss EAP XP 5.0.

Making open source more inclusive

Providing feedback on JBoss EAP documentation

1. JBoss EAP XP for the latest MicroProfile capabilities

1.1. Installing JBoss EAP XP 5.0 without a pre-existing JBoss EAP 8.0 server

1.2. Adding JBoss EAP XP 5.0 feature packs to an existing JBoss EAP 8.0 installation

1.3. Adding JBoss EAP XP 5.0 feature packs to an existing JBoss EAP 8.0 installation offline

1.4. Updating JBoss EAP XP installation using the jboss-eap-installation-manager

1.5. Updating JBoss EAP XP installation offline using the jboss-eap-installation-manager

1.6. Reverting your JBoss EAP XP server to JBoss EAP

2. Understand MicroProfile

2.1. MicroProfile Config

2.1.1. MicroProfile Config in JBoss EAP

2.1.2. MicroProfile Config sources supported in MicroProfile Config

2.2. MicroProfile Fault Tolerance

2.2.1. About MicroProfile Fault Tolerance specification

2.2.2. MicroProfile Fault Tolerance in JBoss EAP

2.3. MicroProfile Health

2.3.1. MicroProfile Health in JBoss EAP

2.4. MicroProfile JWT

2.4.1. MicroProfile JWT integration in JBoss EAP

2.4.2. Differences between a traditional deployment and an MicroProfile JWT deployment

RED HAT JBOSS
ENTERPRISE
APPLICATION
PLATFORM
8.0

1234512121212123412341234123123123456

2.4.3. MicroProfile JWT activation in JBoss EAP

2.4.4. Limitations of MicroProfile JWT in JBoss EAP

2.5. MicroProfile OpenAPI

2.5.1. MicroProfile OpenAPI in JBoss EAP

2.6. MicroProfile Telemetry

2.6.1. MicroProfile Telemetry in JBoss EAP

2.7. MicroProfile REST Client

2.7.1. MicroProfile REST client

2.7.2. The resteasy.original.webapplicationexception.behavior MicroProfile Config property

2.8. MicroProfile Reactive Messaging

2.8.1. MicroProfile Reactive Messaging

2.8.2. MicroProfile Reactive Messaging connectors

2.8.3. The Apache Kafka event streaming platform

3. Administer MicroProfile in JBoss EAP

3.1. MicroProfile Telemetry administration

3.1.1. Add MicroProfile Telemetry subsystem using the management CLI

3.1.2. Enable MicroProfile Telemetry subsystem

3.1.3. Override server configuration using MicroProfile Config

3.2. MicroProfile Config configuration

3.2.1. Adding properties in a ConfigSource management resource

3.2.2. Configuring directories as ConfigSources

3.2.3. Configuring root directories as ConfigSources

3.2.4. Obtaining ConfigSource from a ConfigSource class

3.2.5. Obtaining ConfigSource configuration from a ConfigSourceProvider class

3.3. MicroProfile Fault Tolerance configuration

3.3.1. Adding the MicroProfile Fault Tolerance extension

3.4. MicroProfile Health configuration

3.4.1. Examining health using the management CLI

3.4.2. Examining health using the management console

3.4.3. Examining health using the HTTP endpoint

3.4.4. Enabling authentication for MicroProfile Health

3.4.5. Readiness probes that determine server health and readiness

3.4.6. Global status when probes are not defined

3.5. MicroProfile JWT configuration

3.5.1. Enabling microprofile-jwt-smallrye subsystem

3.6. MicroProfile OpenAPI administration

3.6.1. Enabling MicroProfile OpenAPI

3.6.2. Requesting an MicroProfile OpenAPI document using Accept HTTP header

3.6.3. Requesting an MicroProfile OpenAPI document using an HTTP parameter

3.6.4. Configuring JBoss EAP to serve a static OpenAPI document

3.6.5. Disabling microprofile-openapi-smallrye

3.7. MicroProfile Reactive Messaging administration

3.7.1. Configuring the required MicroProfile reactive messaging extension and subsystem for JBoss EAP

3.8. Standalone server configuration

3.8.1. Standalone server configuration files

3.8.2. Updating standalone configurations with MicroProfile subsystems and extensions

4. Develop MicroProfile applications for JBoss EAP

4.1. Creating a Maven project with maven-archetype-webapp

4.2. Defining properties in a Maven project

4.3. Defining the repositories in a Maven project

4.4. Importing the JBoss EAP MicroProfile BOM as dependency management in a Maven project

4.5. Importing the JBoss EAP BOMs as dependency management in a Maven project

4.6. Adding plug-in management in a Maven project

4.7. Verifying a maven project

5. Understand Micrometer integration

5.1. Micrometer in JBoss EAP

6. Administer Micrometer in JBoss EAP

6.1. Adding Micrometer subsystem using the Management CLI

7. Develop Micrometer application for JBoss EAP

7.1. Integrating Micrometer metrics in JBoss EAP

8. Build and run microservices applications on the OpenShift image for JBoss EAP XP

8.1. Preparing OpenShift for application deployment

8.2. Building and Deploying JBoss EAP XP Application Images using S2I

8.3. Completing post-deployment tasks for JBoss EAP XP source-to-image (S2I) application

9. Capability trimming

9.1. Available JBoss EAP layers

9.1.1. Base layers

9.1.2. Decorator layers

10. Enable MicroProfile application development for JBoss EAP using JBoss Tools

10.1. Configuring JBoss Tools to use MicroProfile capabilities

10.2. Using MicroProfile quickstarts for JBoss Tools

11. The bootable JAR

11.1. About the bootable JAR

11.2. JBoss EAP JAR Maven plug-in

11.3. Bootable JAR arguments

11.4. Specifying Galleon layers for your bootable JAR server

11.5. Using a bootable JAR on a JBoss EAP bare-metal platform

11.6. Creating a hollow bootable JAR on a JBoss EAP bare-metal platform

11.7. CLI scripts executed at build time

11.8. Executing CLI script at runtime

11.9. Using a bootable JAR on a JBoss EAP OpenShift platform

11.9.1. Using oc command to do binary build

11.10. Configure the bootable JAR for OpenShift

11.11. Using a ConfigMap in your application on OpenShift

11.12. Creating a bootable JAR Maven project

11.13. Enabling JSON logging for your bootable JAR

11.14. Enabling web session data storage for multiple bootable JAR instances

11.15. Enabling HTTP authentication for bootable JAR with a CLI script

12. Observability in JBoss EAP

12.1. OpenTelemetry in JBoss EAP

12.2. OpenTelemetry configuration in JBoss EAP

12.3. OpenTelemetry tracing in JBoss EAP

12.4. Enabling OpenTelemetry tracing in JBoss EAP

12.5. Configuring the opentelemetry subsystem

12.6. Using Jaeger to observe the OpenTelemetry traces for an application

12.7. OpenTelemetry tracing application development

12.7.1. Configuring a Maven project for OpenTelemetry tracing

12.7.2. Creating applications that create custom spans

13. Reference

13.1. MicroProfile Config reference

13.1.1. Default MicroProfile Config attributes

13.1.2. MicroProfile Config SmallRye ConfigSources

13.2. MicroProfile Fault Tolerance reference

13.2.1. MicroProfile Fault Tolerance configuration properties

13.3. MicroProfile JWT reference

13.3.1. MicroProfile Config JWT standard properties

13.4. MicroProfile OpenAPI reference

13.4.1. MicroProfile OpenAPI configuration properties

13.5. MicroProfile Reactive Messaging reference

13.5.1. MicroProfile reactive messaging connectors for integrating with external messaging systems

13.5.2. Example of the data exchange between reactive messaging streams and user-initialized code

13.5.3. The Apache Kafka user API

13.5.4. Example MicroProfile Config properties file for the Kafka connector

13.5.5. Example MicroProfile Config properties file for the AMQP connector

13.6. OpenTelemetry reference

13.6.1. OpenTelemetry subsystem attributes

MAKING OPEN SOURCE MORE

INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are

beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these

changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s

message.

PROVIDING FEEDBACK ON JBOSS

EAP DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an issue. If you do not

have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to where the issue

occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and%20+describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and%20+describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and%20+describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and%20+describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

CHAPTER 1. JBOSS EAP XP FOR THE

LATEST MICROPROFILE

CAPABILITIES

1.1. INSTALLING JBOSS EAP XP 5.0 WITHOUT A PRE-EXISTING

JBOSS EAP 8.0 SERVER

If you have a JBoss EAP 7.4 installation and you want to install JBoss EAP XP 5.0 without first pre-installing JBoss EAP

8.0 server, follow the procedure below.

Prerequisites

You have access to the internet.

You have created an account on the Red Hat customer portal and are logged in.

You have downloaded the jboss-eap-installation-manager.

Procedure

1. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory.

2. Install JBoss EAP XP by running the following command from the jboss-eap-installation-manager

directory :

./bin/jboss-eap-installation-manager.sh install --profile

eap-xp-5.0 --dir eap-xp-5

1.2. ADDING JBOSS EAP XP 5.0 FEATURE PACKS TO AN

EXISTING JBOSS EAP 8.0 INSTALLATION

You can add an additional JBoss EAP XP 5.0 feature pack to an existing JBoss EAP installation using the jboss-eap-

installation-manager.

Prerequisites

You have an account on the Red Hat Customer Portal and are logged in.

You have reviewed the supported configurations for JBoss EAP XP 5.0.

You have installed a supported JDK.

You have downloaded the jboss-eap-installation-manager. For more information about downloading jboss-

eap-installation-manager, see the Installation Guide.

You have downloaded or installed JBoss EAP 8.0 using one of the supported methods. For more information about

downloading [ProductShortName], see the Installation Guide.

Note

Installing the JBoss EAP XP extension will automatically perform a server update to receive the latest

component updates.

Procedure

1. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory.

2. Run this script from the jboss-eap-installation-manager directory to subscribe the server to the JBoss

EAP XP channel by executing:

./bin/jboss-eap-installation-manager.sh channel add \

 --channel-name eap-xp-5.0 \

 --repositories=mrrc-ga::https://

maven.repository.redhat.com/ga \

 --manifest org.jboss.eap.channels:eap-xp-5.0 \

 --dir eap-xp-5.0

3. Install JBoss EAP XP extension by executing:

./bin/jboss-eap-installation-manager.sh feature-pack add

\

 --fpl org.jboss.eap.xp:wildfly-galleon-pack \

 --dir eap-xp-5.0

1.3. ADDING JBOSS EAP XP 5.0 FEATURE PACKS TO AN

EXISTING JBOSS EAP 8.0 INSTALLATION OFFLINE

You can add additional JBoss EAP XP 5.0 feature pack to an existing JBoss EAP installation offline using the jboss-

eap-installation-manager.

Prerequisites

You have reviewed the supported configurations for JBoss EAP XP 5.0.

You have installed a supported JDK.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/

You have downloaded the jboss-eap-installation-manager. For more information about downloading the

jboss-eap-installation-manager, see the Installation Guide.

You have downloaded or installed JBoss EAP 8.0 using one of the supported methods. For more information about

downloading the JBoss EAP 8.0, see the Installation Guide.

You have downloaded and extracted the latest offline repositories for JBoss EAP 8.0 and JBoss EAP XP 5.0.

Procedure

1. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory.

2. Run this script from the jboss-eap-installation-manager directory to subscribe the server to the JBoss

EAP XP channel by executing:

./bin/jboss-eap-installation-manager.sh channel add \

 --channel-name eap-xp-5.0 \

 --repositories=mrrc-ga::https://

maven.repository.redhat.com/ga \

 --manifest org.jboss.eap.channels:eap-xp-5.0 \

 --dir eap-xp-5.0

1. Install JBoss EAP XP and use the --repositories parameter to specify the offline repositories:

./bin/jboss-eap-installation-manager.sh feature-pack add \

 --fpl org.jboss.eap.xp:wildfly-galleon-pack \

 --dir eap-xp-5.0 \

 --repositories

<JBOSS_EAP_XP_OFFLINE_REPO_PATH>,<JBOSS_EAP_8.0_OFFLINE_REPO

_PATH>

Note

The feature pack will be added to the JBoss EAP installation passed in the --dir option.

1.4. UPDATING JBOSS EAP XP INSTALLATION USING THE

JBOSS-EAP-INSTALLATION-MANAGER

You can update JBoss EAP XP periodically if new updates are available after you have downloaded and installed it.

Prerequisites

You have access to the internet.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/

You have installed a supported JDK.

You have downloaded the jboss-eap-installation-manager. For more information about downloading jboss-

eap-installation, see the Installation Guide.

You have downloaded or installed JBoss EAP XP 5.0 using one of the supported methods. For more information, see

the Installation Guide.

Procedure

1. Extract the jboss-eap-installation-manager you have downloaded.

2. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory you have

extracted.

3. Run this script from the jboss-eap-installation-manager directory to check for available updates:

./bin/jboss-eap-installation-manager.sh update list --dir

eap-xp-5.0

4. Update JBoss EAP by running the following command:

Syntax

./bin/jboss-eap-installation-manager.sh update perform --

dir eap-xp-5.0

Example

./bin/jboss-eap-installation-manager.sh update perform --

dir eap-xp-5.0

Updates found:

 org.wildfly.galleon-plugins:wildfly-galleon-plugins

6.3.1.Final-redhat-00001 ==> 6.3.2.Final-redhat-00001

 org.wildfly.wildfly-http-client:wildfly-http-

transaction-client 2.0.1.Final-redhat-00001 ==>

2.0.2.Final-redhat-00001

1.5. UPDATING JBOSS EAP XP INSTALLATION OFFLINE USING

THE JBOSS-EAP-INSTALLATION-MANAGER

You can use the jboss-eap-installation-manager to update the JBoss EAP XP 5.0 installation offline.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/

Prerequisites

You have installed a supported JDK.

You have downloaded the jboss-eap-installation-manager. For more information about downloading jboss-

eap-installation-manager, see the Installation Guide.

You have downloaded or installed JBoss EAP XP 5.0 using one of the supported methods. For more information, see

the Installation Guide.

You have downloaded and extracted the latest offline repositories for JBoss EAP 8.0 and JBoss EAP XP 5.0.

Procedure

1. Stop the JBoss EAP server.

2. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory.

3. Run this script from the jboss-eap-installation-manager directory to update the server components:

./bin/jboss-eap-installation-manager.sh update perform \

 --dir eap-xp-5.0 \

 --repositories

<JBOSS_EAP_XP_OFFLINE_REPO_PATH>,<FEATURE_PACK_OFFLINE_RE

PO>,<JBOSS_EAP_8.0_OFFLINE_REPO_PATH>

Additional resources

For more information about how you can perform a two phase update operation offline see Updating feature packs on

an offline JBoss EAP server.

1.6. REVERTING YOUR JBOSS EAP XP SERVER TO JBOSS EAP

You can use the jboss-eap-installation-manager to revert your JBoss EAP XP installation.

Prerequisites

You have access to the internet.

You have installed a supported JDK.

You have downloaded the jboss-eap-installation-manager. For more information about downloading jboss-

eap-installation-manager, see the installation guide.

You have downloaded or installed JBoss EAP XP 5.0 using one of the supported methods. For more information, see

the Installation Guide.

Procedure

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/updating_red_hat_jboss_enterprise_application_platform#proc_updating-feature-packs-from-your-jboss-eap-installation-offline_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/updating_red_hat_jboss_enterprise_application_platform#proc_updating-feature-packs-from-your-jboss-eap-installation-offline_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/updating_red_hat_jboss_enterprise_application_platform#proc_updating-feature-packs-from-your-jboss-eap-installation-offline_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/updating_red_hat_jboss_enterprise_application_platform#proc_updating-feature-packs-from-your-jboss-eap-installation-offline_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/

1. Open the terminal emulator and navigate to the jboss-eap-installation-manager directory.

2. Run this script from the jboss-eap-installation-manager directory to investigate the history of all feature

packs added to your JBoss EAP XP server:

./bin/jboss-eap-installation-manager.sh history --dir

eap-xp-5.0

3. Stop the JBoss EAP XP server.

4. Revert your to a version before JBoss EAP XP extension has been added:

./bin/jboss-eap-installation-manager.sh revert perform \

 --revision <REVISION_HASH> \

 --dir eap-xp-5.0

Additional resources

For more information about how you can perform a two phase revert operation see Reverting installed feature packs

CHAPTER 2. UNDERSTAND

MICROPROFILE

2.1. MICROPROFILE CONFIG

2.1.1. MicroProfile Config in JBoss EAP

Configuration data can change dynamically and applications need to be able to access the latest configuration

information without restarting the server.

MicroProfile Config provides portable externalization of configuration data. This means, you can configure applications

and microservices to run in multiple environments without modification or repackaging.

MicroProfile Config functionality is implemented in JBoss EAP using the SmallRye Config component and is provided by

the microprofile-config-smallrye subsystem.

Note

MicroProfile Config is only supported in JBoss EAP XP. It is not supported in JBoss EAP.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/#proc_reverting-installed-featured-packs_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/red_hat_jboss_enterprise_application_platform_installation_methods/#proc_reverting-installed-featured-packs_default

Important

If you are adding your own Config implementations, you need to use the methods in the latest version of the

Config interface.

Additional Resources

MicroProfile Config

SmallRye Config

Config implementations

2.1.2. MicroProfile Config sources supported in MicroProfile Config

MicroProfile Config configuration properties can come from different locations and can be in different formats. These

properties are provided by ConfigSources. ConfigSources are implementations of the

org.eclipse.microprofile.config.spi.ConfigSource interface.

The MicroProfile Config specification provides the following default ConfigSource implementations for retrieving

configuration values:

System.getProperties().

System.getenv().

All META-INF/microprofile-config.properties files on the class path.

The microprofile-config-smallrye subsystem supports additional types of ConfigSource resources for

retrieving configuration values. You can also retrieve the configuration values from the following resources:

Properties in a microprofile-config-smallrye/config-source management resource

Files in a directory

ConfigSource class

ConfigSourceProvider class

Additional Resources

org.eclipse.microprofile.config.spi.ConfigSource

2.2. MICROPROFILE FAULT TOLERANCE

2.2.1. About MicroProfile Fault Tolerance specification

https://microprofile.io/project/eclipse/microprofile-config
https://microprofile.io/project/eclipse/microprofile-config
http://github.com/smallrye/smallrye-config/
http://github.com/smallrye/smallrye-config/
https://github.com/eclipse/microprofile-config/blob/2.0/api/src/main/java/org/eclipse/microprofile/config/Config.java
https://github.com/eclipse/microprofile-config/blob/2.0/api/src/main/java/org/eclipse/microprofile/config/Config.java
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/org/eclipse/microprofile/config/spi/ConfigSource.html
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/org/eclipse/microprofile/config/spi/ConfigSource.html
https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/8.0/javadocs/org/eclipse/microprofile/config/spi/ConfigSource.html

The MicroProfile Fault Tolerance specification defines strategies to deal with errors inherent in distributed microservices.

The MicroProfile Fault Tolerance specification defines the following strategies to handle errors:

Timeout

Define the amount of time within which an execution must finish. Defining a timeout prevents waiting for an

execution indefinitely.

Retry

Define the criteria for retrying a failed execution.

Fallback

Provide an alternative in the case of a failed execution.

CircuitBreaker

Define the number of failed execution attempts before temporarily stopping. You can define the length of the delay

before resuming execution.

Bulkhead

Isolate failures in part of the system so that the rest of the system can still function.

Asynchronous

Execute client request in a separate thread.

Additional Resources

MicroProfile Fault Tolerance specification

2.2.2. MicroProfile Fault Tolerance in JBoss EAP

The microprofile-fault-tolerance-smallrye subsystem provides support for MicroProfile Fault Tolerance in

JBoss EAP. The subsystem is available only in the JBoss EAP XP stream.

The microprofile-fault-tolerance-smallrye subsystem provides the following annotations for interceptor

bindings:

@Timeout

@Retry

@Fallback

@CircuitBreaker

@Bulkhead

@Asynchronous

https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html

You can bind these annotations at the class level or at the method level. An annotation bound to a class applies to all of

the business methods of that class.

The following rules apply to binding interceptors:

If a component class declares or inherits a class-level interceptor binding, the following restrictions apply:

The class must not be declared final.

The class must not contain any static, private, or final methods.

If a non-static, non-private method of a component class declares a method level interceptor binding, neither the

method nor the component class may be declared final.

Fault tolerance operations have the following restrictions:

Fault tolerance interceptor bindings must be applied to a bean class or bean class method.

When invoked, the invocation must be the business method invocation as defined in the Jakarta Contexts and

Dependency Injection specification.

An operation is not considered fault tolerant if both of the following conditions are true:

The method itself is not bound to any fault tolerance interceptor.

The class containing the method is not bound to any fault tolerance interceptor.

The microprofile-fault-tolerance-smallrye subsystem provides the following configuration options, in addition

to the configuration options provided by MicroProfile Fault Tolerance:

io.smallrye.faulttolerance.mainThreadPoolSize

io.smallrye.faulttolerance.mainThreadPoolQueueSize

Additional Resources

MicroProfile Fault Tolerance Specification

SmallRye Fault Tolerance project

2.3. MICROPROFILE HEALTH

2.3.1. MicroProfile Health in JBoss EAP

JBoss EAP includes the SmallRye Health component, which you can use to determine whether the JBoss EAP instance is

responding as expected. This capability is enabled by default.

MicroProfile Health is only available when running JBoss EAP as a standalone server.

The MicroProfile Health specification defines the following health checks:

https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html
https://github.com/smallrye/smallrye-fault-tolerance
https://github.com/smallrye/smallrye-fault-tolerance

Readiness

Determines whether an application is ready to process requests. The annotation @Readiness provides this health

check.

Liveness

Determines whether an application is running. The annotation @Liveness provides this health check.

Startup

Determines whether an application has already started. The annotation @Startup provides this health check.

The @Health annotation was removed in MicroProfile Health 3.0.

MicroProfile Health 3.1 includes a new Startup health check probe.

For more information about the changes in MicroProfile Health 3.1, see Release Notes for MicroProfile Health 3.1.

Important

The :empty-readiness-checks-status, :empty-liveness-checks-status, and :empty-startup-

checks-status management attributes specify the global status when no readiness, liveness, or

startup probes are defined.

Additional Resources

Global status when probes are not defined

SmallRye Health

MicroProfile Health

Custom health check example

2.4. MICROPROFILE JWT

2.4.1. MicroProfile JWT integration in JBoss EAP

The subsystem microprofile-jwt-smallrye provides MicroProfile JWT integration in JBoss EAP.

The following functionalities are provided by the microprofile-jwt-smallrye subsystem:

Detecting deployments that use MicroProfile JWT security.

Activating support for MicroProfile JWT.

The subsystem contains no configurable attributes or resources.

https://download.eclipse.org/microprofile/microprofile-health-3.1/microprofile-health-spec-3.1.html#release_notes_3_1
https://download.eclipse.org/microprofile/microprofile-health-3.1/microprofile-health-spec-3.1.html#release_notes_3_1
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#global-status-when-probes-are-not-defined_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#global-status-when-probes-are-not-defined_default
https://github.com/smallrye/smallrye-health
https://github.com/smallrye/smallrye-health
https://github.com/eclipse/microprofile-health/
https://github.com/eclipse/microprofile-health/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#custom-health-check-example_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#custom-health-check-example_default

In addition to the microprofile-jwt-smallrye subsystem, the org.eclipse.microprofile.jwt.auth.api

module provides MicroProfile JWT integration in JBoss EAP.

Additional Resources

SmallRye JWT

2.4.2. Differences between a traditional deployment and an MicroProfile JWT

deployment

MicroProfile JWT deployments do not depend on managed SecurityDomain resources like traditional JBoss EAP

deployments. Instead, a virtual SecurityDomain is created and used across the MicroProfile JWT deployment.

As the MicroProfile JWT deployment is configured entirely within the MicroProfile Config properties and the

microprofile-jwt-smallrye subsystem, the virtual SecurityDomain does not need any other managed configuration

for the deployment.

2.4.3. MicroProfile JWT activation in JBoss EAP

MicroProfile JWT is activated for applications based on the presence of an auth-method in the application.

The MicroProfile JWT integration is activated for an application in the following way:

As part of the deployment process, JBoss EAP scans the application archive for the presence of an auth-method.

If an auth-method is present and defined as MP-JWT, the MicroProfile JWT integration is activated.

The auth-method can be specified in either or both of the following files:

the file containing the class that extends javax.ws.rs.core.Application, annotated with the @LoginConfig

the web.xml configuration file

If auth-method is defined both in a class, using annotation, and in the web.xml configuration file, the definition in

web.xml configuration file is used.

2.4.4. Limitations of MicroProfile JWT in JBoss EAP

The MicroProfile JWT implementation in JBoss EAP has certain limitations.

The following limitations of MicroProfile JWT implementation exist in JBoss EAP:

The MicroProfile JWT implementation parses only the first key from the JSON Web Key Set (JWKS) supplied in the

mp.jwt.verify.publickey property. Therefore, if a token claims to be signed by the second key or any key after

the second key, the token fails verification and the request containing the token is not authorized.

https://github.com/smallrye/smallrye-jwt
https://github.com/smallrye/smallrye-jwt

Base64 encoding of JWKS is not supported.

In both cases, a clear text JWKS can be referenced instead of using the mp.jwt.verify.publickey.location config

property.

2.5. MICROPROFILE OPENAPI

2.5.1. MicroProfile OpenAPI in JBoss EAP

MicroProfile OpenAPI is integrated in JBoss EAP using the microprofile-openapi-smallrye subsystem.

The MicroProfile OpenAPI specification defines an HTTP endpoint that serves an OpenAPI 3.0 document. The OpenAPI

3.0 document describes the REST services for the host. The OpenAPI endpoint is registered using the configured path,

for example http://localhost:8080/openapi, local to the root of the host associated with a deployment.

Note

Currently, the OpenAPI endpoint for a virtual host can only document a single deployment. To use OpenAPI

with multiple deployments registered with different context paths on the same virtual host, each deployment

must use a distinct endpoint path.

The OpenAPI endpoint returns a YAML document by default. You can also request a JSON document using an Accept

HTTP header, or a format query parameter.

If the Undertow server or host of a given application defines an HTTPS listener then the OpenAPI document is also

available using HTTPS. For example, an endpoint for HTTPS is https://localhost:8443/openapi.

2.6. MICROPROFILE TELEMETRY

2.6.1. MicroProfile Telemetry in JBoss EAP

MicroProfile Telemetry provides tracing functionality for applications based on OpenTelemetry. The ability to trace

requests across service boundaries is important, especially in a microservices environment where a request can flow

through multiple services during its life cycle.

MicroProfile Telemetry expands on the OpenTelemetry subsystem and adds support for MicroProfile Config. This allows

users to configure OpenTelemetry using MicroProfile Config.

Note

http://localhost:8080/openapi
http://localhost:8080/openapi
https://localhost:8443/openapi
https://localhost:8443/openapi

There are no configurable resources or attributes in the MicroProfile Telemetry subsystem.

Additional resources

Observability in JBoss EAP

MicroProfile Telemetry subsystem configuration in WildFly Admin guide

OpenTelemetry documentation

@WithSpan annotations OpenTelemetry documentation

Baggage API OpenTelemetry documentation

2.7. MICROPROFILE REST CLIENT

2.7.1. MicroProfile REST client

JBoss EAP XP 5.0.0 supports the MicroProfile REST client 2.0 that builds on Jakarta RESTful Web Services 2.1.6 client

APIs to provide a type-safe approach to invoke RESTful services over HTTP. The MicroProfile Type Safe REST clients are

defined as Java interfaces. With the MicroProfile REST clients, you can write client applications with executable code.

Use the MicroProfile REST client to avail the following capabilities:

An intuitive syntax

Programmatic registration of providers

Declarative registration of providers

Declarative specification of headers

Propagation of headers on the server

ResponseExceptionMapper

Jakarta Contexts and Dependency Injection integration

Access to server-sent events (SSE)

2.7.2. The resteasy.original.webapplicationexception.behavior

MicroProfile Config property

MicroProfile Config is the name of a specification that developers can use to configure applications and microservices to

run in multiple environments without having to modify or repackage those apps. Previously, MicroProfile Config was

available for JBoss EAP as a technology preview, but it has since been removed. MicroProfile Config is now available only

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#assembly-observability-in-jboss-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#assembly-observability-in-jboss-eap_default
https://docs.wildfly.org/30/Admin_Guide.html#MicroProfile_Telemetry
https://docs.wildfly.org/30/Admin_Guide.html#MicroProfile_Telemetry
https://opentelemetry.io/docs/
https://opentelemetry.io/docs/
https://opentelemetry.io/docs/languages/java/automatic/annotations/#creating-spans-around-methods-with-withspan
https://opentelemetry.io/docs/languages/java/automatic/annotations/#creating-spans-around-methods-with-withspan
https://opentelemetry.io/docs/specs/otel/baggage/api/
https://opentelemetry.io/docs/specs/otel/baggage/api/

on JBoss EAP XP.

Defining the resteasy.original.webapplicationexception.behavior MicroProfile Config property

You can set the resteasy.original.webapplicationexception.behavior parameter as either a web.xml

servlet property or a system property. Here’s an example of one such servlet property in web.xml:

You can also use MicroProfile Config to configure any other RESTEasy property.

Additional resources

For more information about MicroProfile Config on JBoss EAP XP, see Understand MicroProfile.

For more information about the MicroProfile REST Client, see MicroProfile REST Client.

For more information about RESTEasy, see Jakarta RESTful Web Services Request Processing.

2.8. MICROPROFILE REACTIVE MESSAGING

2.8.1. MicroProfile Reactive Messaging

When you upgrade to JBoss EAP XP 5.0.0, you can enable the newest version of MicroProfile Reactive Messaging, which

includes reactive messaging extensions and subsystems.

A "reactive stream" is a succession of event data, along with processing protocols and standards, that is pushed across an

asynchronous boundary (like a scheduler) without any buffering. An "event" might be a scheduled and repeating

temperature check in a weather app, for example. The primary benefit of reactive streams is the seamless interoperability

of your various applications and implementations.

Reactive messaging provides a framework for building event-driven, data-streaming, and event-sourcing applications.

Reactive messaging results in the constant and smooth exchange of event data, the reactive stream, from one app to

another. You can use MicroProfile Reactive Messaging for asynchronous messaging through reactive streams so that your

application can interact with others, like Apache Kafka, for example.

After you upgrade your instance of MicroProfile Reactive Messaging to the latest version, you can do the following:

Provision a server with MicroProfile Reactive Messaging for the Apache Kafka data-streaming platform.

<context-param>

<param-

name>resteasy.original.webapplicationexception.behavior</param-

name>

<param-value>true</param-value>

</context-param>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/developing_web_services_applications/developing_jakarta_restful_web_services_web_services#jakarta_restful_web_services_request_processing
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/developing_web_services_applications/developing_jakarta_restful_web_services_web_services#jakarta_restful_web_services_request_processing

Interact with reactive messaging in-memory and backed by Apache Kafka topics through the latest reactive

messaging APIs.

Use any metric system available to determine the number of messages streamed on a given channel.

Additional resources

For more information about Apache Kafka, see What is Apache Kafka?

2.8.2. MicroProfile Reactive Messaging connectors

You can use connectors to integrate MicroProfile Reactive Messaging with a number of external messaging systems.

MicroProfile for JBoss EAP comes with an Apache Kafka connector, and an Advanced Message Queuing Protocol

(AMQP) connector. Use the Eclipse MicroProfile Config specification to configure your connectors.

MicroProfile Reactive Messaging connectors and incorporated layers

MicroProfile Reactive Messaging includes the following connectors:

Kafka connector

The microprofile-reactive-messaging-kafka layer incorporates the Kafka connector.

AMQP connector

The microprofile-reactive-messaging-amqp layer incorporates the AMQP connector.

Both the connector layers include the microprofile-reactive-messaging Galleon layer. The microprofile-

reactive-messaging layer provides the core MicroProfile Reactive Messaging functionality.

Table 2.1. Reactive messaging and connector Galleon layers

Layer Definition

microprofile-reactive-streams-operators Provides MicroProfile Reactive Streams Operators APIs and

supporting implementing modules.

Contains MicroProfile Reactive Streams Operators with

SmallRye extension and subsystem.

Depends on cdi layer.

cdi stands for Jakarta Contexts and Dependency

Injection; provides subsystems that add @Inject

functionality.

https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka
https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka

Layer Definition

microprofile-reactive-messaging Provides MicroProfile Reactive Messaging APIs and

supporting implementing modules.

Contains MicroProfile with SmallRye extension and

subsystem.

Depends on microprofile-config and

microprofile-reactive-streams-operators layers.

microprofile-reactive-messaging-kafka Provides Kafka connector modules that enable MicroProfile

Reactive Messaging to interact with Kafka.

Depends on microprofile-reactive-messaging

layer.

microprofile-reactive-messaging-amqp Provides AMQP connector modules that enable

MicroProfile Reactive Messaging to interact with AMQP

clients.

Depends on microprofile-reactive-messaging

layer.

2.8.3. The Apache Kafka event streaming platform

Apache Kafka is an open source distributed event (data) streaming platform that can publish, subscribe to, store, and

process streams of records in real time. It handles event streams from multiple sources and delivers them to multiple

consumers, moving large amounts of data from points A to Z and everywhere else, all at the same time. MicroProfile

Reactive Messaging uses Apache Kafka to deliver these event records in as few as two microseconds, store them safely in

distributed, fault-tolerant clusters, all while making them available across any team-defined zones or geographic regions.

Additional resources

What is Apache Kafka?

Red Hat AMQ

CHAPTER 3. ADMINISTER

https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka
https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka
https://developers.redhat.com/products/amq/overview
https://developers.redhat.com/products/amq/overview

MICROPROFILE IN JBOSS EAP

3.1. MICROPROFILE TELEMETRY ADMINISTRATION

3.1.1. Add MicroProfile Telemetry subsystem using the management CLI

The MicroProfile Telemetry component is integrated into the default MicroProfile configuration through the

microprofile-telemetry subsystem. You can also add the MicroProfile Telemetry subsystem using the management

CLI if the subsystem is not included.

Prerequisites

The OpenTelemetry subsystem must be added to the configuration before adding the MicroProfile Telemetry

subsystem. The MicroProfile Telemetry subsystem depends on the OpenTelemetry subsystem.

Procedure

1. Open your terminal.

2. Run the following command:

$ <JBOSS_HOME>/bin/jboss-cli.sh -c <<EOF

 if (outcome != success) of /

subsystem=opentelemetry:read-resource

 /

extension=org.wildfly.extension.opentelemetry:add()

 /subsystem=opentelemetry:add()

 end-if

 /

extension=org.wildfly.extension.microprofile.telemetry:ad

d

 /subsystem=microprofile-telemetry:add

 reload

EOF

3.1.2. Enable MicroProfile Telemetry subsystem

MicroProfile Telemetry is disabled by default and must be enabled on a per-application basis.

Prerequisites

The MicroProfile Telemetry subsystem has been added to the configuration.

The OpenTelemetry subsystem has been added to the configuration.

Procedure

1. Open your microprofile-config.properties file.

2. Set the otel.sdk.disabled property to false:

otel.sdk.disabled=false

3.1.3. Override server configuration using MicroProfile Config

You can override server configuration for individual applications in the MicroProfile Telemetry subsystem using

MicroProfile Config.

For example, the service name used in exported traces by default is the same as the deployment archive. If the

deployment archive is set to my-application-1.0.war, the service name will be the same. To override this

configuration, you can change the value of the otel.service.name property in your configuration file:

otel.service.name=My Application

3.2. MICROPROFILE CONFIG CONFIGURATION

3.2.1. Adding properties in a ConfigSource management resource

You can store properties directly in a config-source subsystem as a management resource.

Procedure

Create a ConfigSource and add a property:

/subsystem=microprofile-config-smallrye/config-

source=props:add(properties={"name" = "jim"})

3.2.2. Configuring directories as ConfigSources

When a property is stored in a directory as a file, the file-name is the name of a property and the file content is the value

of the property.

Procedure

1. Create a directory where you want to store the files:

$ mkdir -p ~/config/prop-files/

2. Navigate to the directory:

$ cd ~/config/prop-files/

3. Create a file name to store the value for the property name:

$ touch name

4. Add the value of the property to the file:

$ echo "jim" > name

5. Create a ConfigSource in which the file name is the property and the file contents the value of the property:

/subsystem=microprofile-config-smallrye/config-

source=file-props:add(dir={path=~/config/prop-files})

This results in the following XML configuration:

3.2.3. Configuring root directories as ConfigSources

You can define a directory as a root directory for multiple MicroProfile ConfigSource directories using the root attribute.

The nested root attribute is part of the dir complex attribute for the /subsystem=microprofile-config-

smallrye/config-source=* resource. This eliminates the need to specify multiple ConfigSource directories if they

share the same root directory.

Any files directly within the root directory are ignored. They will not be used for configuration. Top-level directories are

treated as ConfigSources. Any nested directories will also be ignored.

<subsystem xmlns="urn:wildfly:microprofile-config-

smallrye:1.0">

<config-source name="file-props">

<dir path="/etc/config/prop-files"/>

</config-source>

</subsystem>

Note

ConfigSources for top-level directories are assigned the ordinal of the /subsystem=microprofile-

config-smallrye/config-source=* resource by default.

If the top-level directory contains a config_ordinal file, the value specified in the file will override the

default ordinal value. If two top-level directories with the same ordinal contain the same entry, the names

of the directories are sorted alphabetically and the first directory is used.

Prerequisites

You have installed the MicroProfile Config extension and enabled the microprofile-config-smallrye

subsystem.

Procedure

1. Open your terminal.

2. Create a directory where you want to store your files:

mkdir -p ~/etc/config/prop-files/

3. Navigate to the directory that you created:

cd ~/etc/config/prop-files/

4. Create a file name to store the value for the property name:

touch name

5. Add the value of the property to the file:

echo "jim" > name

6. Run the following command in the CLI to create a ConfigSource in which the filename is the property and the file

contains the value of the property:

/subsystem=microprofile-config-smallrye/config-

source=prop-files:add(dir={path=/etc/config, root=true})

7. This results in the XML configuration:

<subsystem

xmlns="urn:wildfly:microprofile-config-smallrye:2.0">

 <config-source name="prop-files">

 <dir path="/etc/config" root="true"/>

 </config-source>

</subsystem>

3.2.4. Obtaining ConfigSource from a ConfigSource class

You can create and configure a custom org.eclipse.microprofile.config.spi.ConfigSource implementation

class to provide a source for the configuration values.

Procedure

The following management CLI command creates a ConfigSource for the implementation class named

org.example.MyConfigSource that is provided by a JBoss module named org.example.

If you want to use a ConfigSource from the org.example module, add the <module

name="org.eclipse.microprofile.config.api"/> dependency to the path/to/org/example/main/

module.xml file.

/subsystem=microprofile-config-smallrye/config-source=my-

config-source:add(class={name=org.example.MyConfigSource,

module=org.example})

This command results in the following XML configuration for the microprofile-config-smallrye subsystem.

Properties provided by the custom org.eclipse.microprofile.config.spi.ConfigSource implementation

class are available to any JBoss EAP deployment.

3.2.5. Obtaining ConfigSource configuration from a ConfigSourceProvider

class

You can create and configure a custom org.eclipse.microprofile.config.spi.ConfigSourceProvider

implementation class that registers implementations for multiple ConfigSource instances.

<subsystem xmlns="urn:wildfly:microprofile-config-

smallrye:1.0">

<config-source name="my-config-source">

<class name="org.example.MyConfigSource"

module="org.example"/>

</config-source>

</subsystem>

Procedure

Create a config-source-provider:

/subsystem=microprofile-config-smallrye/config-source-

provider=my-config-source-

provider:add(class={name=org.example.MyConfigSourceProvide

r, module=org.example})

The command creates a config-source-provider for the implementation class named

org.example.MyConfigSourceProvider that is provided by a JBoss Module named org.example.

If you want to use a config-source-provider from the org.example module, add the <module

name="org.eclipse.microprofile.config.api"/> dependency to the path/to/org/example/main/

module.xml file.

This command results in the following XML configuration for the microprofile-config-smallrye subsystem:

Properties provided by the ConfigSourceProvider implementation are available to any JBoss EAP deployment.

3.3. MICROPROFILE FAULT TOLERANCE CONFIGURATION

3.3.1. Adding the MicroProfile Fault Tolerance extension

The MicroProfile Fault Tolerance extension is included in standalone-microprofile.xml and standalone-

microprofile-ha.xml configurations that are provided as part of JBoss EAP XP.

The extension is not included in the standard standalone.xml configuration. To use the extension, you must manually

enable it.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 is installed.

Procedure

<subsystem xmlns="urn:wildfly:microprofile-config-

smallrye:1.0">

<config-source-provider name="my-config-source-provider">

<class name="org.example.MyConfigSourceProvider"

module="org.example"/>

</config-source-provider>

</subsystem>

1. Add the MicroProfile Fault Tolerance extension using the following management CLI command:

/extension=org.wildfly.extension.microprofile.fault-

tolerance-smallrye:add

2. Enable the microprofile-fault-tolerance-smallrye subsystem using the following managenent

command:

/subsystem=microprofile-fault-tolerance-smallrye:add

3. Reload the server with the following management command:

reload

3.4. MICROPROFILE HEALTH CONFIGURATION

3.4.1. Examining health using the management CLI

You can check system health using the management CLI.

Procedure

Examine health:

/subsystem=microprofile-health-smallrye:check

{

 "outcome" => "success",

 "result" => {

 "status" => "UP",

 "checks" => []

 }

}

3.4.2. Examining health using the management console

You can check system health using the management console.

A check runtime operation shows the health checks and the global outcome as boolean value.

Procedure

1. Navigate to the Runtime tab and select the server.

2. In the Monitor column, click MicroProfile Health → View.

3.4.3. Examining health using the HTTP endpoint

Health check is automatically deployed to the health context on JBoss EAP, so you can obtain the current health using the

HTTP endpoint.

The default address for the /health endpoint, accessible from the management interface, is

http://127.0.0.1:9990/health.

Procedure

To obtain the current health of the server using the HTTP endpoint, use the following URL:.

http://<host>:<port>/health

Accessing this context displays the health check in JSON format, indicating if the server is healthy.

3.4.4. Enabling authentication for MicroProfile Health

You can configure the health context to require authentication for access.

Procedure

1. Set the security-enabled attribute to true on the microprofile-health-smallrye subsystem.

/subsystem=microprofile-health-smallrye:write-

attribute(name=security-enabled,value=true)

2. Reload the server for the changes to take effect.

reload

Any subsequent attempt to access the /health endpoint triggers an authentication prompt.

3.4.5. Readiness probes that determine server health and readiness

JBoss EAP XP 5.0.0 supports three readiness probes to determine server health and readiness.

server-status - returns UP when the server-state is running.

http://127.0.0.1:9990/health
http://127.0.0.1:9990/health

boot-errors - returns UP when the probe detects no boot errors.

deployment-status - returns UP when the status for all deployments is OK.

These readiness probes are enabled by default. You can disable the probes using the MicroProfile Config property

mp.health.disable-default-procedures.

The following example illustrates the use of the three probes with the check operation:

[standalone@localhost:9990 /] /subsystem=microprofile-

health-smallrye:check

{

 "outcome" => "success",

 "result" => {

 "status" => "UP",

 "checks" => [

 {

 "name" => "boot-errors",

 "status" => "UP"

 },

 {

 "name" => "server-state",

 "status" => "UP",

 "data" => {"value" => "running"}

 },

 {

 "name" => "empty-readiness-checks",

 "status" => "UP"

 },

 {

 "name" => "deployments-status",

 "status" => "UP"

 },

 {

 "name" => "empty-liveness-checks",

 "status" => "UP"

 },

 {

 "name" => "empty-startup-checks",

 "status" => "UP"

 }

]

 }

}

Additional resources

MicroProfile Health in JBoss EAP

Global status when probes are not defined

3.4.6. Global status when probes are not defined

The :empty-readiness-checks-status, :empty-liveness-checks-status, and :empty-startup-checks-

status management attributes specify the global status when no readiness, liveness, or startup probes are

defined.

These attributes allow applications to report ‘DOWN’ until their probes verify that the application is ready, live, or started

up. By default, applications report ‘UP’.

The :empty-readiness-checks-status attribute specifies the global status for readiness probes if no

readiness probes have been defined:

/subsystem=microprofile-health-smallrye:read-

attribute(name=empty-readiness-checks-status)

{

 "outcome" => "success",

 "result" => expression

"${env.MP_HEALTH_EMPTY_READINESS_CHECKS_STATUS:UP}"

}

The :empty-liveness-checks-status attribute specifies the global status for liveness probes if no liveness

probes have been defined:

/subsystem=microprofile-health-smallrye:read-

attribute(name=empty-liveness-checks-status)

{

 "outcome" => "success",

 "result" => expression

"${env.MP_HEALTH_EMPTY_LIVENESS_CHECKS_STATUS:UP}"

}

The :empty-startup-checks-status attribute specifies the global status for startup probes if no startup

probes have been defined:

/subsystem=microprofile-health-smallrye:read-

attribute(name=empty-startup-checks-status)

{

 "outcome" => "success",

 "result" => expression

"${env.MP_HEALTH_EMPTY_STARTUP_CHECKS_STATUS:UP}"

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-health-in-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-health-in-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#global-status-when-probes-are-not-defined_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#global-status-when-probes-are-not-defined_default

}

The /health HTTP endpoint and the :check operation that check readiness, liveness, and startup probes

also take into account these attributes.

You can also modify these attributes as shown in the following example:

/subsystem=microprofile-health-smallrye:write-

attribute(name=empty-readiness-checks-status,value=DOWN)

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

3.5. MICROPROFILE JWT CONFIGURATION

3.5.1. Enabling microprofile-jwt-smallrye subsystem

The MicroProfile JWT integration is provided by the microprofile-jwt-smallrye subsystem and is included in the

default configuration. If the subsystem is not present in the default configuration, you can add it as follows.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 is installed.

Procedure

1. Enable the MicroProfile JWT smallrye extension in JBoss EAP:

/extension=org.wildfly.extension.microprofile.jwt-

smallrye:add

2. Enable the microprofile-jwt-smallrye subsystem:

/subsystem=microprofile-jwt-smallrye:add

3. Reload the server:

reload

The microprofile-jwt-smallrye subsystem is enabled.

3.6. MICROPROFILE OPENAPI ADMINISTRATION

3.6.1. Enabling MicroProfile OpenAPI

The microprofile-openapi-smallrye subsystem is provided in the standalone-microprofile.xml

configuration. However, JBoss EAP XP uses the standalone.xml by default. You must include the subsystem in

standalone.xml to use it.

Alternatively, you can follow the procedure Updating standalone configurations with MicroProfile subsystems and

extensions to update the standalone.xml configuration file.

Procedure

1. Enable the MicroProfile OpenAPI smallrye extension in JBoss EAP:

/extension=org.wildfly.extension.microprofile.openapi-

smallrye:add()

2. Enable the microprofile-openapi-smallrye subsystem using the following management command:

/subsystem=microprofile-openapi-smallrye:add()

3. Reload the server.

reload

The microprofile-openapi-smallrye subsystem is enabled.

3.6.2. Requesting an MicroProfile OpenAPI document using Accept HTTP

header

Request an MicroProfile OpenAPI document, in the JSON format, from a deployment using an Accept HTTP header.

By default, the OpenAPI endpoint returns a YAML document.

Prerequisites

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#updating-standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#updating-standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#updating-standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#updating-standalone-server-configuration_default

The deployment being queried is configured to return an MicroProfile OpenAPI document.

Procedure

Issue the following curl command to query the /openapi endpoint of the deployment:

$ curl -v -H'Accept: application/json' http://

localhost:8080/openapi

< HTTP/1.1 200 OK

...

{"openapi": "3.0.1" ... }

Replace http://localhost:8080 with the URL and port of the deployment.

The Accept header indicates that the JSON document is to be returned using the application/json string.

3.6.3. Requesting an MicroProfile OpenAPI document using an HTTP

parameter

Request an MicroProfile OpenAPI document, in the JSON format, from a deployment using a query parameter in an HTTP

request.

By default, the OpenAPI endpoint returns a YAML document.

Prerequisites

The deployment being queried is configured to return an MicroProfile OpenAPI document.

Procedure

Issue the following curl command to query the /openapi endpoint of the deployment:

$ curl -v http://localhost:8080/openapi?format=JSON

< HTTP/1.1 200 OK

...

Replace http://localhost:8080 with the URL and port of the deployment.

The HTTP parameter format=JSON indicates that JSON document is to be returned.

3.6.4. Configuring JBoss EAP to serve a static OpenAPI document

Configure JBoss EAP to serve a static OpenAPI document that describes the REST services for the host.

When JBoss EAP is configured to serve a static OpenAPI document, the static OpenAPI document is processed before

any Jakarta RESTful Web Services and MicroProfile OpenAPI annotations.

http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

In a production environment, disable annotation processing when serving a static document. Disabling annotation

processing ensures that an immutable and versioned API contract is available for clients.

Procedure

1. Create a directory in the application source tree:

$ mkdir APPLICATION_ROOT/src/main/webapp/META-INF

APPLICATION_ROOT is the directory containing the pom.xml configuration file for the application.

2. Query the OpenAPI endpoint, redirecting the output to a file:

$ curl http://localhost:8080/openapi?format=JSON > src/

main/webapp/META-INF/openapi.json

By default, the endpoint serves a YAML document, format=JSON specifies that a JSON document is returned.

3. Configure the application to skip annotation scanning when processing the OpenAPI document model:

$ echo "mp.openapi.scan.disable=true" > APPLICATION_ROOT/

src/main/webapp/META-INF/microprofile-config.properties

4. Rebuild the application:

$ mvn clean install

5. Deploy the application again using the following management CLI commands:

a. Undeploy the application:

undeploy microprofile-openapi.war

b. Deploy the application:

deploy APPLICATION_ROOT/target/microprofile-

openapi.war

JBoss EAP now serves a static OpenAPI document at the OpenAPI endpoint.

3.6.5. Disabling microprofile-openapi-smallrye

You can disable the microprofile-openapi-smallrye subsystem in JBoss EAP XP using the management CLI.

Procedure

Disable the microprofile-openapi-smallrye subsystem:

/subsystem=microprofile-openapi-smallrye:remove()

3.7. MICROPROFILE REACTIVE MESSAGING ADMINISTRATION

3.7.1. Configuring the required MicroProfile reactive messaging extension

and subsystem for JBoss EAP

If you want to enable asynchronous reactive messaging to your instance of JBoss EAP, you must add its extension through

the JBoss EAP management CLI.

Prerequisites

You added the Reactive Streams Operators with SmallRye extension and subsystem. For more information, see

MicroProfile Reactive Streams Operators Subsystem Configuration: Required Extension.

You added the Reactive Messaging with SmallRye extension and subsystem.

Procedure

1. Open the JBoss EAP management CLI.

2. Enter the following code:

[standalone@localhost:9990 /] /

extension=org.wildfly.extension.microprofile.reactive-

messaging-smallrye:add

{"outcome" => "success"}

[standalone@localhost:9990 /] /subsystem=microprofile-

reactive-messaging-smallrye:add

{

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-reload" => true,

 "process-state" => "reload-required"

 }

}

https://docs.wildfly.org/26/Admin_Guide.html#MicroProfile_Reactive_Streams_Operators_SmallRye
https://docs.wildfly.org/26/Admin_Guide.html#MicroProfile_Reactive_Streams_Operators_SmallRye

Note

If you provision a server using Galleon, either on OpenShift or not, make sure you include the microprofile-

reactive-messaging Galleon layer to get the core MicroProfile 2.0.1 and reactive messaging functionality,

and to enable the required subsystems and extensions. Note that this configuration does not contain the JBoss

EAP modules you need to enable connectors. Use the microprofile-reactive-messaging-kafka layer

or the microprofile-reactive-messaging-amqp layer to enable the Kafka connector or the AMQP

connector, respectively.

Verification

You have successfully added the required MicroProfile Reactive Messaging extension and subsystem for JBoss EAP if you

see success in two places in the resulting code in the management CLI.

Tip

If the resulting code says reload-required, you have to reload your server configuration to completely apply all of

your changes. To reload, in a standalone server CLI, enter reload.

3.8. STANDALONE SERVER CONFIGURATION

3.8.1. Standalone server configuration files

The JBoss EAP XP includes additional standalone server configuration files, standalone-microprofile.xml and

standalone-microprofile-ha.xml.

Standard configuration files that are included with JBoss EAP remain unchanged. Note that JBoss EAP XP 5.0.0 does not

support the use of domain.xml files or domain mode.

Table 3.1. Standalone configuration files available in JBoss EAP XP

Configuration File Purpose Included capabilities Excluded capabilities

standalone.xml This is the default

configuration that is used

when you start your

standalone server.

Includes information about

the server, including

subsystems, networking,

deployments, socket

bindings, and other

configurable details.

Excludes subsystems

necessary for messaging or

high availability.

Configuration File Purpose Included capabilities Excluded capabilities

standalone-

microprofile.xml

This configuration file

supports applications that

use MicroProfile.

Includes information about

the server, including

subsystems, networking,

deployments, socket

bindings, and other

configurable details.

Excludes the following

capabilities:

Jakarta Enterprise Beans

Messaging

Jakarta EE Batch

Jakarta Server Faces

Jakarta Enterprise Beans

timers

standalone-ha.xml

Includes default subsystems

and adds the modcluster

and jgroups subsystems for

high availability.

Excludes subsystems

necessary for messaging.

standalone-

microprofile-ha.xml

This standalone file supports

applications that use

MicroProfile.

Includes the modcluster

and jgroups subsystems for

high availability in addition to

default subsystems.

Excludes subsystems

necessary for messaging.

standalone-full.xml

Includes the messaging-

activemq and iiop-

openjdk subsystems in

addition to default

subsystems.

standalone-full-

ha.xml

Support for every possible

subsystem.

Includes subsystems for

messaging and high

availability in addition to

default subsystems.

standalone-load-

balancer.xml

Support for the minimum

subsystems necessary to use

the built-in mod_cluster

front-end load balancer to

Configuration File Purpose Included capabilities Excluded capabilities

load balance other JBoss

EAP instances.

By default, starting JBoss EAP as a standalone server uses the standalone.xml file. To start JBoss EAP with a

standalone MicroProfile configuration, use the -c argument. For example,

$ <EAP_HOME>/bin/standalone.sh -c=standalone-

microprofile.xml

3.8.2. Updating standalone configurations with MicroProfile subsystems and

extensions

You can update standard standalone server configuration files with MicroProfile subsystems and extensions using the

docs/examples/enable-microprofile.cli script. The enable-microprofile.cli script is intended as an

example script for updating standard standalone server configuration files, not custom configurations.

The enable-microprofile.cli script modifies the existing standalone server configuration and adds the following

MicroProfile subsystems and extensions if they do not exist in the standalone configuration file:

microprofile-config-smallrye

microprofile-fault-tolerance-smallrye

microprofile-health-smallrye

microprofile-jwt-smallrye

microprofile-openapi-smallrye

The enable-microprofile.cli script outputs a high-level description of the modifications. The configuration is

secured using the elytron subsystem. The security subsystem, if present, is removed from the configuration.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 is installed.

Procedure

1. Run the following CLI script to update the default standalone.xml server configuration file:

$ <EAP_HOME>/bin/jboss-cli.sh --file=docs/examples/

enable-microprofile.cli

2. Select a standalone server configuration other than the default standalone.xml server configuration file using

the following command:

$ <EAP_HOME>/bin/jboss-cli.sh --file=docs/examples/

enable-microprofile.cli -Dconfig=<standalone-full.xml|

standalone-ha.xml|standalone-full-ha.xml>

3. The specified configuration file now includes MicroProfile subsystems and extensions.

CHAPTER 4. DEVELOP

MICROPROFILE APPLICATIONS FOR

JBOSS EAP

To get started with developing applications that use MicroProfile APIs, create a Maven project and define the required

dependencies. Use the JBoss EAP MicroProfile Bill of Materials (BOM) to control the versions of runtime Maven

dependencies in the application Project Object Model (POM).

After you create a Maven project, refer to the JBoss EAP XP Quickstarts for information about developing applications

for specific MicroProfile APIs. For more information, see JBoss EAP XP Quickstarts.

4.1. CREATING A MAVEN PROJECT WITH MAVEN-ARCHETYPE-

WEBAPP

Use the maven-archetype-webapp archetype to create a Maven project for building applications for JBoss EAP

deployment. Maven provides different archetypes for creating projects based on templates specific to project types. The

maven-archetype-webapp creates a project with the structure required to develop simple web-applications.

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

Procedure

1. Set up a Maven project by using the mvn command. The command creates the directory structure for the project

and the pom.xml configuration file.

$ mvn archetype:generate \

https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

-DgroupId=<group_id> \ 1

-DartifactId=<artifact_id> \ 2

-DarchetypeGroupId=org.apache.maven.archetypes \ 3

-DarchetypeArtifactId=maven-archetype-webapp \ 4

-DinteractiveMode=false 5

groupID uniquely identifies the project.

artifactID is the name for the generated jar archive.

archetypeGroupID is the unique ID for maven-archetype-webapp.

archetypeArtifactId is the artifact ID for maven-archetype-webapp.

InteractiveMode instructs Maven to use the supplied parameters rather than starting in interactive mode.

2. Navigate to the generated directory.

3. Open the generated pom.xml configuration file in a text editor.

4. Remove the content inside the <project> section of the pom.xml configuration file after the

<name>helloworld Maven Webapp</name> line.

Ensure that the file looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>${group_id}</groupId>

<artifactId>${artifact_id}</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>war</packaging>

<name>${artifact_id} Maven Webapp</name>

The content was removed because it is not required for the application.

Next steps

Defining properties in a Maven project.

4.2. DEFINING PROPERTIES IN A MAVEN PROJECT

You can define properties in a Maven pom.xml configuration file as place holders for values. Define the value for JBoss

EAP XP server as a property to use the value consistently in the configuration.

Prerequisites

You have initialized a Maven project.

For more information, see Creating a Maven project with maven-archetype-webapp.

Procedure

Define a property <version.server> as the JBoss EAP XP version on which you will deploy the configured

application.

Next steps

Defining the repositories in a Maven project.

4.3. DEFINING THE REPOSITORIES IN A MAVEN PROJECT

Define the artifact and plug-in repositories in which Maven looks for artifacts and plug-ins to download.

Prerequisites

You have initialized a Maven project.

</project>

<project>

 ...

<properties>

<project.build.sourceEncoding>UTF-8</

project.build.sourceEncoding>

<maven.compiler.source>11</maven.compiler.source>

<maven.compiler.target>11</maven.compiler.target>

<version.server>5.0.0.GA</version.server>

</properties>

</project>

For more information, see Creating a Maven project with maven-archetype-webapp.

Procedure

1. Define the artifacts repository.

<project>

 ...

<repositories>

<repository>

1

<id>jboss-public-maven-repository</id>

<name>JBoss Public Maven Repository</name>

<url>https://repository.jboss.org/nexus/

content/groups/public/</url>

<releases>

<enabled>true</enabled>

<updatePolicy>never</updatePolicy>

</releases>

<snapshots>

<enabled>true</enabled>

<updatePolicy>never</updatePolicy>

</snapshots>

<layout>default</layout>

</repository>

<repository>

2

<id>redhat-ga-maven-repository</id>

<name>Red Hat GA Maven Repository</name>

<url>https://maven.repository.redhat.com/ga/</

url>

<releases>

<enabled>true</enabled>

<updatePolicy>never</updatePolicy>

</releases>

<snapshots>

<enabled>true</enabled>

<updatePolicy>never</updatePolicy>

</snapshots>

<layout>default</layout>

</repository>

</repositories>

</project>

The Red Hat GA Maven repository provides all the productized JBoss EAP and other Red Hat artifacts.

The JBoss Public Maven Repository provides artifacts such as WildFly Maven plug-ins

2. Define the plug-ins repository.

Next steps

Importing the JBoss EAP MicroProfile BOM as dependency management in a Maven project.

4.4. IMPORTING THE JBOSS EAP MICROPROFILE BOM AS

DEPENDENCY MANAGEMENT IN A MAVEN PROJECT

<project>

 ...

<pluginRepositories>

<pluginRepository>

<id>jboss-public-maven-repository</id>

<name>JBoss Public Maven Repository</name>

<url>https://repository.jboss.org/nexus/

content/groups/public/</url>

<releases>

<enabled>true</enabled>

</releases>

<snapshots>

<enabled>true</enabled>

</snapshots>

</pluginRepository>

<pluginRepository>

<id>redhat-ga-maven-repository</id>

<name>Red Hat GA Maven Repository</name>

<url>https://maven.repository.redhat.com/ga/</

url>

<releases>

<enabled>true</enabled>

</releases>

<snapshots>

<enabled>true</enabled>

</snapshots>

</pluginRepository>

</pluginRepositories>

</project>

Import the JBoss EAP MicroProfile Bill of Materials (BOM) to control the versions of runtime Maven dependencies. When

you specify a BOM in the <dependencyManagement> section, you do not need to individually specify the versions of the

Maven dependencies defined in the provided scope.

Prerequisites

You have initialized a Maven project.

For more information, see Creating a Maven project with maven-archetype-webapp.

Procedure

1. Add a property for the BOM version in the properties section of the pom.xml configuration file.

The value defined in the property <version.server> is used as the value for the BOM version.

2. Import the JBoss EAP BOMs dependency management.

groupID of the JBoss EAP-provided BOM.

<properties>

 ...

<version.bom.microprofile>${version.server}</

version.bom.ee>

</properties>

<project>

 ...

<dependencyManagement>

<dependencies>

<dependency>

<groupId>org.jboss.bom</groupId>

1

<artifactId>jboss-eap-xp-microprofile</

artifactId> 2

<version>${version.bom.microprofile}</

version>

<type>pom</type>

<scope>import</scope>

</dependency>

</dependencies>

</dependencyManagement>

</project>

artifactID of the JBoss EAP-provided BOM that provides supported JBoss EAP MicroProfile APIs.

Optionally, you can import the JBoss EAP EE with Tools Bill to your project. For more information, see Importing the

JBoss EAP BOMs as dependency management in a Maven project.

Next steps

Adding plug-in management in a Maven project

4.5. IMPORTING THE JBOSS EAP BOMS AS DEPENDENCY

MANAGEMENT IN A MAVEN PROJECT

You can optionally import the JBoss EAP EE With Tools Bill of materials (BOM). The JBoss EAP BOM provides supported

JBoss EAP Java EE APIs plus additional JBoss EAP API JARs and client BOMs. You only need to import this BOM if your

application requires Jakarta EE APIs in addition to the Microprofile APIs.

Prerequisites

You have initialized a Maven project.

For more information, see Creating a Maven project with maven-archetype-webapp.

Procedure

1. Add a property for the BOM version in the properties section of the pom.xml configuration file.

2. Import the JBoss EAP BOMs dependency management.

<properties>

<version.bom.ee>8.0.0.GA-redhat-00009</version.bom.ee>

</properties>

<project>

 ...

<dependencyManagement>

<dependencies>

<dependency>

<groupId>org.jboss.bom</groupId>

1

<artifactId>jboss-eap-ee-with-tools</

artifactId> 2

<version>${version.bom.ee}</version>

<type>pom</type>

<scope>import</scope>

groupID of the JBoss EAP-provided BOM.

artifactID of the JBoss EAP-provided BOM that provides supported JBoss EAP Java EE APIs plus additional

JBoss EAP API JARs and client BOMs, and development tools such as Arquillian.

Next steps

Adding plug-in management in a Maven project

4.6. ADDING PLUG-IN MANAGEMENT IN A MAVEN PROJECT

Add Maven plug-in management section to the pom.xml configuration file to get plug-ins required for Maven CLI

commands.

Prerequisites

You have initialized a Maven project.

For more information, see Creating a Maven project with maven-archetype-webapp.

Procedure

1. Define the versions for wildfly-maven-plugin and maven-war-plugin, in the <properties> section.

2. Add <pluginManagement> in <build> section inside the <project> section.

</dependency>

</dependencies>

</dependencyManagement>

</project>

<properties>

 ...

<version.plugin.wildfly>4.2.1.Final</

version.plugin.wildfly>

<version.plugin.war>3.3.2</version.plugin.war>

</properties>

<project>

 ...

<build>

<pluginManagement>

You can use the wildfly-maven-plugin to deploy an application to JBoss EAP using the

wildfly:deploy command.

You need to manage the war plugin version to ensure compatibility with JDK17+.

Next steps

Verifying a maven project

4.7. VERIFYING A MAVEN PROJECT

Verify that the Maven project you configured builds.

Prerequisites

You have defined Maven properties.

For more information, see Defining properties in a Maven project.

You have defined Maven repositories.

<plugins>

<plugin> 1

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-maven-plugin</

artifactId>

<version>${version.plugin.wildfly}</

version>

</plugin>

<plugin>

2

<groupId>org.apache.maven.plugins</

groupId>

<artifactId>maven-war-plugin</

artifactId>

<version>${version.plugin.war}</

version>

</plugin>

</plugins>

</pluginManagement>

</build>

</project>

For more information, see Defining the repositories in a Maven project.

You have imported the JBoss EAP Bill of materials (BOMs) as dependency management.

For more information, see Importing the JBoss EAP MicroProfile BOM as dependency management in a Maven

project.

You have added plug-in management.

For more information, see Adding plugin management in Maven project for a server hello world application.

Procedure

Install the Maven dependencies added in the pom.xml locally.

$ mvn package

You get an output similar to the following:

...

[INFO]

--

[INFO] BUILD SUCCESS

[INFO]

--

...

For more information about developing applications for specific MicroProfile APIs, see JBoss EAP XP Quickstarts.

Additional resources

The bootable JAR

CHAPTER 5. UNDERSTAND

MICROMETER INTEGRATION

5.1. MICROMETER IN JBOSS EAP

Micrometer integration in JBoss EAP introduces a vendor-neutral observability layer with a reusable API for registering

and tracking performance metrics across applications. This extension integrates with Micrometer, allowing deployed

https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x

applications to access its API and display application-specific metrics alongside the server metrics provided by the

extension.

Note

JBoss EAP uses the existing metrics subsystem. You must manually add and configure this extension.

Additional resources

Micrometer Metrics subsystem configuration in WildFly Admin guide

Micrometer documentation

CHAPTER 6. ADMINISTER

MICROMETER IN JBOSS EAP

6.1. ADDING MICROMETER SUBSYSTEM USING THE

MANAGEMENT CLI

The Micrometer subsystem enhances monitoring capabilities in JBoss EAP by facilitating comprehensive metrics

gathering and publication. However, the org.jboss.extension.micrometer subsystem is available to all standalone

configurations within the JBoss EAP distribution, but it must be added manually.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 is installed.

You have access to the JBoss EAP management CLI and permissions to make configuration changes.

Procedure

1. Open your terminal.

2. Connect to the server by running the following command:

./jboss-cli.sh --connect

3. Check if the Micrometer extension is already added to the configuration by running the following command:

[standalone@localhost:9990 /] /

https://docs.wildfly.org/31/Admin_Guide.html#Micrometer_Metrics
https://docs.wildfly.org/31/Admin_Guide.html#Micrometer_Metrics
https://docs.micrometer.io/micrometer/reference/
https://docs.micrometer.io/micrometer/reference/

extension=org.wildfly.extension.micrometer:read-resource

4. If the Micrometer extension is not available, add it by running the following command:

[standalone@localhost:9990 /] /

extension=org.wildfly.extension.micrometer:add

5. Add the Micrometer subsystem with the required configuration. For example, specify the endpoint URL of the

metrics collector by running the following command:

[standalone@localhost:9990 /] /

subsystem=micrometer:add(endpoint="http://localhost:4318/

v1/metrics")

6. Reload the server to apply the changes:

[standalone@localhost:9990 /] reload

Note

When the collector is not running or its collector endpoint is unavailable, then a warning message similar to the

following is triggered:

11:28:16,581 WARNING

[io.micrometer.registry.otlp.OtlpMeterRegistry] (MSC

service thread 1-5) Failed to publish metrics to OTLP

receiver: java.net.ConnectException: Connection refused

By following these steps, you can add the Micrometer subsystem to your JBoss EAP server using the management CLI,

enabling enhanced monitoring capabilities for your applications.

Additional resources

Develop Micrometer application for JBoss EAP

CHAPTER 7. DEVELOP MICROMETER

APPLICATION FOR JBOSS EAP

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#develop_micrometer_application_for_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#develop_micrometer_application_for_jboss_eap

7.1. INTEGRATING MICROMETER METRICS IN JBOSS EAP

Using Micrometer, you can monitor and collect application metrics in JBoss EAP. Micrometer support provides the

exposure of application metrics. The export process is PUSH-based, ensuring that metrics are sent to an OpenTelemetry

Collector.

Prerequisites

You have installed JDK 17.

You have installed the Maven 3.6 or later version. For more information, see Downloading Apache Maven.

You have installed Docker. For more information, see Get Docker.

Optional: You have podman installed on your system. Use the latest podman version available on supported RHEL. For

more information, see Red Hat JBoss Enterprise Application Platform 8.0 Supported Configurations.

The configure-micrometer.cli file is available in the application root directory.

Note

The example in this section, including how to use the configure-micrometer.cli file, is based on the

Micrometer Quickstart.

Procedure

1. Open a terminal.

2. Start JBoss EAP as a standalone server by using the following script:

$ <EAP_HOME>/bin/standalone.sh -c standalone-

microprofile.xml

Note

For Windows server, use the <EAP_HOME>\bin\standalone.bat script.

3. Open a new terminal.

4. Navigate to the application root directory.

5. Run the following command to configure the server:

$ <EAP_HOME>/bin/jboss-cli.sh --connect --file=configure-

micrometer.cli

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://access.redhat.com/articles/6961381
https://access.redhat.com/articles/6961381
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-5.0.x

Note

For Windows server, use the <EAP_HOME>\bin\jboss-cli.bat script.

Replace <EAP_HOME> with the path to your server.

Expected output:

The batch executed successfully

process-state: reload-required

6. Reload the server with the following management command:

$ <EAP_HOME>/bin/jboss-cli.sh --connect --commands=reload

7. Create a configuration file named docker-compose.yaml with the following content:

version: "3"

services:

 otel-collector:

 image: otel/opentelemetry-collector

 command: [--config=/etc/otel-collector-config.yaml]

 volumes:

 - ./otel-collector-config.yaml:/etc/otel-collector-

config.yaml:Z

 ports:

 - 1888:1888 # pprof extension

 - 8888:8888 # Prometheus metrics exposed by the

collector

 - 8889:8889 # Prometheus exporter metrics

 - 13133:13133 # health_check extension

 - 4317:4317 # OTLP gRPC receiver

 - 4318:4318 # OTLP http receiver

 - 55679:55679 # zpages extension

 - 1234:1234 # /metrics endpoint

8. Create a configuration file named otel-collector-config.yaml with the following content:

extensions:

 health_check:

 pprof:

 endpoint: 0.0.0.0:1777

 zpages:

 endpoint: 0.0.0.0:55679

receivers:

 otlp:

 protocols:

 grpc:

 http:

processors:

 batch:

exporters:

 prometheus:

 endpoint: "0.0.0.0:1234"

service:

 pipelines:

 metrics:

 receivers: [otlp]

 processors: [batch]

 exporters: [prometheus]

 extensions: [health_check, pprof, zpages]

9. Start the collector server instance by running the following command:

$ docker-compose up

Note

You can also use Podman instead of Docker. If you choose Podman, then use the $ podman-compose

up command instead of $ docker-compose up. If Docker or Podman is not supported in your

environment, then see Otel Collector documentation for guidance on installing and running the

OpenTelemetry Collector.

10. In the RootResource class, see how the MeterRegistry is injected into your class to ensure proper setup before

registering the meters.

@Path("/")

@ApplicationScoped

public class RootResource {

 // ...

https://opentelemetry.io/docs/collector/installation/
https://opentelemetry.io/docs/collector/installation/

 @Inject

 private MeterRegistry registry;

 private Counter performCheckCounter;

 private Counter originalCounter;

 private Counter duplicatedCounter;

 @PostConstruct

 private void createMeters() {

 Gauge.builder("prime.highestSoFar", () ->

highestPrimeNumberSoFar)

 .description("Highest prime number so

far.")

 .register(registry);

 performCheckCounter = Counter

 .builder("prime.performedChecks")

 .description("How many prime checks have

been performed.")

 .register(registry);

 originalCounter = Counter

 .builder("prime.duplicatedCounter")

 .tags(List.of(Tag.of("type",

"original")))

 .register(registry);

 duplicatedCounter = Counter

 .builder("prime.duplicatedCounter")

 .tags(List.of(Tag.of("type", "copy")))

 .register(registry);

 }

 // ...

}

11. Inspect the checkIfPrime() method body to see how to use the registered meters within your application logic.

For example:

@GET

@Path("/prime/{number}")

public String checkIfPrime(@PathParam("number") long

number) throws Exception {

 performCheckCounter.increment();

 Timer timer = registry.timer("prime.timer");

 return timer.recordCallable(() -> {

 if (number < 1) {

 return "Only natural numbers can be prime

numbers.";

 }

 if (number == 1) {

 return "1 is not prime.";

 }

 if (number == 2) {

 return "2 is prime.";

 }

 if (number % 2 == 0) {

 return number + " is not prime, it is

divisible by 2.";

 }

 for (int i = 3; i < Math.floor(Math.sqrt(number))

+ 1; i = i + 2) {

 try {

 Thread.sleep(10);

 } catch (InterruptedException e) {

 //

 }

 if (number % i == 0) {

 return number + " is not prime, is

divisible by " + i + ".";

 }

 }

 if (number > highestPrimeNumberSoFar) {

 highestPrimeNumberSoFar = number;

 }

 return number + " is prime.";

 });

}

12. Navigate to the application root directory.

Syntax

$ cd <path_to_application_root>/<application_root>

Example, in reference to the Micrometer Quickstart:

$ cd ~/quickstarts/micrometer

13. Compile and deploy the application with the following command:

$ mvn clean package wildfly:deploy

This deploys micrometer/target/micrometer.war to the running server.

Verification

1. Access the application by using a web browser or you can run the following command.

$ curl http://localhost:8080/micrometer/prime/13

Expected output:

13 is prime.

CHAPTER 8. BUILD AND RUN

MICROSERVICES APPLICATIONS ON

THE OPENSHIFT IMAGE FOR JBOSS

EAP XP

You can build and run your microservices applications on the OpenShift image for JBoss EAP XP.

Note

JBoss EAP XP is supported only on OpenShift 4 and later versions.

Use the following workflow to build and run a microservices application on the OpenShift image for JBoss EAP XP by

using the source-to-image (S2I) process.

http://localhost:8080/micrometer/prime/13
http://localhost:8080/micrometer/prime/13

Note

Default cloud-default-mp-config layer provide a standalone configuration file, which is based on the

standalone-microprofile-ha.xml file. For more information about the server configuration files included

in JBoss EAP XP, see the Standalone server configuration files section.

This workflow uses the microprofile-config quickstart as an example. The quickstart provides a small, specific

working example that can be used as a reference for your own project. See the microprofile-config quickstart that

ships with JBoss EAP XP 5.0.0 for more information.

Additional resources

For more information about the server configuration files included in JBoss EAP XP, see Standalone server

configuration files.

8.1. PREPARING OPENSHIFT FOR APPLICATION DEPLOYMENT

Prepare OpenShift for application deployment.

Prerequisites

You have installed an operational OpenShift instance. For more information, see the Installing and Configuring OpenShift

Container Platform Clusters book on Red Hat Customer Portal.

Procedure

1. Log in to your OpenShift instance using the oc login command.

2. Create a new project in OpenShift.

A project allows a group of users to organize and manage content separately from other groups. You can create a

project in OpenShift using the following command.

$ oc new-project PROJECT_NAME

For example, for the microprofile-config quickstart, create a new project named eap-demo using the

following command.

$ oc new-project eap-demo

8.2. BUILDING AND DEPLOYING JBOSS EAP XP APPLICATION

IMAGES USING S2I

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#standalone-server-configuration_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#standalone-server-configuration_default
https://access.redhat.com/products/red-hat-openshift-container-platform/
https://access.redhat.com/products/red-hat-openshift-container-platform/

Follow the source-to-image (S2I) workflow to build reproducible container images for a JBoss EAP XP application. These

generated container images include the application deployment and ready-to-run JBoss EAP XP servers.

The S2I workflow takes source code from a Git repository and injects it into a container that’s based on the language and

framework you want to use. After the S2I workflow is completed, the src code is compiled, the application is packaged

and is deployed to the JBoss EAP XP server.

Prerequisites

You have an active Red Hat customer account.

You have a Registry Service Account. Follow the instructions on the Red Hat Customer Portal to create an

authentication token using a registry service account.

You have downloaded the OpenShift secret YAML file, which you can use to pull images from Red Hat Ecosystem

Catalog. For more information, see OpenShift Secret.

You used the oc login command to log in to OpenShift.

You have installed Helm. For more information, see Installing Helm.

You have installed the repository for the JBoss EAP Helm charts by entering this command in the management CLI:

$ helm repo add jboss-eap https://jbossas.github.io/eap-

charts/

Procedure

1. Create a file named helm.yaml using the following YAML content:

2. Use the following command to deploy your JBoss EAP XP application on Openshift.

$ helm install microprofile-config -f helm.yaml jboss-

eap/eap-xp5

Note

build:

 uri: https://github.com/jboss-developer/jboss-eap-

quickstarts.git

 ref: XP_5.0.0.GA

 contextDir: microprofile-config

 mode: s2i

deploy:

 replicas: 1

https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/terms-based-registry/#/token//openshift-secret
https://access.redhat.com/terms-based-registry/#/token//openshift-secret
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

This procedure is very similar to Building application images using source-to-image in OpenShift. For more

information about that procedure see Using JBoss EAP on OpenShift Container Platform.

Verification

Access the application using curl.

$ curl https://$(oc get route microprofile-config --

template='{{ .spec.host }}')/config/value

You get the output MyPropertyFileConfigValue confirming that the application is deployed.

8.3. COMPLETING POST-DEPLOYMENT TASKS FOR JBOSS EAP

XP SOURCE-TO-IMAGE (S2I) APPLICATION

Depending on your application, you might need to complete some tasks after your OpenShift application has been built

and deployed.

Examples of post-deployment tasks include the following:

Exposing a service so that the application is viewable from outside of OpenShift.

Scaling your application to a specific number of replicas.

Procedure

1. Get the service name of your application using the following command.

$ oc get service

2. Optional: Expose the main service as a route so you can access your application from outside of OpenShift. For

example, for the microprofile-config quickstart, use the following command to expose the required service

and port.

Note

If you used a template to create the application, the route might already exist. If it does, continue on to

the next step.

$ oc expose service/eap-xp3-basic-app --port=8080

3. Get the URL of the route.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_building-applications-images-using-source-to-image-s2i-on-openshift_assembly_building-and-running-jboss-eap-applicationson-openshift-container-platform
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_building-applications-images-using-source-to-image-s2i-on-openshift_assembly_building-and-running-jboss-eap-applicationson-openshift-container-platform

$ oc get route

4. Access the application in your web browser using the URL. The URL is the value of the HOST/PORT field from

previous command’s output.

Note

For JBoss EAP XP 5.0.0 GA distribution, the Microprofile Config quickstart does not reply to HTTPS GET

requests to the application’s root context. This enhancement is only available in the

{JBossXPShortName101} GA distribution.

For example, to interact with the Microprofile Config application, the URL might be http://

HOST_PORT_Value/config/value in your browser.

If your application does not use the JBoss EAP root context, append the context of the application to the URL. For

example, for the microprofile-config quickstart, the URL might be http://HOST_PORT_VALUE/

microprofile-config/.

5. Optionally, you can scale up the application instance by running the following command. This command increases

the number of replicas to 3.

$ oc scale deploymentconfig DEPLOYMENTCONFIG_NAME --

replicas=3

For example, for the microprofile-config quickstart, use the following command to scale up the application.

$ oc scale deploymentconfig/eap-xp3-basic-app --

replicas=3

Additional Resources

For more information about JBoss EAP XP Quickstarts, see the Use the Quickstarts section in the Using MicroProfile in

JBoss EAP guide.

CHAPTER 9. CAPABILITY TRIMMING

When building a bootable JAR, you can decide which JBoss EAP features and subsystems to include.

Note

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_5.0.0/using-the-openshift-image-for-jboss-eap-xp_default#use-quickstarts_context
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_5.0.0/using-the-openshift-image-for-jboss-eap-xp_default#use-quickstarts_context

Capability trimming is supported only on OpenShift or when building a bootable JAR.

Additional resources

About the bootable JAR

9.1. AVAILABLE JBOSS EAP LAYERS

Red Hat makes available a number of layers to customize provisioning of the JBoss EAP server in OpenShift or a bootable

JAR.

Three layers are base layers that provide core functionality. The other layers are decorator layers that enhance the base

layers with additional capabilities.

Most decorator layers can be used to build S2I images in JBoss EAP for OpenShift or to build a bootable JAR. A few

layers do not support S2I images; the description of the layer notes this limitation.

Note

Only the listed layers are supported. Layers not listed here are not supported.

9.1.1. Base layers

Each base layer includes core functionality for a typical server user case.

datasources-web-server

This layer includes a servlet container and the ability to configure a datasource.

This layer does not include MicroProfile capabilities.

The following Jakarta EE specifications are supported in this layer:

Jakarta JSON Processing 1.1

Jakarta JSON Binding 1.0

Jakarta Servlet 4.0

Jakarta Expression Language 3.0

Jakarta Server Pages 2.3

Jakarta Standard Tag Library 1.2

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#about-bootable-jar_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#about-bootable-jar_default

Jakarta Concurrency 1.1

Jakarta Annotations 1.3

Jakarta XML Binding 2.3

Jakarta Debugging Support for Other Languages 1.0

Jakarta Transactions 1.3

Jakarta Connectors 1.7

jaxrs-server

This layer enhances the datasources-web-server layer with the following JBoss EAP subsystems:

jaxrs

weld

jpa

This layer also adds Infinispan-based second-level entity caching locally in the container.

The following MicroProfile capability is included in this layer:

MicroProfile REST Client

The following Jakarta EE specifications are supported in this layer in addition to those supported in the datasources-

web-server layer:

Jakarta Contexts and Dependency Injection 2.0

Jakarta Bean Validation 2.0

Jakarta Interceptors 1.2

Jakarta RESTful Web Services 2.1

Jakarta Persistence 2.2

cloud-server

This layer enhances the jaxrs-server layer with the following JBoss EAP subsystems:

resource-adapters

messaging-activemq (remote broker messaging, not embedded messaging)

This layer also adds the following observability features to the jaxrs-server layer:

MicroProfile Health

MicroProfile Config

The following Jakarta EE specification is supported in this layer in addition to those supported in the jaxrs-server

layer:

Jakarta Security 1.0

9.1.2. Decorator layers

Decorator layers are not used alone. You can configure one or more decorator layers with a base layer to deliver additional

functionality.

ejb-lite

This decorator layer adds a minimal Jakarta Enterprise Beans implementation to the provisioned server. The following

support is not included in this layer:

IIOP integration

MDB instance pool

Remote connector resource

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Jakarta Enterprise Beans

This decorator layer extends the ejb-lite layer. This layer adds the following support to the provisioned server, in

addition to the base functionality included in the ejb-lite layer:

MDB instance pool

Remote connector resource

Use this layer if you want to use message-driven beans (MDBs) or Jakarta Enterprise Beans remoting capabilities, or

both. If you do not need these capabilities, use the ejb-lite layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

ejb-local-cache

This decorator layer adds local caching support for Jakarta Enterprise Beans to the provisioned server.

Dependencies: You can only include this layer if you have included the ejb-lite layer or the ejb layer.

Note

This layer is not compatible with the ejb-dist-cache layer. If you include the ejb-dist-cache layer, you

cannot include the ejb-local-cache layer. If you include both layers, the resulting build might include an

unexpected Jakarta Enterprise Beans configuration.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

ejb-dist-cache

This decorator layer adds distributed caching support for Jakarta Enterprise Beans to the provisioned server.

Dependencies: You can only include this layer if you have included the ejb-lite layer or the ejb layer.

Note

This layer is not compatible with the ejb-local-cache layer. If you include the ejb-dist-cache layer, you

cannot include the ejb-local-cache layer. If you include both layers, the resulting build might result in an

unexpected configuration.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

jdr

This decorator layer adds the JBoss Diagnostic Reporting (jdr) subsystem to gather diagnostic data when requesting

support from Red Hat.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Jakarta Persistence

This decorator layer adds persistence capabilities for a single-node server. Note that distributed caching only works if the

servers are able to form a cluster.

The layer adds Hibernate libraries to the provisioned server, with the following support:

Configurations of the jpa subsystem

Configurations of the infinispan subsystem

A local Hibernate cache container

Note

This layer is not compatible with the jpa-distributed layer. If you include the jpa layer, you cannot include

the jpa-distributed layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

jpa-distributed

This decorator layer adds persistence capabilities for servers operating in a cluster. The layer adds Hibernate libraries to

the provisioned server, with the following support:

Configurations of the jpa subsystem

Configurations of the infinispan subsystem

A local Hibernate cache container

Invalidation and replication Hibernate cache containers

Configuration of the jgroups subsystem

Note

This layer is not compatible with the jpa layer. If you include the jpa layer, you cannot include the jpa-

distributed layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Jakarta Server Faces

This decorator layer adds the jsf subsystem to the provisioned server.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

microprofile-platform

This decorator layer adds the following MicroProfile capabilities to the provisioned server:

MicroProfile Config

MicroProfile Fault Tolerance

MicroProfile Health

MicroProfile JWT

MicroProfile OpenAPI

Note

This layer includes MicroProfile capabilities that are also included in the observability layer. If you include

this layer, you do not need to include the observability layer.

observability

This decorator layer adds the following observability features to the provisioned server:

MicroProfile Health

MicroProfile Config

Note

This layer is built in to the cloud-server layer. You do not need to add this layer to the cloud-server layer.

remote-activemq

This decorator layer adds the ability to communicate with a remote ActiveMQ broker to the provisioned server, integrating

messaging support.

The pooled connection factory configuration specifies guest as the value for the user and password attributes. You

can use a CLI script to change these values at runtime.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

sso

This decorator layer adds Red Hat Single Sign-On integration to the provisioned server.

This layer should only be used when provisioning a server using S2I.

web-console

This decorator layer adds the management console to the provisioned server.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

web-clustering

This decorator layer adds support for distributable web applications by configuring a non-local Infinispan-based container

web cache for data session handling suitable to clustering environments.

web-passivation

This decorator layer adds support for distributable web applications by configuring a local Infinispan-based container web

cache for data session handling suitable to single node environments.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

webservices

This layer adds web services functionality to the provisioned server, supporting Jakarta web services deployments.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Additional resources

Pooled Connection Factory Attributes

CHAPTER 10. ENABLE

MICROPROFILE APPLICATION

DEVELOPMENT FOR JBOSS EAP

USING JBOSS TOOLS

If you want to incorporate MicroProfile capabilities in applications that you develop using JBoss Tools, you must enable

MicroProfile support for JBoss EAP in JBoss Tools.

JBoss EAP expansion packs provide support for MicroProfile.

JBoss EAP expansion packs are not supported on JBoss EAP 7.2 and earlier.

Each version of the JBoss EAP expansion pack supports specific patches of JBoss EAP. For details, see the JBoss EAP

expansion pack Support and Life Cycle Policies page.

Important

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#pooled_connection_factory_attributes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#pooled_connection_factory_attributes

The JBoss EAP XP Quickstarts for Openshift are provided as Technology Preview only. Technology Preview

features are not supported with Red Hat production service level agreements (SLAs), might not be functionally

complete, and Red Hat does not recommend to use them for production. These features provide early access to

upcoming product features, enabling customers to test functionality and provide feedback during the

development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the

support scope for Technology Preview features.

10.1. CONFIGURING JBOSS TOOLS TO USE MICROPROFILE

CAPABILITIES

To enable MicroProfile support on JBoss EAP, register a new runtime server for JBoss EAP XP, and then create the new

JBoss EAP 8.0 server.

Give the server an appropriate name that helps you recognize that it supports MicroProfile capabilities.

This server uses a newly created JBoss EAP XP runtime that points to the runtime installed previously and uses the

standalone-microprofile.xml configuration file.

Note

If you set the Target runtime to 8.0 or a later runtime version in JBoss Tools, your project is compatible with

the Jakarta EE 8 specification.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 has been installed.

Procedure

1. Set up the new server on the New Server dialog box.

a. In the Select server type list, select Red Hat JBoss Enterprise Application Platform 8.0.

b. In the Server’s host name field, enter localhost.

c. In the Server name field, enter JBoss EAP 8.0 XP.

d. Click Next.

2. Configure the new server.

a. In the Home directory field, if you do not want to use the default setting, specify a new directory; for

example: home/myname/dev/microprofile/runtimes/jboss-eap-7.4.

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#installing-jboss-eap-xp-on-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#installing-jboss-eap-xp-on-eap_default

b. Make sure the Execution Environment is set to JavaSE-1.8.

c. Optional: Change the values in the Server base directory and Configuration file fields.

d. Click Finish.

Result

You are now ready to begin developing applications using MicroProfile capabilities, or to begin using the MicroProfile

quickstarts for JBoss EAP.

10.2. USING MICROPROFILE QUICKSTARTS FOR JBOSS TOOLS

Enabling the MicroProfile quickstarts makes the simple examples available to run and test on your installed server.

These examples illustrate the following MicroProfile capabilities.

MicroProfile Config

MicroProfile Fault Tolerance

MicroProfile Health

MicroProfile JWT

MicroProfile OpenAPI

MicroProfile REST Client

Procedure

1. Import the pom.xml file from the Quickstart Parent Artifact.

2. If you are using a quickstart that requires environment variables, configure those variables on the launch

configuration on the server Overview dialog box.

For example, the opentelemetry-tracing quickstart uses the following environment variable:

OTEL_COLLECTOR_HOST

Additional resources

About Microprofile

About JBoss Enterprise Application Platform expansion pack

Red Hat JBoss Enterprise Application Platform expansion pack Support and Life Cycle Policies

https://projects.eclipse.org/proposals/eclipse-microprofile
https://projects.eclipse.org/proposals/eclipse-microprofile
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#about-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#about-jboss-eap-xp_default
https://access.redhat.com/support/policy/updates/jboss_eap_xp_notes
https://access.redhat.com/support/policy/updates/jboss_eap_xp_notes

CHAPTER 11. THE BOOTABLE JAR

You can build and package a microservices application as a bootable JAR with the JBoss EAP JAR Maven plug-in. You can

then run the application on a JBoss EAP bare-metal platform or a JBoss EAP OpenShift platform.

11.1. ABOUT THE BOOTABLE JAR

You can build and package a microservices application as a bootable JAR with the JBoss EAP JAR Maven plug-in.

A bootable JAR contains a server, a packaged application, and the runtime required to launch the server.

The JBoss EAP JAR Maven plug-in uses Galleon trimming capability to reduce the size and memory footprint of the

server. Thus, you can configure the server according to your requirements, including only the Galleon layers that provide

the capabilities that you need.

The JBoss EAP JAR Maven plug-in supports the execution of JBoss EAP CLI script files to customize your server

configuration. A CLI script includes a list of CLI commands for configuring the server.

A bootable JAR is like a standard JBoss EAP server in the following ways:

It supports JBoss EAP common management CLI commands.

It can be managed using the JBoss EAP management console.

The following limitations exist when packaging a server in a bootable JAR:

CLI management operations that require a server restart are not supported.

The server cannot be restarted in admin-only mode, which is a mode that starts services related to server

administration.

If you shut down the server, updates that you applied to the server are lost.

Additionally, you can provision a hollow bootable JAR. This JAR contains only the server, so you can reuse the server to

run a different application.

Additional resources

For information about capability trimming, see Capability Trimming.

11.2. JBOSS EAP JAR MAVEN PLUG-IN

You can use the JBoss EAP JAR Maven plug-in to build an application as a bootable JAR.

Check that you have the latest Maven plug-in such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the major

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#capability-trimming_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#capability-trimming_default

version, minor is the minor version, micro micro version and X is the Red Hat build number. For example: 9.0.1.Final-

redhat-00009.

In a Maven project, the src directory contains all the source files required to build your application. After the JBoss EAP

JAR Maven plug-in builds the bootable JAR, the generated JAR is located in target/<application>-bootable.jar.

The JBoss EAP JAR Maven plug-in also provides the following functionality:

Allows you to provision JBoss EAP XP server using JBoss EAP channels.

Applies CLI script commands to the server.

Uses the org.jboss.eap.xp:wildfly-galleon-pack Galleon feature pack and some of its layers for

customizing the server configuration file.

Supports the addition of extra files into the packaged bootable JAR, such as a keystore file.

Includes the capability to create a hollow bootable JAR; that is, a bootable JAR that does not contain an application.

After you use the JBoss EAP JAR Maven plug-in to create the bootable JAR, you can start the application by issuing the

following command. Replace target/myapp-bootable.jar with the path to your bootable JAR. For example:

$ java -jar target/myapp-bootable.jar

Note

To get a list of supported bootable JAR startup commands, append --help to the end of the startup

command. For example, java -jar target/myapp-bootable.jar --help.

Additional resources

For information about supported JBoss EAP Galleon layers, see Available JBoss EAP layers.

For information about supported Galleon plug-ins to build feature packs for your project, see the WildFly Galleon

Maven Plugin Documentation.

For information about selecting methods to configure the JBoss EAP Maven repository, see Use the Maven

Repository.

For information about Maven project directories, see Introduction to the Standard Directory Layout in the Apache

Maven documentation.

11.3. BOOTABLE JAR ARGUMENTS

View the arguments in the following table to learn about supported arguments for use with the bootable JAR.

Table 11.1. Supported bootable JAR executable arguments

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#available-jboss-eap-layers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#available-jboss-eap-layers_default
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Argument Description

--help Displays the help message for the

specified command and exit.

--cli-script=<path> Specifies the path to a JBoss CLI script

that executes when starting the

bootable JAR. If the path specified is

relative, the path is resolved against the

working directory of the Java VM

instance used to launch the bootable

JAR.

--deployment=<path> Argument specific to the hollow

bootable JAR. Specifies the path to the

WAR, JAR, EAR file or exploded

directory that contains the application

you want to deploy on a server.

--display-galleon-config Print the content of the generated

Galleon configuration file.

--install-dir=<path> By default, the JVM settings are used to

create a TEMP directory after the

bootable JAR is started. You can use the

--install-dir argument to specify a

directory to install the server.

-secmgr Runs the server with a security manager

installed.

-b<interface>=<value> Set system property

jboss.bind.address.<interface

> to the given value. For example,

bmanagement=IP_ADDRESS.

Argument Description

-b=<value> Set system property

jboss.bind.address, which is used

in configuring the bind address for the

public interface. This defaults to 127.0.0.1

if no value is specified.

-D<name>[=<value>] Specifies system properties that are set

by the server at server runtime. The

bootable JAR JVM does not set these

system properties.

--properties=<url> Loads system properties from a

specified URL.

-S<name>[=value] Set a security property.

-u=<value> Set system property

jboss.default.multicast.addre

ss, which is used in configuring the

multicast address in the socket-binding

elements in the configuration files. This

defaults to 230.0.0.4 if no value is

specified.

--version Display the application server version

and exit.

11.4. SPECIFYING GALLEON LAYERS FOR YOUR BOOTABLE JAR

SERVER

You can specify Galleon layers to build a custom configuration for your server. Additionally, you can specify Galleon layers

that you want excluded from the server.

Starting with JBoss EAP XP 5.0, it is necessary to configure the JBoss EAP JAR Maven plug-in with the JBoss EAP 8.0

and JBoss EAP XP 5.0 channels to retrieve the server artifacts. For more information about JBoss EAP Channels, see

managing JBoss EAP installation channels.

To specify the JBoss EAP and JBoss EAP XP channels for provisioning the latest JBoss EAP XP 5.0 server, follow this

example:

Note

Use the <feature-pack-location> element to specify feature pack location. In the Maven plug-in

configuration file, the following example specifies org.jboss.eap.xp:wildfly-galleon-pack within the

<feature-pack-location> element.

If you need to reference more than one feature pack, list them in the <feature-packs> element. The following example

shows the addition of the JBoss EAP datasources feature pack to the <feature-packs> element:

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</

artifactId>

</manifest>

</channel>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</

artifactId>

</manifest>

</channel>

</channels>

<feature-pack-location>org.jboss.eap.xp:wildfly-

galleon-pack</feature-pack-location>

</configuration>

<configuration>

<feature-packs>

<feature-pack>

<location>org.jboss.eap.xp:wildfly-

galleon-pack</location>

</feature-pack>

<feature-pack>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/#proc_managing-channels-your-installation-is-subscribed-to_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/#proc_managing-channels-your-installation-is-subscribed-to_default

You can combine Galleon layers from multiple feature packs to configure the bootable JAR server to include only the

supported Galleon layers that provide the capabilities that you need.

Note

On a bare-metal platform, if you do not specify Galleon layers in your configuration file then the provisioned

server contains a configuration identical to that of a default standalone-microprofile.xml configuration.

On an OpenShift platform, after you have added the <cloud/> configuration element in the plug-in

configuration and you choose not to specify Galleon layers in your configuration file, the provisioned server

contains a configuration that is adjusted for the cloud environment and is similar to a default standalone-

microprofile-ha.xml.

Prerequisites

Maven is installed.

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Identify the supported JBoss EAP Galleon layers that provide the capabilities that you need to run your application.

2. Reference a JBoss EAP feature pack location in the <plugin> element of the Maven project pom.xml file. The

<location>org.jboss.eap:eap-

datasources-galleon-pack</location>

</feature-pack>

</feature-packs>

</configuration>

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

following example displays the inclusion of a single feature-pack, which includes the jaxrs-server base layer and

the jpa-distributed layer . The jaxrs-server base layer provides additional support for the server.

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-

pack-location>

<layers>

<layer>jaxrs-server</layer>

<layer>jpa-distributed</

layer>

</layers>

<excluded-layers>

<layer>jpa</layer>

</excluded-layers>

 ...

</plugins>

This example also shows the exclusion of the jpa layer from the project.

Note

If you include the jpa-distributed layer in your project, you must exclude the jpa layer from the

jaxrs-server layer. The jpa layer configures a local infinispan hibernate cache, while the jpa-

distributed layer configures a remote infinispan hibernate cache.

Additional resources

For information about available base layers, see Base layers.

For information about supported Galleon plug-ins to build feature packs for your project, see the WildFly Galleon

Maven Plugin Documentation.

For information about selecting methods to configure the JBoss EAP Maven repository, see Maven and the JBoss

EAP MicroProfile Maven repository.

For information about managing your Maven dependencies, see Dependency Management in the Apache Maven

Project documentation.

11.5. USING A BOOTABLE JAR ON A JBOSS EAP BARE-METAL

PLATFORM

You can package an application as a bootable JAR on a JBoss EAP bare-metal platform.

A bootable JAR contains a server, a packaged application, and the runtime required to launch the server.

This procedure demonstrates packaging the MicroProfile Config microservices application as a bootable JAR with the

JBoss EAP JAR Maven plug-in. See MicroProfile Config development.

You can use CLI scripts to configure the server during the packaging of the bootable JAR.

Important

On building a web application that must be packaged inside a bootable JAR, you must specify war in the

<packaging> element of your pom.xml file. For example:

This value is required to package the build application as a WAR file and not as the default JAR file.

In a Maven project that is used solely to build a hollow bootable JAR, set the packaging value to pom. For

example:

<packaging>war</packaging>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#base-provisioning-layers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#base-provisioning-layers_default
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://docs.wildfly.org/galleon-plugins/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#maven_and_the_jboss_eap_microprofile_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#maven_and_the_jboss_eap_microprofile_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#maven_and_the_jboss_eap_microprofile_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#maven_and_the_jboss_eap_microprofile_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-management
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-management
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development

You are not limited to using pom packaging when you build a hollow bootable JAR for a Maven project. You can

create one by specifying true in the <hollow-jar> element for any type of packaging, such as war. See

Creating a hollow bootable JAR on a JBoss EAP bare-metal platform.

Prerequisites

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

You have created a Maven project, and added dependencies for creating an MicroProfile application. See MicroProfile

Config development.

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Add the following content to the <build> element of the pom.xml file. For example:

<packaging>pom</packaging>

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#creating-hollow-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#creating-hollow-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development

Note

If you do not specify Galleon layers in your pom.xml file then the bootable JAR server contains a

configuration that is identical to a standalone-microprofile.xml configuration.

2. Package the application as a bootable JAR:

$ mvn package

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-

pack-location>

<layers>

<layer>jaxrs-server</layer>

<layer>microprofile-

platform</layer>

</layers>

</configuration>

<executions>

<execution>

<goals>

<goal>package</

goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

3. Start the application:

Note

The example uses NAME as the environment variable, but you can choose to use jim, which is the default

value.

Note

To view a list of supported bootable JAR arguments, append --help to the end of the java -jar

target/microprofile-config-bootable.jar command.

4. Specify the following URL in your web browser to access the MicroProfile Config application:

5. Verification: Test the application behaves properly by issuing the following command in your terminal:

The following is the expected output:

Additional resources

For information about available MicroProfile Config functionality, see MicroProfile Config.

For information about ConfigSources, see MicroProfile Config reference.

11.6. CREATING A HOLLOW BOOTABLE JAR ON A JBOSS EAP

BARE-METAL PLATFORM

You can package an application as a hollow bootable JAR on a JBoss EAP bare-metal platform.

A hollow bootable JAR contains only the JBoss EAP server. The hollow bootable JAR is packaged by the JBoss EAP JAR

Maven plug-in. The application is provided at server runtime. The hollow bootable JAR is useful if you need to re-use the

server configuration for a different application.

$ NAME="foo" java -jar target/microprofile-config-

bootable.jar

http://localhost:8080/config/json

curl http://localhost:8080/config/json

{"result":"Hello foo"}

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_reference
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_reference

Prerequisites

You have created a Maven project, and added dependencies for creating an application. See MicroProfile Config

development.

You have completed the pom.xml file configuration steps outlined in Using a bootable JAR on a JBoss EAP bare-

metal platform.

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

Procedure

1. To build a hollow bootable JAR, you must set the <hollow-jar> plug-in configuration element to true in the

project pom.xml file. For example:

Note

By specifying true in the <hollow-jar> element, the JBoss EAP JAR Maven plug-in does not include an

application in the JAR.

1. Build the hollow bootable JAR:

$ mvn clean package

2. Run the hollow bootable JAR:

$ java -jar target/microprofile-config-bootable.jar --

<plugins>

<plugin>

 ...

<configuration>

<!-- This example configuration does not show a

complete plug-in configuration -->

 ...

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-pack-

location>

<hollow-jar>true</hollow-jar>

</configuration>

</plugin>

</plugins>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default

deployment=target/microprofile-config.war

Important

To specify the path to the WAR file that you want to deploy on the server, use the following argument,

where <PATH_NAME> is the path to your deployment.

3. Access the application:

$ curl http://localhost:8080/microprofile-config/config/

json

Note

To register your web application in the root directory, name the application ROOT.war.

Additional resources

For information about available MicroProfile functionality, see MicroProfile Config.

For more information about the JBoss EAP JAR Maven plug-in supported in JBoss EAP XP 5.0.0, see JBoss EAP

Maven plug-in.

11.7. CLI SCRIPTS EXECUTED AT BUILD TIME

You can create CLI scripts to configure the server during the packaging of the bootable JAR.

A CLI script is a text file that contains a sequence of CLI commands that you can use to apply additional server

configurations. For example, you can create a script to add a new logger to the logging subsystem.

You can also specify more complex operations in a CLI script. For example, you can group security management

operations into a single command to enable HTTP authentication for the management HTTP endpoint.

Note

You must define CLI scripts in the <cli-session> element of the plug-in configuration before you package

an application as a bootable JAR. This ensures the server configuration settings persist after packaging the

bootable JAR.

--deployment=<PATH_NAME>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default

Although you can combine predefined Galleon layers to configure a server that deploys your application, limitations do

exist. For example, you cannot enable the HTTPS undertow listener using Galleon layers when packaging the bootable

JAR. Instead, you must use a CLI script.

You must define the CLI scripts in the <cli-session> element of the pom.xml file. The following table shows types of

CLI session attributes:

Table 11.2. CLI script attributes

Argument Description

script-files List of paths to script files.

properties-file Optional attribute that specifies a path

to a properties file. This file lists Java

properties that scripts can reference by

using the ${my.prop} syntax. The

following example sets public inet-

address to the value of

all.addresses: /

interface=public:write-

attribute(name=inet-

address,value=${all.addresses

})

resolve-expressions Optional attribute that contains a

boolean value. Indicates if system

properties or expressions are resolved

before sending the operation requests

to the server. Value is true by default.

Note

CLI scripts are started in the order that they are defined in the <cli-session> element of the pom.xml

file.

The JBoss EAP JAR Maven plug-in starts the embedded server for each CLI session. Thus, your CLI script

does not have to start or stop the embedded server.

11.8. EXECUTING CLI SCRIPT AT RUNTIME

You can apply changes to the server configuration during runtime; this gives you the flexibility to adjust the server with

respect to the execution context. However, the preferred way to apply changes to the server is during build time.

Procedure

Launch the bootable JAR, and the --cli-script argument.

For Example:

Note

The CLI script must be a text file (UTF-8), the file extension if present is meaningless although .cli

extension is advised.

Operations that require your server to restart will terminate your bootable JAR instance.

CLI commands such as connect, reload, shutdown, and any command related to embedded server are

not operational.

CLI commands such as jdbc-driver-info that cannot be executed in admin-mode are not supported.

Important

If you restart the server without executing the CLI script, your new server instance will not contain the changes

from your previous server instance.

11.9. USING A BOOTABLE JAR ON A JBOSS EAP OPENSHIFT

PLATFORM

11.9.1. Using oc command to do binary build

After you packaged an application as a bootable JAR, you can run the application on a JBoss EAP OpenShift platform.

Important

On OpenShift, you cannot use the EAP Operator automated transaction recovery feature with your bootable

java -jar myapp-bootable.jar --cli-scipt=my-scli-scipt.cli

JAR.

Prerequisites

You have created a Maven project for MicroProfile Config development.

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Add the following content to the <build> element of the pom.xml file. For example:

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config_development

Note

You must include the <cloud/> element in the <configuration> element of the plug-in

configuration, so the JBoss EAP Maven JAR plug-in can identify that you choose the OpenShift

platform.

2. Package the application:

$ mvn package

3. Log in to your OpenShift instance using the oc login command.

4. Create a new project in OpenShift. For example:

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-

pack-location>

<layers>

<layer>jaxrs-server</layer>

<layer>microprofile-

platform</layer>

</layers>

<cloud/>

</configuration>

<executions>

<execution>

<goals>

<goal>package</

goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

$ oc new-project bootable-jar-project

5. Enter the following oc commands to create an application image:

$ mkdir target/openshift && cp target/microprofile-

config-bootable.jar target/openshift 1

$ oc import-image ubi8/openjdk-17 --

from=registry.redhat.io/ubi8/openjdk-17 --confirm 2

$ oc new-build --strategy source --binary --image-stream

openjdk-17 --name microprofile-config-app 3

$ oc start-build microprofile-config-app --from-dir

target/openshift 4

Creates an openshift sub-directory in the target directory. The packaged application is copied into the

created sub-directory.

Imports the latest OpenJDK 17 imagestream tag and image information into the OpenShift project.

Creates a build configuration based on the microprofile-config-app directory and the OpenJDK 17

imagestream.

Uses the target/openshift sub-directory as the binary input to build the application.

Note

OpenShift applies a set of CLI script commands to the bootable JAR configuration file to adjust it to the

cloud environment. You can access this script by opening the bootable-jar-build-artifacts/

generated-cli-script.txt file in the Maven project /target directory.

6. Verification:

View a list of OpenShift pods available and check the pods build statuses by issuing the following command:

$ oc get pods

Verify the built application image:

$ oc get is microprofile-config-app

The output shows the built application image details, such as name and image repository, tag, and so on. For the

example in this procedure, the imagestream name and tag output displays microprofile-config-app:latest.

7. Deploy the application:

$ oc new-app microprofile-config-app

$ oc expose svc/microprofile-config-app

Important

To provide system properties to the bootable JAR, you must use the JAVA_OPTS_APPEND environment

variable. The following example demonstrates usage of the JAVA_OPTS_APPEND environment variable:

$ oc new-app <_IMAGESTREAM_> -e JAVA_OPTS_APPEND="-

Xlog:gc*:file=/tmp/gc.log:time -

Dwildfly.statistics-enabled=true"

A new application is created and started. The application configuration is exposed as a new service.

8. Verification: Test the application behaves properly by issuing the following command in your terminal:

$ curl http://$(oc get route microprofile-config-app --

template='{{ .spec.host }}')/config/json

Expected output:

{"result":"Hello jim"}

Additional resources

For information about MicroProfile, see MicroProfile Config.

For information about ConfigSources, see Default MicroProfile Config attributes.

11.10. CONFIGURE THE BOOTABLE JAR FOR OPENSHIFT

Before using your bootable JAR, you can configure JVM settings to ensure that your standalone server operates correctly

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-default-config-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-default-config-attributes_default

on JBoss EAP for OpenShift.

Use the JAVA_OPTS_APPEND environment variable to configure JVM settings. Use the JAVA_ARGS command to provide

arguments to the bootable JAR.

You can use environment variables to set values for properties. For example, you can use the JAVA_OPTS_APPEND

environment variable to set the -Dwildfly.statistics-enabled property to true:

JAVA_OPTS_APPEND="-Xlog:gc*:file=/tmp/gc.log:time -

Dwildfly.statistics-enabled=true"

Statistics are now enabled for your server.

Note

Use the JAVA_ARGS environment variable, if you need to provide arguments to the bootable JAR.

JBoss EAP for OpenShift provides a JDK 17 image. To run the application associated with your bootable JAR, you must

first import the latest OpenJDK 17 imagestream tag and image information into your OpenShift project. You can then use

environment variables to configure the JVM in the imported image.

You can apply the same configuration options for configuring the JVM used for JBoss EAP for OpenShift S2I image, but

with the following differences:

Optional: The -Xlog capability is not available, but you can set garbage collection logging by enabling -Xlog:gc. For

example: JAVA_OPTS_APPEND="-Xlog:gc*:file=/tmp/gc.log:time".

To increase initial metaspace size, you can set the GC_METASPACE_SIZE environment variable. For best metadata

capacity performance, set the value to 96.

For better random file generation, use the JAVA_OPTS_APPEND environment variable to set java.security.egd

property as -Djava.security.egd=file:/dev/urandom.

These configurations improve the memory settings and garbage collection capability of JVM when running on your

imported OpenJDK 17 image.

11.11. USING A CONFIGMAP IN YOUR APPLICATION ON

OPENSHIFT

For OpenShift, you can use a deployment controller (dc) to mount the configmap into the pods used to run the

application.

A ConfigMap is an OpenShift resource that is used to store non-confidential data in key-value pairs.

After you specify the microprofile-platform Galleon layer to add microprofile-config-smallrye subsystem

and any extensions to the server configuration file, you can use a CLI script to add a new ConfigSource to the server

configuration. You can save CLI scripts in an accessible directory, such as the /scripts directory, in the root directory of

your Maven project.

MicroProfile Config functionality is implemented in JBoss EAP using the SmallRye Config component and is provided by

the microprofile-config-smallrye subsystem. This subsystem is included in the microprofile-platform

Galleon layer.

Prerequisites

You have installed Maven.

You have configured the JBoss EAP Maven repository.

You have packaged an application as a bootable JAR and you can run the application on a JBoss EAP OpenShift

platform. For information about building an application as a bootable JAR on an OpenShift platform, see Using a

bootable JAR on a JBoss EAP OpenShift platform.

Procedure

1. Create a directory named scripts at the root directory of your project. For example:

2. Create a cli.properties file and save the file in the /scripts directory. Define the config.path and the

config.ordinal system properties in this file. For example:

config.path=/etc/config

config.ordinal=200

3. Create a CLI script, such as mp-config.cli, and save it in an accessible directory in the bootable JAR, such as

the /scripts directory. The following example shows the contents of the mp-config.cli script:

config map

/subsystem=microprofile-config-smallrye/config-source=os-

map:add(dir={path=${config.path}},

ordinal=${config.ordinal})

The mp-config.cli CLI script creates a new ConfigSource, to which ordinal and path values are retrieved from

a properties file.

4. Save the script in the /scripts directory, which is located at the root directory of the project.

5. Add the following configuration extract to the existing plug-in <configuration> element:

$ mkdir scripts

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default

6. Package the application:

$ mvn package

7. Log in to your OpenShift instance using the oc login command.

8. Optional: If you have not previously created a target/openshift subdirectory, you must create the suddirectory

by issuing the following command:

$ mkdir target/openshift

9. Copy the packaged application into the created subdirectory.

$ cp target/microprofile-config-bootable.jar target/

openshift

10. Use the target/openshift subdirectory as the binary input to build the application:

$ oc start-build microprofile-config-app --from-dir

target/openshift

Note

OpenShift applies a set of CLI script commands to the bootable JAR configuration file to enable it for

the cloud environment. You can access this script by opening the bootable-jar-build-artifacts/

generated-cli-script.txt file in the Maven project /target directory.

11. Create a ConfigMap. For example:

<cli-sessions>

<cli-session>

<properties-file>

 scripts/cli.properties

</properties-file>

<script-files>

<script>scripts/mp-config.cli</script>

</script-files>

</cli-session>

</cli-sessions>

$ oc create configmap microprofile-config-map --from-

literal=name="Name comes from Openshift ConfigMap"

12. Mount the ConfigMap into the application with the dc. For example:

$ oc set volume deployments/microprofile-config-app --add

--name=config-volume \

--mount-path=/etc/config \

--type=configmap \

--configmap-name=microprofile-config-map

After executing the oc set volume command, the application is re-deployed with the new configuration settings.

13. Test the output:

The following is the expected output:

Additional resources

For information about MicroProfile Config ConfigSources attributes, see Default MicroProfile Config attributes.

For information about bootable JAR arguments, see Supported bootable JAR arguments.

11.12. CREATING A BOOTABLE JAR MAVEN PROJECT

Follow the steps in the procedure to create an example Maven project. You must create a Maven project before you can

perform the following procedures:

Enabling JSON logging for your bootable JAR

Enabling web session data storage for multiple bootable JAR instances

Enabling HTTP authentication for bootable JAR with a CLI script

Securing your JBoss EAP bootable JAR application with Red Hat build of Keycloak

In the project pom.xml file, you can configure Maven to retrieve the project artifacts required to build your bootable JAR.

Procedure

$ curl http://$(oc get route microprofile-config-app --

template='{{ .spec.host }}')/config/json

{"result":"Hello Name comes from Openshift ConfigMap"}

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-default-config-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#microprofile-default-config-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#bootable-jar-arguments_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#bootable-jar-arguments_default

1. Set up the Maven project:

Where GROUP_ID is the groupId of your project and ARTIFACT_ID is the artifactId of your project.

2. In the pom.xml file, configure Maven to retrieve the JBoss EAP BOM file from a remote repository.

3. To configure Maven to automatically manage versions for the Jakarta EE artifacts in the jboss-eap-ee BOM, add

the BOM to the <dependencyManagement> section of the project pom.xml file. For example:

$ mvn archetype:generate \

-DgroupId=GROUP_ID \

-DartifactId=ARTIFACT_ID \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

<repositories>

<repository>

<id>jboss</id>

<url>https://maven.repository.redhat.com/ga</url>

<snapshots>

<enabled>false</enabled>

</snapshots>

</repository>

</repositories>

<pluginRepositories>

<pluginRepository>

<id>jboss</id>

<url>https://maven.repository.redhat.com/ga</url>

<snapshots>

<enabled>false</enabled>

</snapshots>

</pluginRepository>

</pluginRepositories>

<dependencyManagement>

<dependencies>

<dependency>

<groupId>org.jboss.bom</groupId>

<artifactId>jboss-eap-ee</artifactId>

<version>8.0.2.GA-redhat-00007</version>

<type>pom</type>

<scope>import</scope>

</dependency>

4. Add the servlet API artifact, which is managed by the BOM, to the <dependency> section of the project pom.xml

file, as shown in the following example:

Additional resources

JBoss EAP XP Bootable JAR Maven Plugin.

Specifying Galleon layers for your bootable JAR server.

Securing your JBoss EAP bootable JAR application with Red Hat build of Keycloak.

11.13. ENABLING JSON LOGGING FOR YOUR BOOTABLE JAR

You can enable JSON logging for your bootable JAR by configuring the server logging configuration with a CLI script.

When you enable JSON logging, you can use the JSON formatter to view log messages in JSON format.

The example in this procedure shows you how to enable JSON logging for your bootable JAR on a bare-metal platform

and an OpenShift platform.

Prerequisites

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

You have created a Maven project, and added dependencies for creating an application. See Creating a bootable JAR

Maven project.

Important

In the Maven archetype of your Maven project, you must specify the groupID and artifactID that are specific

to your project. For example:

$ mvn archetype:generate \

-DgroupId=com.example.logging \

-DartifactId=logging \

</dependencies>

</dependencyManagement>

<dependency>

<groupId>jakarta.servlet</groupId>

<artifactId>jakarta.servlet-api</artifactId>

<scope>provided</scope>

</dependency>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#securing-web-application-rh-sso_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#securing-web-application-rh-sso_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

cd logging

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Add the JBoss Logging and Jakarta RESTful Web Services dependencies, which are managed by the BOM, to the

<dependencies> section of the project pom.xml file. For example:

2. Add the following content to the <build> element of the pom.xml file. For example:

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

<dependencies>

<dependency>

<groupId>org.jboss.logging</groupId>

<artifactId>jboss-logging</artifactId>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>jakarta.ws.rs</groupId>

<artifactId>jakarta.ws.rs-api</artifactId>

<scope>provided</scope>

</dependency>

</dependencies>

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

3. Create the directory to store Java files:

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-packs>

<feature-pack>

<location>org.jboss.eap.xp:wildfly-galleon-pack</location>

</feature-pack>

</feature-packs>

<layers>

<layer>jaxrs-server</layer>

</layers>

</configuration>

<executions>

<execution>

<goals>

<goal>package</

goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

$ mkdir -p APPLICATION_ROOT/src/main/java/com/example/

logging/

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the application.

4. Create a Java file RestApplication.java with the following content and save the file in the

APPLICATION_ROOT/src/main/java/com/example/logging/ directory:

5. Create a Java file HelloWorldEndpoint.java with the following content and save the file in the

APPLICATION_ROOT/src/main/java/com/example/logging/ directory:

6. Create a CLI script, such as logging.cli, and save it in an accessible directory in the bootable JAR, such as the

APPLICATION_ROOT/scripts directory, where APPLICATION_ROOT is the root directory of your Maven project.

The script must contain the following commands:

package com.example.logging;

import jakarta.ws.rs.ApplicationPath;

import jakarta.ws.rs.core.Application;

@ApplicationPath("/")

public class RestApplication extends Application {

}

package com.example.logging;

import jakarta.ws.rs.Path;

import jakarta.ws.rs.core.Response;

import jakarta.ws.rs.GET;

import jakarta.ws.rs.Produces;

import org.jboss.logging.Logger;

@Path("/hello")

public class HelloWorldEndpoint {

private static Logger log =

Logger.getLogger(HelloWorldEndpoint.class.getName());

@GET

@Produces("text/plain")

public Response doGet() {

 log.debug("HelloWorldEndpoint.doGet called");

return Response.ok("Hello from XP bootable

jar!").build();

 }

}

/subsystem=logging/

logger=com.example.logging:add(level=ALL)

/subsystem=logging/json-formatter=json-

formatter:add(exception-output-type=formatted, pretty-

print=false, meta-data={version="1"}, key-

overrides={timestamp="@timestamp"})

/subsystem=logging/console-handler=CONSOLE:write-

attribute(name=level,value=ALL)

/subsystem=logging/console-handler=CONSOLE:write-

attribute(name=named-formatter, value=json-formatter)

7. Add the following configuration extract to the plug-in <configuration> element:

This example shows the logging.cli CLI script, which modifies the server logging configuration file to enable

JSON logging for your application.

8. Package the application as a bootable JAR.

$ mvn package

9. Optional: To run the application on a JBoss EAP bare-metal platform, follow the steps outlined in Using a bootable

JAR on a JBoss EAP bare-metal platform, but with the following difference:

a. Start the application:

mvn wildfly-jar:run

b. Verification: You can access the application by specifying the following URL in your browser:

http://127.0.0.1:8080/hello.

Expected output: You can view the JSON-formatted logs, including the

com.example.logging.HelloWorldEndpoint debug trace, in the application console.

10. Optional: To run the application on a JBoss EAP OpenShift platform, complete the following steps:

a. Add the <cloud/> element to the plug-in configuration. For example:

<cli-sessions>

<cli-session>

<script-files>

<script>scripts/logging.cli</script>

</script-files>

</cli-session>

</cli-sessions>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
http://127.0.0.1:8080/hello
http://127.0.0.1:8080/hello

b. Rebuild the application:

$ mvn clean package

c. Log in to your OpenShift instance using the oc login command.

d. Create a new project in OpenShift. For example:

$ oc new-project bootable-jar-project

e. Enter the following oc commands to create an application image:

$ mkdir target/openshift && cp target/logging-

bootable.jar target/openshift 1

$ oc import-image ubi8/openjdk-17 --

from=registry.redhat.io/ubi8/openjdk-17 --confirm

2

$ oc new-build --strategy source --binary --image-

stream openjdk-17 --name logging 3

$ oc start-build logging --from-dir target/openshift

4

Creates the target/openshift subdirectory. The packaged application is copied into the

openshift subdirectory.

Imports the latest OpenJDK 17 imagestream tag and image information into the OpenShift project.

<plugins>

<plugin>

 ... <!-- You must evolve the existing

configuration with the <cloud/> element -->

<configuration >

 ...

<cloud/>

</configuration>

</plugin>

</plugins>

Creates a build configuration based on the logging directory and the OpenJDK 17 imagestream.

Uses the target/openshift subdirectory as the binary input to build the application.

f. Deploy the application:

$ oc new-app logging

$ oc expose svc/logging

g. Get the URL of the route.

$ oc get route logging --template='{{ .spec.host }}'

h. Access the application in your web browser using the URL returned from the previous command. For

example:

http://ROUTE_NAME/hello

i. Verification: Issue the following command to view a list of OpenShift pods available, and to check the pods

build statuses:

$ oc get pods

Access a running pod log of your application. Where APP_POD_NAME is the name of the running pod logging

application.

$ oc logs APP_POD_NAME

Expected outcome: The pod log is in JSON format and includes the

com.example.logging.HelloWorldEndpoint debug trace.

Additional resources

For information about using a bootable JAR on OpenShift, see Using a bootable JAR on a JBoss EAP OpenShift

platform.

For information about specifying the JBoss EAP JAR Maven for your project, see Specifying Galleon layers for your

bootable JAR server.

For information about creating CLI scripts, see CLI scripts.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#cli-scripts_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#cli-scripts_default

11.14. ENABLING WEB SESSION DATA STORAGE FOR MULTIPLE

BOOTABLE JAR INSTANCES

You can build and package a web-clustering application as a bootable JAR.

Prerequisites

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

You have created a Maven project, and added dependencies for creating a web-clustering application. See Creating a

bootable JAR Maven project.

Important

When setting up the Maven project, you must specify values in the Maven archetype configuration. For

example:

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Add the following content to the <build> element of the pom.xml file. For example:

$ mvn archetype:generate \

-DgroupId=com.example.webclustering \

-DartifactId=web-clustering \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

cd web-clustering

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-

pack-location>

<layers>

<layer>datasources-web-

server</layer>

<layer>web-clustering</

layer>

</layers>

</configuration>

<executions>

<execution>

<goals>

<goal>package</

goal>

</goals>

</execution>

</executions>

Note

This example makes use of the web-clustering Galleon layer to enable web session sharing.

2. Update the web.xml file in the src/main/webapp/WEB-INF directory with the following configuration:

The <distributable/> tag indicates that this servlet can be distributed across multiple servers.

3. Create the directory to store Java files:

$ mkdir -p APPLICATION_ROOT

/src/main/java/com/example/webclustering/

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the application.

4. Create a Java file MyServlet.java with the following content and save the file in the APPLICATION_ROOT/src/

main/java/com/example/webclustering/ directory.

</plugin>

</plugins>

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="4.0"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/

javaee http://xmlns.jcp.org/xml/ns/javaee/web-

app_4_0.xsd">

<distributable/>

</web-app>

package com.example.webclustering;

import java.io.IOException;

import java.io.PrintWriter;

import jakarta.servlet.ServletException;

import jakarta.servlet.annotation.WebServlet;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

The content in MyServlet.java defines the endpoint to which a client sends an HTTP request.

5. Create a Java file User.java with the following content and save the file in the APPLICATION_ROOT/src/main/

java/com/example/webclustering/ directory.

@WebServlet(urlPatterns = {"/clustering"})

public class MyServlet extends HttpServlet {

@Override

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException {

 response.setContentType("text/html;charset=UTF-8");

long t;

 User user = (User)

request.getSession().getAttribute("user");

if (user == null) {

 t = System.currentTimeMillis();

 user = new User(t);

 request.getSession().setAttribute("user",

user);

 }

try (PrintWriter out = response.getWriter()) {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Web clustering demo</

title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Session id " +

request.getSession().getId() + "</h1>");

 out.println("<h1>User Created " +

user.getCreated() + "</h1>");

 out.println("<h1>Host Name " +

System.getenv("HOSTNAME") + "</h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

}

package com.example.webclustering;

import java.io.Serializable;

6. Package the application:

$ mvn package

7. Optional: To run the application on a JBoss EAP bare-metal platform, follow the steps outlined in Using a bootable

JAR on a JBoss EAP bare-metal platform, but with the following difference:

a. On a JBoss EAP bare-metal platform, you can use the java -jar command to run multiple bootable JAR

instances, as demonstrated in the following examples:

$ java -jar target/web-clustering-bootable.jar -

Djboss.node.name=node1

$ java -jar target/web-clustering-bootable.jar -

Djboss.node.name=node2 -Djboss.socket.binding.port-

offset=10

b. Verification: You can access the application on the node 1 instance: http://127.0.0.1:8080/clustering. Note the

user session ID and the user-creation time.

After you kill this instance, you can access the node 2 instance: http://127.0.0.1:8090/clustering. The user

must match the session ID and the user-creation time of the node 1 instance.

8. Optional: To run the application on a JBoss EAP OpenShift platform, follow the steps outlined in Using a bootable

JAR on a JBoss EAP OpenShift platform, but complete the following steps:

a. Add the <cloud/> element to the plug-in configuration. For example:

public class User implements Serializable {

private final long created;

 User(long created) {

this.created = created;

 }

public long getCreated() {

return created;

 }

}

<plugins>

<plugin>

 ... <!-- You must evolve the existing

configuration with the <cloud/> element -->

<configuration >

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-bare-metal-platform_default
http://127.0.0.1:8080/clustering
http://127.0.0.1:8080/clustering
http://127.0.0.1:8090/clustering
http://127.0.0.1:8090/clustering
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default

b. Rebuild the application:

$ mvn clean package

c. Log in to your OpenShift instance using the oc login command.

d. Create a new project in OpenShift. For example:

$ oc new-project bootable-jar-project

e. To run a web-clustering application on a JBoss EAP OpenShift platform, authorization access must be

granted for the service account that the pod is running in. The service account can then access the

Kubernetes REST API. The following example shows authorization access being granted to a service account:

$ oc policy add-role-to-user view

system:serviceaccount:$(oc project -q):default

f. Enter the following oc commands to create an application image:

$ mkdir target/openshift && cp target/web-clustering-

bootable.jar target/openshift 1

$ oc import-image ubi8/openjdk-17 --

from=registry.redhat.io/ubi8/openjdk-17 --confirm 2

$ oc new-build --strategy source --binary --image-

stream openjdk-17 --name web-clustering 3

$ oc start-build web-clustering --from-dir target/

openshift 4

Creates the target/openshift sub-directory. The packaged application is copied into the

openshift sub-directory.

 ...

<cloud/>

</configuration>

</plugin>

</plugins>

Imports the latest OpenJDK 17 imagestream tag and image information into the OpenShift project.

Creates a build configuration based on the web-clustering directory and the OpenJDK 17

imagestream.

Uses the target/openshift sub-directory as the binary input to build the application.

g. Deploy the application:

$ oc new-app web-clustering -e

KUBERNETES_NAMESPACE=$(oc project -q)

$ oc expose svc/web-clustering

Important

You must use the KUBERNETES_NAMESPACE environment variable to view other pods in the

current OpenShift namespace; otherwise, the server attempts to retrieve the pods from the

default namespace.

h. Get the URL of the route.

$ oc get route web-clustering --template='{{

.spec.host }}'

i. Access the application in your web browser using the URL returned from the previous command. For

example:

http://ROUTE_NAME/clustering

Note the user session ID and user creation time.

j. Scale the application to two pods:

$ oc scale --replicas=2 deployments web-clustering

k. Issue the following command to view a list of OpenShift pods available, and to check the pods build statuses:

$ oc get pods

l. Kill the oldest pod using the oc delete pod web-clustering-POD_NAME command, where POD_NAME

is the name of your oldest pod.

m. Access the application again:

http://ROUTE_NAME/clustering

Expected outcome: The session ID and the creation time generated by the new pod match those of the of

the terminated pod. This indicates that web session data storage is enabled.

Additional resources

For information about distributable web session management profiles, see The distributable-web subsystem for

Distributable Web Session Configurations in the Development Guide.

For information about configuring the JGroups protocol stack, see Configuring a JGroups Discovery Mechanism in the

Getting Started with JBoss EAP for OpenShift Container Platform guide.

11.15. ENABLING HTTP AUTHENTICATION FOR BOOTABLE JAR

WITH A CLI SCRIPT

You can enable HTTP authentication for the bootable JAR with a CLI script. This script adds a security realm and a

security domain to your server.

Prerequisites

You have checked the latest Maven plug-in version, such as 9.minor.micro.Final-redhat-XXXXX, where 9 is the

major version, minor is the minor version, micro micro version and X is the Red Hat build number. For example:

9.0.1.Final-redhat-00009.

You have created a Maven project, and added dependencies for creating an application that requires HTTP

authentication. See Creating a bootable JAR Maven project.

Important

When setting up the Maven project, you must specify HTTP authentication values in the Maven archetype

configuration. For example:

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#configuring_a_jgroups_discovery_mechanism
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#configuring_a_jgroups_discovery_mechanism
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#creating-bootable-jar-maven-project_default

Note

The examples shown in the procedure specify the following properties:

${bootable.jar.maven.plugin.version} for the Maven plug-in version.

You must set these properties in your project. For example:

Procedure

1. Add the following content to the <build> element of the pom.xml file. For example:

$ mvn archetype:generate \

-DgroupId=com.example.auth \

-DartifactId=authentication \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

cd authentication

<properties>

<bootable.jar.maven.plugin.version>9.0.1.Final-

redhat-00009</bootable.jar.maven.plugin.version>

</properties>

<plugins>

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-jar-maven-plugin</

artifactId>

<version>${bootable.jar.maven.plugin.version}</version>

<configuration>

<channels>

<channel>

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-8.0</artifactId>

</manifest>

</channel>

<channel>

The example shows the inclusion of the datasources-web-server Galleon layer that contains the elytron

subsystem.

2. Update the web.xml file in the src/main/webapp/WEB-INF directory. For example:

<manifest>

<groupId>org.jboss.eap.channels</groupId>

<artifactId>eap-xp-5.0</artifactId>

</manifest>

</channel>

</channels>

<feature-pack-

location>org.jboss.eap.xp:wildfly-galleon-pack</feature-

pack-location>

<layers>

<layer>datasources-web-

server</layer>

</layers>

</configuration>

<executions>

<execution>

<goals>

<goal>package</

goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="4.0"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/

javaee http://xmlns.jcp.org/xml/ns/javaee/web-

app_4_0.xsd">

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Example Realm</realm-name>

3. Create the directory to store Java files:

$ mkdir -p APPLICATION_ROOT/src/main/java/com/example/

authentication/

Where APPLICATION_ROOT is the root directory of your Maven project.

4. Create a Java file TestServlet.java with the following content and save the file in the APPLICATION_ROOT/

src/main/java/com/example/authentication/ directory.

5. Create a CLI script, such as authentication.cli, and save it in an accessible directory in the bootable JAR,

</login-config>

</web-app>

package com.example.authentication;

import jakarta.servlet.annotation.HttpMethodConstraint;

import jakarta.servlet.annotation.ServletSecurity;

import jakarta.servlet.annotation.WebServlet;

import jakarta.servlet.http.HttpServlet;

import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.io.PrintWriter;

@WebServlet(urlPatterns = "/hello")

@ServletSecurity(httpMethodConstraints = {

@HttpMethodConstraint(value = "GET", rolesAllowed = {

"Users" }) })

public class TestServlet extends HttpServlet {

@Override

protected void doGet(HttpServletRequest req,

HttpServletResponse resp) throws IOException {

 PrintWriter writer = resp.getWriter();

 writer.println("Hello " +

req.getUserPrincipal().getName());

 writer.close();

 }

}

such as the APPLICATION_ROOT/scripts directory. The script must contain the following commands:

/subsystem=elytron/properties-realm=bootable-

realm:add(users-properties={relative-

to=jboss.server.config.dir, path=bootable-

users.properties, plain-text=true}, groups-

properties={relative-to=jboss.server.config.dir,

path=bootable-groups.properties})

/subsystem=elytron/security-

domain=BootableDomain:add(default-realm=bootable-realm,

permission-mapper=default-permission-mapper,

realms=[{realm=bootable-realm, role-decoder=groups-to-

roles}])

/subsystem=undertow/application-security-

domain=other:write-attribute(name=security-domain,

value=BootableDomain)

6. Add the following configuration extract to the plug-in <configuration> element:

This example shows the authentication.cli CLI script, which configures the default undertow security

domain to the security domain defined for your server.

Note

You have the option to execute the CLI script at runtime instead of packaging time. To do so, skip this

step and proceed to step 10.

7. In the root directory of your Maven project create a directory to store the properties files that the JBoss EAP JAR

Maven plug-in adds to the bootable JAR:

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the application.

<cli-sessions>

<cli-session>

<script-files>

<script>scripts/authentication.cli</script>

</script-files>

</cli-session>

</cli-sessions>

$ mkdir -p APPLICATION_ROOT/extra-content/standalone/

configuration/

This directory stores files such as bootable-users.properties and bootable-groups.properties files.

The bootable-users.properties file contains the following content:

testuser=bootable_password

The bootable-groups.properties file contains the following content:

testuser=Users

8. Add the following extra-content-content-dirs element to the existing <configuration> element:

The extra-content directory contains the properties files.

9. Package the application as a bootable JAR.

$ mvn package

10. Start the application:

mvn wildfly-jar:run

If you have chosen to skip step 6 and not execute the CLI script during build, launch the application with the

following command:

11. Call the servlet, but do not specify credentials:

curl -v http://localhost:8080/hello

Expected output:

HTTP/1.1 401 Unauthorized

...

WWW-Authenticate: Basic realm="Example Realm"

<extra-server-content-dirs>

<extra-content>extra-content</extra-content>

</extra-server-content-dirs>

mvn wildfly-jar:run -Dwildfly.bootable.arguments=--cli-

script=scripts/authentication.cli

12. Call the server and specify your credentials. For example:

$ curl -v -u testuser:bootable_password http://

localhost:8080/hello

A HTTP 200 status is returned that indicates HTTP authentication is enabled for your bootable JAR. For example:

HTTP/1.1 200 OK

....

Hello testuser

Additional resources

For information about enabling HTTP authentication for the undertow security domain, see Enable HTTP

Authentication for Applications Using the CLI Security Command in the How to Configure Server Security.

CHAPTER 12. OBSERVABILITY IN

JBOSS EAP

If you’re a developer or system administrator, observability is a set of practices and technologies you can use to determine,

based on certain signals from your application, the location and source of a problem in your application. The most

common signals are metrics, events, and tracing. JBoss EAP uses OpenTelemetry for observability.

12.1. OPENTELEMETRY IN JBOSS EAP

OpenTelemetry is a set of tools, application programming interfaces (APIs), and software development kits (SDKs) you

can use to instrument, generate, collect, and export telemetry data for your applications. Telemetry data includes metrics,

logs, and traces. Analyzing an application’s telemetry data helps you to improve your application’s performance. JBoss

EAP provides OpenTelemetry capability through the opentelemetry subsystem.

Note

Red Hat JBoss Enterprise Application Platform 8.0 provides only OpenTelemetry tracing capabilities.

Important

OpenTelemetry is a Technology Preview feature only. Technology Preview features are not supported with Red

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_http_auth_http
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_http_auth_http
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_http_auth_http
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_http_auth_http

Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not

recommend using them in production. These features provide early access to upcoming product features,

enabling customers to test functionality and provide feedback during the development process. For more

information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/

support/offerings/techpreview .

Additional resources

OpenTelemetry Documentation

12.2. OPENTELEMETRY CONFIGURATION IN JBOSS EAP

You configure a number of aspects of OpenTelemetry in JBoss EAP using the opentelemetry subsystem. These include

exporter, span processor, and sampler.

exporter

To analyze and visualize traces and metrics, you export them to a collector such as Jaeger. You can configure JBoss

EAP to use either Jaeger or any collector that supports the OpenTelemetry protocol (OTLP).

span processor

You can configure the span processor to export spans either as they are produced or in batches. You can also

configure the number of traces to export.

sampler

You can configure the number of traces to record by configuring the sampler.

Example configuration

The following XML is an example of the full OpenTelemetry configuration, including default values. JBoss EAP does not

persist the default values when you make changes, so your configuration might look different.

<subsystem xmlns="urn:wildfly:opentelemetry:1.0"

service-name="example">

<exporter

type="jaeger"

endpoint="http://localhost:14250"/>

<span-processor

type="batch"

batch-delay="4500"

max-queue-size="128"

max-export-batch-size="512"

export-timeout="45"/>

<sampler

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview
https://opentelemetry.io/docs/
https://opentelemetry.io/docs/

Note

You cannot use an OpenShift route object to connect with a Jaeger endpoint. Instead, use http://

<ip_address>:<port> or http://<service_name>:<port>.

Additional resources

OpenTelemetry subsystem attributes

12.3. OPENTELEMETRY TRACING IN JBOSS EAP

JBoss EAP provides OpenTelemetry tracing to help you track the progress of user requests as they pass through different

parts of your application. By analyzing traces, you can improve your application’s performance and debug availability

issues.

OpenTelemetry tracing consists of the following components:

Trace

A collection of operations that a request goes through in an application.

Span

A single operation within a trace. It provides request, error, and duration (RED) metrics and contains a span context.

Span context

A set of unique identifiers that represents a request that the containing span is a part of.

JBoss EAP automatically traces REST calls to your Jakarta RESTful Web Services applications and container-managed

Jakarta RESTful Web Services client invocations. JBoss EAP traces REST calls implicitly as follows:

For each incoming request:

JBoss EAP extracts the span context from the request.

JBoss EAP starts a new span, then closes it when the request is completed.

For each outgoing request:

JBoss EAP injects span context into the request.

JBoss EAP starts a new span, then closes it when the request is completed.

In addition to implicit tracing, you can create custom spans by injecting a Tracer instance into your application for

granular tracing.

type="on"/>

</subsystem>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#ref-opentelemetry-subsystem-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#ref-opentelemetry-subsystem-attributes_default

Additional resources

Using Jaeger to observe the OpenTelemetry traces for an application

OpenTelemetry application development in JBoss EAP

12.4. ENABLING OPENTELEMETRY TRACING IN JBOSS EAP

To use OpenTelemetry tracing in JBoss EAP you must first enable the opentelemetry subsystem.

Prerequisites

JBoss EAP 8.0 with JBoss EAP XP 5.0 is installed.

Procedure

1. Add the OpenTelemetry extension using the management CLI.

/extension=org.wildfly.extension.opentelemetry:add

2. Enable the opentelemetry subsystem using the management CLI.

/subsystem=opentelemetry:add

3. Reload JBoss EAP.

reload

Additional resources

Configuring the opentelemetry subsystem

12.5. CONFIGURING THE OPENTELEMETRY SUBSYSTEM

You can configure the opentelemetry subsystem to set different aspects of tracing. Configure these based on the

collector you use for observing the traces.

Prerequisites

You have enabled the opentelemetry subsystem. For more information, see Enabling OpenTelemetry tracing in

JBoss EAP.

Procedure

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-using-jaeger-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-using-jaeger-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-enabling-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-enabling-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-enabling-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-enabling-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap

1. Set the exporter type for the traces.

Syntax

/subsystem=opentelemetry:write-attribute(name=exporter-

type, value=<exporter_type>)

Example

/subsystem=opentelemetry:write-attribute(name=exporter-

type, value=jaeger)

2. Set the endpoint at which to export the traces.

Syntax

/subsystem=opentelemetry:write-attribute(name=endpoint,

value=<URL:port>)

Example

/subsystem=opentelemetry:write-attribute(name=endpoint,

value=http:localhost:14250)

3. Set the service name under which the traces are exported.

Syntax

/subsystem=opentelemetry:write-attribute(name=service-

name, value=<service_name>)

Example

/subsystem=opentelemetry:write-attribute(name=service-

name, value=exampleOpenTelemetryService)

Additional resources

Using Jaeger to observe the OpenTelemetry traces for an application

12.6. USING JAEGER TO OBSERVE THE OPENTELEMETRY

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-using-jaegar-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#proc-using-jaegar-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap

TRACES FOR AN APPLICATION

JBoss EAP automatically and implicitly traces REST calls to Jakarta RESTful Web Services applications. You do not need

to add any configuration to your Jakarta RESTful Web Services application or configure the opentelemetry subsystem.

The following procedure demonstrates how to observe traces for the helloworld-rs quickstart in the Jaeger console.

Prerequisites

You have installed Docker. For more information, see Get Docker.

You have downloaded the helloworld-rs quickstart. The quickstart is available at helloworld-rs.

You have configured the the opentelemetry subsystem. For more information, see Configuring the

opentelemetry subsystem.

Procedure

1. Start the Jaeger console using its Docker image.

$ docker run -d --name jaeger \

 -e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \

 -p 5775:5775/udp \

 -p 6831:6831/udp \

 -p 6832:6832/udp \

 -p 5778:5778 \

 -p 16686:16686 \

 -p 14268:14268 \

 -p 14250:14250 \

 -p 9411:9411 \

 jaegertracing/all-in-one:1.29

2. Use Maven to deploy the helloworld-rs quickstart from its root directory.

$ mvn clean install wildfly:deploy

3. In a web browser, access the quickstart at http://localhost:8080/helloworld-rs/, then click any link.

4. In a web browser, open the Jaeger console at http://localhost:16686/search. hello-world.rs is listed

under Service.

5. Select hello-world.rs and click Find Traces. The details of the trace for hello-world.rs are listed.

Additional resources

OpenTelemetry application development in JBoss EAP

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.4.x/helloworld-rs
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.4.x/helloworld-rs
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
http://localhost:8080/helloworld-rs/
http://localhost:8080/helloworld-rs/
http://localhost:16686/search
http://localhost:16686/search
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap

12.7. OPENTELEMETRY TRACING APPLICATION DEVELOPMENT

Although JBoss EAP automatically and implicitly traces REST calls to Jakarta RESTful Web Services applications, you can

create custom spans from your application for granular tracing. A span is a single operation within a trace. You can create a

span when, for example, a resource is defined, a method is called, and so on, in your application. You create custom traces

in your application by injecting a Tracer instance.

12.7.1. Configuring a Maven project for OpenTelemetry tracing

For creating an OpenTelemetry tracing application, create a Maven project with the required dependencies and directory

structure.

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

You have configured your Maven repository for the latest release. For information about installing the latest Maven

repository patch, see Maven and the JBoss EAP microprofile maven repository.

Procedure

1. In the CLI, use the mvn command to set up a Maven project. This command creates the directory structure for the

project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \

-DgroupId=<group-to-which-your-application-belongs> \

-DartifactId=<name-of-your-application> \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

Example

$ mvn archetype:generate \

-DgroupId=com.example.opentelemetry \

-DartifactId=simple-tracing-example \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DinteractiveMode=false

2. Navigate to the application root directory.

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#maven_and_the_jboss_eap_microprofile_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#maven_and_the_jboss_eap_microprofile_maven_repository

Syntax

$ cd <name-of-your-application>

Example

$ cd simple-tracing-example

3. Update the generated pom.xml file.

a. Set the following properties:

b. Set the following dependencies:

<properties>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<failOnMissingWebXml>false</failOnMissingWebXml>

<version.server.bom>4.0.0.GA</version.server.bom>

<version.wildfly-jar.maven.plugin>6.1.1.Final</

version.wildfly-jar.maven.plugin>

</properties>

<dependencies>

<dependency>

<groupId>jakarta.enterprise</groupId>

<artifactId>jakarta.enterprise.cdi-api</

artifactId>

<version>2.0.2</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.jboss.spec.javax.ws.rs</groupId>

<artifactId>jboss-jaxrs-api_2.1_spec</

artifactId>

<version>2.0.2.Final</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>io.opentelemetry</groupId>

<artifactId>opentelemetry-api</artifactId>

c. Set the following build configuration to use mvn widlfy:deploy to deploy the application:

Verification

In the application root directory, enter the following command:

$ mvn install

You get an output similar to the following:

[INFO]

--

[INFO] BUILD SUCCESS

[INFO]

--

[INFO] Total time: 1.440 s

[INFO] Finished at: 2021-12-27T14:45:12+05:30

[INFO]

--

You can now create an OpenTelemetry tracing application.

Additional resources

Creating applications that create custom spans

<version>1.5.0</version>

<scope>provided</scope>

</dependency>

</dependencies>

<build>

<!-- Set the name of the archive -->

<finalName>${project.artifactId}</finalName>

<plugins>

<!-- Allows to use mvn wildfly:deploy -->

<plugin>

<groupId>org.wildfly.plugins</groupId>

<artifactId>wildfly-maven-plugin</artifactId>

</plugin>

</plugins>

</build>

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-applications-that-create-custom-spans_opentelemetry-tracing-application-development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-applications-that-create-custom-spans_opentelemetry-tracing-application-development

12.7.2. Creating applications that create custom spans

The following procedure demonstrates how to create an application that can create two custom spans like these:

prepare-hello - When the method getHello() in the application is called.

process-hello - When the value hello is assigned to a new String object hello.

This procedure also demonstrates how to view these spans in a Jaeger console. <application_root> in the procedure

denotes the directory that contains the pom.xml file, which contains the Maven configuration for your application.

Prerequisites

You have installed Docker. For more information, see Get Docker.

You have created a Maven project. For more information, see Configuring Maven project for OpenTelemetry tracing.

You have configured the the opentelemetry subsystem. For more information, see Configuring the

opentelemetry subsystem.

Procedure

1. In the <application_root>, create a directory to store the Java files.

Syntax

$ mkdir -p src/main/java/com/example/opentelemetry

Example

$ mkdir -p src/main/java/com/example/opentelemetry

2. Navigate to the new directory.

Syntax

$ cd src/main/java/com/example/opentelemetry

Example

$ cd src/main/java/com/example/opentelemetry

3. Create a JakartaRestApplication.java file with the following content. This JakartaRestApplication

class declares the application as a Jakarta RESTful Web Services application.

package com.example.opentelemetry;

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-opentelemetry-tracing_opentelemetry-tracing-application-development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-opentelemetry-tracing_opentelemetry-tracing-application-development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap

4. Create an ExplicitlyTracedBean.java file with the following content for the class ExplicitlyTracedBean.

This class creates custom spans by injecting a Tracer class.

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.core.Application;

@ApplicationPath("/")

public class JakartaRestApplication extends Application {

}

package com.example.opentelemetry;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import io.opentelemetry.api.trace.Span;

import io.opentelemetry.api.trace.Tracer;

@RequestScoped

public class ExplicitlyTracedBean {

@Inject

private Tracer tracer; 1

public String getHello() {

 Span prepareHelloSpan =

tracer.spanBuilder("prepare-hello").startSpan(); 2

 prepareHelloSpan.makeCurrent();

 String hello = "hello";

 Span processHelloSpan =

tracer.spanBuilder("process-hello").startSpan(); 3

 processHelloSpan.makeCurrent();

 hello = hello.toUpperCase();

 processHelloSpan.end();

 prepareHelloSpan.end();

return hello;

 }

}

Inject a Tracer class to create custom spans.

Create a span called prepare-hello to indicate that the method getHello() was called.

Create a span called process-hello to indicate that the value hello was assigned to a new String

object called hello.

5. Create a TracedResource.java file with the following content for TracedResource class. This file injects the

ExplicitlyTracedBean class and declares two endpoints: traced and cdi-trace.

6. Navigate to the application root directory.

package com.example.opentelemetry;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/hello")

@RequestScoped

public class TracedResource {

@Inject

private ExplicitlyTracedBean tracedBean;

@GET

@Path("/traced")

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

return "hello";

 }

@GET

@Path("/cdi-trace")

@Produces(MediaType.TEXT_PLAIN)

public String cdiHello() {

return tracedBean.getHello();

 }

}

Syntax

$ cd <path_to_application_root>/<application_root>

Example

$ cd ~/applications/simple-tracing-example

7. Compile and deploy the application with the following command:

$ mvn clean package wildfly:deploy

8. Start the Jaeger console.

$ docker run -d --name jaeger \

 -e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \

 -p 5775:5775/udp \

 -p 6831:6831/udp \

 -p 6832:6832/udp \

 -p 5778:5778 \

 -p 16686:16686 \

 -p 14268:14268 \

 -p 14250:14250 \

 -p 9411:9411 \

 jaegertracing/all-in-one:1.29

9. In a browser, navigate to localhost:8080/simple-tracing-example/hello/cdi-trace.

10. In a browser, open the Jaeger console at http://localhost:16686/search.

11. In the Jaeger console, select JBoss EAP XP and click Find Traces.

12. Click 3 Spans.

13. The Jaeger console displays the following traces:

|GET /hello/cdi-trace 1

-

 | prepare-hello 2

 -

 | process-hello 3

http://localhost:16686/search
http://localhost:16686/search

This is the span for the automatic implicit trace.

The custom span prepare-hello indicates that the method getHello() was called. It is the child of span

for the automatic implicit trace.

The custom span process-hello indicates that the value hello was assigned to a new String object

hello. It is the child of the prepare-hello span.

Whenever you access the application endpoint at http://localhost:16686/search, a new trace is created with all

the child spans.

Additional resources

OpenTelemetry tracing in JBoss EAP

CHAPTER 13. REFERENCE

13.1. MICROPROFILE CONFIG REFERENCE

13.1.1. Default MicroProfile Config attributes

The MicroProfile Config specification defines three ConfigSources by default.

ConfigSources are sorted according to their ordinal number. If a configuration must be overwritten for a later

deployment, the lower ordinal ConfigSource is overwritten before a higher ordinal ConfigSource.

Table 13.1. Default MicroProfile Config attributes

ConfigSource Ordinal

System properties 400

Environment variables 300

http://localhost:16686/search
http://localhost:16686/search
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap

ConfigSource Ordinal

Property files META-INF/microprofile-config.properties found on the classpath 100

13.1.2. MicroProfile Config SmallRye ConfigSources

The microprofile-config-smallrye project defines more ConfigSources you can use in addition to the default

MicroProfile Config ConfigSources.

Table 13.2. Additional MicroProfile Config attributes

ConfigSource Ordinal

config-source in the Subsystem 100

ConfigSource from the Directory 100

ConfigSource from Class 100

An explicit ordinal is not specified for these ConfigSources. They inherit the default ordinal value found in the

MicroProfile Config specification.

13.2. MICROPROFILE FAULT TOLERANCE REFERENCE

13.2.1. MicroProfile Fault Tolerance configuration properties

SmallRye Fault Tolerance specification defines the following properties in addition to the properties defined in the

MicroProfile Fault Tolerance specification.

Table 13.3. MicroProfile Fault Tolerance configuration properties

Property Default value Description

Property Default value Description

io.smallrye.faulttoleranc

e.mainThreadPoolSize

100 Maximum number of threads in the thread pool.

io.smallrye.faulttoleranc

e.mainThreadPoolQueueSize

-1

(unbounded

)

Size of the queue that the thread pool should use.

13.3. MICROPROFILE JWT REFERENCE

13.3.1. MicroProfile Config JWT standard properties

The microprofile-jwt-smallrye subsystem supports the following MicroProfile Config standard properties.

Table 13.4. MicroProfile Config JWT standard properties

Property Default Description

mp.jwt.verify.publickey NONE String representation of the public key encoded using one of the supported

formats. Do not set if you have set mp.jwt.verify.publickey.location.

mp.jwt.verify.publickey.locatio

n

NONE The location of the public key, may be a relative path or URL. Do not be set if

you have set mp.jwt.verify.publickey.

mp.jwt.verify.issuer NONE The expected value of any iss claim of any JWT token being validated.

Example microprofile-config.properties configuration:

mp.jwt.verify.publickey.location=META-INF/public.pem

mp.jwt.verify.issuer=jwt-issuer

13.4. MICROPROFILE OPENAPI REFERENCE

13.4.1. MicroProfile OpenAPI configuration properties

In addition to the standard MicroProfile OpenAPI configuration properties, JBoss EAP supports the following additional

MicroProfile OpenAPI properties. These properties can be applied in both the global and the application scope.

Table 13.5. MicroProfile OpenAPI properties in JBoss EAP

Property Default value Description

mp.openapi.extensions.enabled true Enables or disables registration of an

OpenAPI endpoint.

When set to false, disables generation

of OpenAPI documentation. You can set

the value globally using the config

subsystem, or for each application in a

configuration file such as /META-INF/

microprofile-

config.properties.

You can parameterize this property to

selectively enable or disable

microprofile-openapi-smallrye

in different environments, such as

production or development.

You can use this property to control

which application associated with a

given virtual host should generate a

MicroProfile OpenAPI model.

mp.openapi.extensions.path /openapi You can use this property for generating

OpenAPI documentation for multiple

applications associated with a virtual

host.

Set a distinct

mp.openapi.extensions.path on

each application associated with the

same virtual host.

Property Default value Description

mp.openapi.extensions.servers.

relative

true Indicates whether auto-generated

server records are absolute or relative to

the location of the OpenAPI endpoint.

Server records are necessary to ensure,

in the presence of a non-root context

path, that consumers of an OpenAPI

document can construct valid URLs to

REST services relative to the host of the

OpenAPI endpoint.

The value true indicates that the server

records are relative to the location of the

OpenAPI endpoint. The generated

record contains the context path of the

deployment.

When set to false, JBoss EAP XP

generates server records including all

the protocols, hosts, and ports at which

the deployment is accessible.

13.5. MICROPROFILE REACTIVE MESSAGING REFERENCE

13.5.1. MicroProfile reactive messaging connectors for integrating with

external messaging systems

The following is a list of reactive messaging property key prefixes required by the MicroProfile Config specification:

mp.messaging.incoming.[channel-name].[attribute]=[value]

mp.messaging.outgoing.[channel-name].[attribute]=[value]

mp.messaging.connector.[connector-name].[attribute]=[value]

Note that channel-name is either the @Incoming.value() or the @Outgoing.value(). For clarification, look at this

example of a pair of connector methods:

@Outgoing("to")

public int send() {

 int i = // Randomly generated...

 return i;

}

@Incoming("from")

public void receive(int i) {

 // Process payload

}

In this example, the required property prefixes are as follows:

mp.messaging.incoming.from. This defines the receive() method.

mp.messaging.outgoing.to. This defines the send() method.

Remember that this is an example. Because different connectors recognize different properties, the prefixes you indicate

depend on the connector you want to configure.

13.5.2. Example of the data exchange between reactive messaging streams

and user-initialized code

The following is an example of data exchange between reactive messaging streams and code that a user triggered

through the @Channel and Emitter constructs:

@Path("/")

@ApplicationScoped

class MyBean {

 @Inject @Channel("my-stream")

 Emitter<String> emitter; 1

 Publisher<String> dest;

 public MyBean() { 2

 }

 @Inject

 public MyBean(@Channel("my-stream") Publisher<String>

dest) {

 this.dest =

subscribeAndAllowMultipleSubscriptions(dest);

 }

 private Publisher

subscribeAndAllowMultipleSubscriptions(Publisher delegate) {

 } 3 4 5

 @POST

 public PublisherBuilder<String>

publish(@FormParam("value") String value) {

 return emitter.send(value);

 }

 @GET

 public Publisher poll() {

 return dest;

 }

 @PreDestroy

 public void close() { 6

 }

}

In-line details:

Wraps the constructor-injected publisher.

You need this empty constructor to satisfy the Contexts and Dependency Injection (CDI) for Java specification.

Subscribe to the delegate.

Wrap the delegate in a publisher that can handle multiple subscriptions.

The wrapping publisher forwards data from the delegate.

Unsubscribe from the reactive messaging-provided publisher.

In this example, MicroProfile Reactive Messaging is listening to the my-stream memory stream, so messages sent

through the Emitter are received on this injected publisher. Note, though, that the following conditions must be true for

this data exchange to succeed:

1. There must be an active subscription on the channel before you call Emitter.send(). In this example, notice that

the subscribeAndAllowMultipleSubscriptions() method called by the constructor ensures that there’s an

active subscription by the time the bean is available for user code calls.

2. You can have only one Subscription on the injected Publisher. If you want to expose the receiving publisher

with a REST call, where each call to the poll() method results in a new subscription to the dest publisher, you

have to implement your own publisher to broadcast data from the injected to each client.

13.5.3. The Apache Kafka user API

You can use the Apache Kafka user API to get more information about messages Kafka received, and to influence how

Kafka handles messages. This API is stored in the io/smallrye/reactive/messaging/kafka/api package, and it

consists of the following classes:

IncomingKafkaRecordMetadata. This metadata contains the following information:

The Kafka record key, represented by a Message.

The Kafka topic and partition used for the Message, and the offset within those.

The Message timestamp and timestampType.

The Message headers. These are pieces of information that the application can attach on the producing side,

and receive on the consuming side.

OutgoingKafkaRecordMetadata. With this metadata, you can specify or override how Kafka handles messages. It

contains the following information:

The key. which Kafka treats as the message key.

The topic you want Kafka to use.

The partition.

The timestamp, if you don’t want the one that Kafka generates.

headers.

KafkaMetadataUtil contains utility methods to write OutgoingKafkaRecordMetadata to a Message, and to

read IncomingKafkaRecordMetadata from a Message.

Important

If you write OutgoingKafkaRecordMetadata to a Message sent to a channel that’s not mapped to Kafka,

the reactive messaging framework ignores it. Conversely, if you read IncomingKafkaRecordMetadata from

a Message from a channel that’s not mapped to Kafka, that message returns as null.

https://github.com/smallrye/smallrye-reactive-messaging/tree/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api
https://github.com/smallrye/smallrye-reactive-messaging/tree/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api
https://github.com/smallrye/smallrye-reactive-messaging/tree/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/IncomingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/IncomingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/IncomingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/OutgoingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/OutgoingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/OutgoingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/KafkaMetadataUtil.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/KafkaMetadataUtil.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/KafkaMetadataUtil.java

Example of how to write and read a message key

@Inject

@Channel("from-user")

Emitter<Integer> emitter;

@Incoming("from-user")

@Outgoing("to-kafka")

public Message<Integer> send(Message<Integer> msg) {

 // Set the key in the metadata

 OutgoingKafkaRecordMetadata<String> md =

 OutgoingKafkaRecordMetadata.<String>builder()

 .withKey("KEY-" + i)

 .build();

 // Note that Message is immutable so the copy returned

by this method

 // call is not the same as the parameter to the method

 return KafkaMetadataUtil.writeOutgoingKafkaMetadata(msg,

md);

}

@Incoming("from-kafka")

public CompletionStage<Void> receive(Message<Integer> msg) {

 IncomingKafkaRecordMetadata<String, Integer> metadata =

KafkaMetadataUtil.readIncomingKafkaMetadata(msg).get();

 // We can now read the Kafka record key

 String key = metadata.getKey();

 // When using the Message wrapper around the payload we

need to explicitly ack

 // them

 return msg.ack();

}

Example of Kafka mapping in a microprofile-config.properties file

kafka.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to-kafka.connector=smallrye-kafka

mp.messaging.outgoing.to-kafka.topic=some-topic

mp.messaging.outgoing.to-

kafka.value.serializer=org.apache.kafka.common.serialization

.IntegerSerializer

mp.messaging.outgoing.to-

kafka.key.serializer=org.apache.kafka.common.serialization.S

tringSerializer

mp.messaging.incoming.from-kafka.connector=smallrye-kafka

mp.messaging.incoming.from-kafka.topic=some-topic

mp.messaging.incoming.from-

kafka.value.deserializer=org.apache.kafka.common.serializati

on.IntegerDeserializer

mp.messaging.incoming.from-

kafka.key.deserializer=org.apache.kafka.common.serialization

.StringDeserializer

Note

You must specify the key.serializer for the outgoing channel and the key.deserializer for the

incoming channel.

13.5.4. Example MicroProfile Config properties file for the Kafka connector

This is an example of a simple microprofile-config.properties file for a Kafka connector. Its properties

correspond to the properties in the example in "MicroProfile reactive messaging connectors for integrating with external

messaging systems."

kafka.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to.connector=smallrye-kafka

mp.messaging.outgoing.to.topic=my-topic

mp.messaging.outgoing.to.value.serializer=org.apache.kafka.c

ommon.serialization.IntegerSerializer

mp.messaging.incoming.from.connector=smallrye-kafka

mp.messaging.incoming.from.topic=my-topic

mp.messaging.incoming.from.value.deserializer=org.apache.kaf

ka.common.serialization.IntegerDeserializer

Table 13.6. Discussion of entries

Entry Description

Entry Description

to, from These are "channels."

send, receive These are "methods."

Note that the to channel is on the send() method and the from channel is on the

receive() method.

kafka.bootstrap.servers=kafka:

9092

This specifies the URL of the Kafka broker that the application must connect to. You

can also specify a URL at the channel level, like this:

mp.messaging.outgoing.to.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to.conne

ctor=smallrye-kafka

This indicates that you want the to channel to receive messages from Kafka.

SmallRye reactive messaging is a framework for building applications. Note that the

smallrye-kafka value is SmallRye reactive messaging-specific. If you’re

provisioning your own server using Galleon, you can enable the Kafka integration by

including the microprofile-reactive-messaging-kafka Galleon layer.

mp.messaging.outgoing.to.topic

=my-topic

This indicates that you want to send data to a Kafka topic called my-topic.

A Kafka "topic" is a category or feed name that messages are stored on and

published to. All Kafka messages are organized into topics. Producer applications

write data to topics and consumer applications read data from topics.

mp.messaging.outgoing.to.value

.serializer=org.apache.kafka.c

ommon.serialization.IntegerSer

ializer

This tells the connector to use IntegerSerializer to serialize the values that the

send() method outputs when it writes to a topic. Kafka provides serializers for

standard Java types. You can implement your own serializer by writing a class that

implements org.apache.kafka.common.serialization.Serializer, and

then include that class in your deployment.

mp.messaging.incoming.from.con

nector=smallrye-kafka

This indicates that you want to use the from channel to receive messages from

Kafka. Again, the smallrye-kafka value is SmallRye reactive messaging-specific.

mp.messaging.incoming.from.top

ic=my-topic

This indicates that your connector should read data from the Kafka topic called my-

topic.

Entry Description

mp.messaging.incoming.from.val

ue.deserializer=org.apache.kaf

ka.common.serialization.Intege

rDeserializer

This tells the connector to use IntegerDeserializer to deserialize the values

from the topic before calling the receive() method. You can implement your own

deserializer by writing a class that implements

org.apache.kafka.common.serialization.Deserializer, and then

include that class in your deployment.

Note

This list of properties is not comprehensive. See the SmallRye Reactive Messaging Apache Kafka

documentation for more information.

Mandatory MicroProfile Reactive Messaging prefixes

The MicroProfile Reactive Messaging specification requires the following method property key prefixes for Kafka:

mp.messaging.incoming.[channel-name].[attribute]=[value]`

mp.messaging.outgoing.[channel-name].[attribute]=[value]`

mp.messaging.connector.[connector-name].[attribute]=[value]`

Note that channel-name is either the @Incoming.value() or the @Outgoing.value().

Now consider the following method pair example:

@Outgoing("to")

public int send() {

 int i = // Randomly generated...

 return i;

}

@Incoming("from")

public void receive(int i) {

 // Process payload

}

In this method pair example, note the following required property prefixes:

mp.messaging.incoming.from. This prefix selects the property as your configuration of the receive() method.

mp.messaging.outgoing.to. This prefix selects the property as your configuration of the send() method.

https://smallrye.io/smallrye-reactive-messaging/smallrye-reactive-messaging/3.6/kafka/kafka.html
https://smallrye.io/smallrye-reactive-messaging/smallrye-reactive-messaging/3.6/kafka/kafka.html

13.5.5. Example MicroProfile Config properties file for the AMQP connector

This is an example of a simple microprofile-config.properties file for an Advanced Message Queuing Protocol

(AMQP) connector. Its properties correspond to the properties in the example in MicroProfile reactive messaging

connectors for integrating with external messaging systems.

amqp-host=localhost

amqp-port=5672

amqp-username=artemis

amqp-password=artemis

mp.messaging.outgoing.to.connector=smallrye-amqp

mp.messaging.outgoing.to.address=my-topic

mp.messaging.incoming.from.connector=smallrye-amqp

mp.messaging.incoming.from.address=my-topic

Table 13.7. Discussion of entries

Entry Description

to, from These are "channels."

send, receive These are "methods."

Note that the to channel is on the send() method and the from channel is on the

receive() method.

amqp-host=localhost This specifies the URL of the AMQP broker that the application must connect to. You

can also specify a URL at the channel level, like this:

mp.messaging.outgoing.to.host=localhost.The value defaults to

localhost when no URL is specified.

amqp-port=5672 This specifies the port of the AMQP broker.

mp.messaging.outgoing.to.conne

ctor=smallrye-amqp

This indicates that you want the channel to send messages to AMQP.

SmallRye reactive messaging is a framework for building applications. Note that the

smallrye-amqp value is SmallRye reactive messaging specific. If you’re

provisioning your own server using Galleon, you can enable the AMQP integration by

Entry Description

including the microprofile-reactive-messaging-amqp Galleon layer.

mp.messaging.outgoing.to.addre

ss=my-topic

This indicates that you want to send data to an AMQP queue on the address my-

topic. If you do not specify a value for mp.messaging.outgoing.to.address,

the value will default to the channel, which in this example is "to".

mp.messaging.incoming.from.con

nector=smallrye-amqp

This indicates that you want to use the from channel to receive messages from the

AMQP broker. Again, the smallrye-amqp value is SmallRye reactive messaging-

specific.

mp.messaging.incoming.from.add

ress=my-topic

This indicates that you want to read data from the AMQP queue my-topic on the

from channel.

For a complete list of properties supported by the SmallRye Reactive Messaging’s AMQP connector, see SmallRye

Reactive Messaging AMQP Connector Configuration Reference.

Connecting to a secure AMQP broker

To connect with an AMQ broker secured with SSL/TLS and Simple Authentication and Security Layer (SASL), define the

client-ssl-context to be used for the connection, in the microprofile-config.properties file. You can do

this on connector level and also on channel level.

Example of connector level client-ssl-context definition

amqp-use-ssl=true

mp.messaging.connector.smallrye-

amqp.wildfly.elytron.ssl.context=exampleSSLContext

The attribute mp.messaging.connector.smallrye-amqp.wildfly.elytron.ssl.context is only required

when you use self-signed certificates.

Important

Do not use self-signed certificates in a production environment. Use only the certificates signed by a certificate

authority (CA).

You can also specify the client-ssl-context for a channel as follows:

https://smallrye.io/smallrye-reactive-messaging/4.5.0/amqp/receiving-amqp-messages/#configuration-reference
https://smallrye.io/smallrye-reactive-messaging/4.5.0/amqp/receiving-amqp-messages/#configuration-reference
https://smallrye.io/smallrye-reactive-messaging/4.5.0/amqp/receiving-amqp-messages/#configuration-reference
https://smallrye.io/smallrye-reactive-messaging/4.5.0/amqp/receiving-amqp-messages/#configuration-reference

Example of channel-level client-ssl-context definition

mp.messaging.incoming.from.wildfly.elytron.ssl.context=examp

leSSLContext

In the example, the exampleSSLContext is associated only with the incoming channel from.

Table 13.8. Discussion of entries

Entry Description

amqp-use-ssl This specifies that we want to use a secure connection when connecting to the

broker.

mp.messaging.connector.smallry

e-

amqp.wildfly.elytron.ssl.conte

xt

You do not need to specify this attribute if the AMQ broker is secured with a

Certificate Authority (CA)-signed certificate.

If you use a self-signed certificate, specify the SSLContext that is defined in the

Elytron subsystem under /subsystem=elytron/client-ssl-context=* in the

management model.

Important

Do not use self-signed certificates in a production environment. Use only

the certificates signed by a certificate authority (CA).

You can define client-ssl-context by using the following management CLI

command:

Example

/subsystem=elytron/client-ssl-

context=exampleSSLContext:add(key-

manager=exampleServerKeyManager,trust

-manager=exampleTLSTrustManager)

For more information, see Configuring a trust store and a trust manager for client

certificates, Configuring a server certificate for two-way SSL/TLS in the Configuring

SSL/TLS in JBoss EAP guide.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-a-trust-store-and-a-trust-manager-for-client-certificates_enabling-two-way-ssl-tls-for-management-interfaces-and-applications
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-a-trust-store-and-a-trust-manager-for-client-certificates_enabling-two-way-ssl-tls-for-management-interfaces-and-applications
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-a-trust-store-and-a-trust-manager-for-client-certificates_enabling-two-way-ssl-tls-for-management-interfaces-and-applications
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-a-trust-store-and-a-trust-manager-for-client-certificates_enabling-two-way-ssl-tls-for-management-interfaces-and-applications
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-the-server-certificate-for-ssl-tls_enabling-two-way-ssl-tls-for-management-interfaces-and-applications
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/configuring_ssltls_in_jboss_eap/#configuring-the-server-certificate-for-ssl-tls_enabling-two-way-ssl-tls-for-management-interfaces-and-applications

13.6. OPENTELEMETRY REFERENCE

13.6.1. OpenTelemetry subsystem attributes

You can modify opentelemetry subsystem attributes to configure its behavior. The attributes are grouped by the

aspect they configure: exporter, sampler, and span processor.

Table 13.9. Exporter attribute group

Attribute Description Default value

endpoint The URL to which OpenTelemetry

pushes traces. Set this to the URL where

your exporter listens.

http://localhost:14250/

exporter-type The exporter to which traces are sent. It

can be one of the following:

jaeger. The exporter you use is

Jaeger.

otlp. The exporter you use works

with the OpenTelemetry protocol.

jaeger

Table 13.10. Sampler attribute group

Attribute Description Default value

ratio The ratio of traces to export. The value

must be between 0.0 and 1.0. For

example, to export one trace in every

100 traces created by an application, set

the value to 0.01. This attribute takes

effect only if you set the attribute

sampler-type as ratio.

Table 13.11. Span processor attribute group

http://localhost:14250/
http://localhost:14250/

Attribute Description Default value

batch-delay The interval in milliseconds between two

consecutive exports by JBoss EAP. This

attribute only takes effect if you set the

attribute span-processor-type as

batch.

5000

export-timeout The maximum amount of time in

milliseconds to allow for an export to

complete before being cancelled.

30000

max-export-batch-size The maximum number of traces that are

published in each batch. This number

should be should be lesser or equal to

the value of max-queue-size. You can

set this attribute only if you set the

attribute span-processor-type as

batch.

512

max-queue-size The maximum number of traces to

queue before exporting. If an application

creates more traces, they are not

recorded. This attribute only takes effect

if you set the attribute span-

processor-type as batch.

2048

Attribute Description Default value

span-processor-type The type of span processor to use. The

value can be one of the following:

batch: JBoss EAP exports traces in

batches that are defined using the

following attributes:

batch-delay

max-export-batch-size

max-queue-size

simple: JBoss EAP exports traces

are as soon as they finish.

batch

Additional resources

OpenTelemetry in JBoss EAP

LEGAL NOTICE

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike

3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-

sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL

for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA

to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo,

and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_xp_5.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js

open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service

marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack

Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the

OpenStack community.

All other trademarks are the property of their respective owners.

