
 hivemq.com

MQTT Sparkplug Essentials
Getting Started with this Open IIoT Specification
Technical eBook

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

2

Table of Contents

Chapter 1	 Introduction to Sparkplug..3
	 About Sparkplug...3
	 Plain MQTT Vs. Sparkplug...4
Chapter 2	 Requirements for Sparkplug..4
Chapter 3	 Fundamental Architecture of Sparkplug...5
	 The Old World — Industrial Spaghetti Architecture...5
	 A New Architecture for IIoT — Sparkplug and MQTT...6
Chapter 4	 Principles and Mechanisms of Sparkplug...8
Chapter 5	 The Components of Sparkplug..8
	 5.1 SCADA / IIoT Host...9
	 5.2 Edge of Network (EoN) Nodes...9
	 5.3 Devices / Sensors...9
	 5.4 MQTT Enabled Sensors and Devices..10
	 5.5 MQTT Application Node..10
	 5.6 MQTT Broker..10
Chapter 6	 Publish / Subscribe for Sparkplug...11
Chapter 7	 Use Case Examples of Implementing Sparkplug in the Real-World.............................14
	 How to Practically Implement MQTT Sparkplug in Your IoT Applications?..................14
	 Use Case Example 1 – Connecting a Smart Factory to the Cloud Using Sparkplug.....14
	 Use Case Example 2 – Monitoring Greenhouse Data Remotely Using Sparkplug........15
Chapter 8	 Conclusion...16
HiveMQ and Sparkplug..16

MQTT Sparkplug Essentials
Getting Started with this Open IIoT Specification

 hivemq.com

3

Chapter 1 - Introduction to Sparkplug
In this e-book, we share the gist of the open Industrial Internet of Things (IIoT) specification,
Sparkplug. If you want to implement Sparkplug on your own, integrate the specification into your
product or just want to learn about it: This is the right starting point into your journey to one of the
most important communication protocols for the IIoT.

IIoT and Industry 4.0 are key trends in the manufacturing industry. Many shopfloor operators
across various industries are looking for operational efficiency gains, improved manufacturing
capabilities and real-time manufacturing insights. However, this is daunting because the software
and hardware stacks have traditionally been closed and proprietary, and interoperability was
never a key concern for the vendors. This creates data silos.

Protocols like OPC-UA promised to break the silos and provide an industry-wide common
language between devices, machines and software applications. The reality to most developers
and software architects is that OPC-UA is not the silver bullet everyone hoped for. OPC-UA is
extremely complex, heavyweight and is not always easy to integrate, especially in brownfield
environments which you typically have in most manufacturing projects. So people felt there must
be a better way.

On the other hand, device to cloud communication for minimal latency and maximal throughput
got revolutionary easy with the MQTT protocol. And many developers wished for a simple solution
like MQTT for manufacturing but with the features
required for the manufacturing industry like payload
definitions and unified messaging behavior across
machines and vendors.

The wish came true when the Sparkplug protocol,
which is based on MQTT, was first released by one of
the very founding fathers of MQTT: Arlen Nipper. The
Sparkplug specification took the industry by storm and
large companies like Chevron adopted it for operational
efficiency gains and for creating next-generation
manufacturing solutions.

To have a common language for the IIoT, the Sparkplug specification defines the following three
goals:

•	 Define an MQTT topic namespace
•	 Define MQTT state management
•	 Define the MQTT payload

ABOUT SPARKPLUG

Sparkplug is an open-source software
specification that provides MQTT clients
the framework to seamlessly integrate data
from their applications, sensors, devices, and
gateways within the MQTT infrastructure in a
bi-directional and interoperable way.

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

4

It’s noteworthy that Sparkplug is actually designed to run 100% on MQTT as the publish/subscribe
paradigm of MQTT allows for bi-directional and decoupled integration of all components of a
system. When MQTT was invented in 1999, it was originally designed for SCADA systems but left
out all specifications around how topics and the payload should be structured and how devices
should behave. This allowed MQTT to be used in different industries like connected car, logistics
but also smart manufacturing.

Sparkplug now fills the gap and provides a vendor-neutral specification for data formats, topic
structures, state management, and how topologies should be structured in IIoT scenarios.

Plain MQTT Vs. Sparkplug
Sparkplug was designed for Industrial Internet of Things applications based on MQTT.
Many vendors support MQTT out of the box for their PLCs (for example Siemens S7) and
most Manufacturing Execution Systems (MES) and SCADA systems (like Ignition SCADA by
Inductive Automation®) support MQTT. Of course most professional gateway solutions used in
manufacturing contexts support MQTT.

Why now add Sparkplug to the mix? For any non-Sparkplug MQTT communication you need to
make sure that all participants who are interested in the data know where to subscribe to the
data and you need to make sure all participants can interpret the data. This usually involves
data transformation, which requires conventions, and creates a tight coupling between all the
applications. With Sparkplug, all participants settle on a common data format, how to receive
specific data, how to publish their data, and how to interpret data.

Best of all, Sparkplug allows bringing in data from non-MQTT devices as well data from other
protocols like OPC-UA or Modbus. Additionally, we get all these devices and applications
discovery out of the box.

Chapter 2 – Requirements for Sparkplug
To use Sparkplug, you need an MQTT broker that is responsible for distributing the data. It is
important that the MQTT broker implements 100% of the MQTT 3.1.1 specification because
Sparkplug requires the following:

•	 QoS 0 and 1
•	 Retained Messages
•	 Last Will and Testament
•	 A flexible security system

https://www.hivemq.com/solutions/iot/enabling-the-connected-car/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/solutions/transportation-and-logistics/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/solutions/manufacturing/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://cache.industry.siemens.com/dl/files/872/109748872/att_958784/v1/109748872_MqttClient_Publish_Secure_DOKU_V1_1_en.pdf
https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

 hivemq.com

5

For Proof of Concepts, Eclipse Mosquitto and HiveMQ Community Edition are popular choices.
For professional use cases we recommend the HiveMQ Platform. Unfortunately, AWS IoT and
Azure IoTHub are not suitable for Sparkplug as they lack basic MQTT functionality.

Chapter 3 – Fundamental Architecture of Sparkplug
The typical Industrial Internet of Things architecture works by connecting components with a
poll / response approach. Applications poll data directly from PLCs, gateways or servers with
protocols such as Modbus, Siemens S7 protocol or OPC-UA. This works pretty well when there
are only a few systems to integrate.

The Old World — Industrial Spaghetti Architecture
When a larger number of systems try to integrate in a typical Industrial Internet of Things
architecture as described above, it will result in a huge spaghetti architecture that is very hard to
maintain.

Picture 1: Industrial IIoT Architecture without Sparkplug

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://mosquitto.org/
https://www.hivemq.com/developers/community/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/hivemq/mqtt-broker/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

6

Picture 2: A new architecture for the IIoT

In picture 1, you can see that systems are connected to each other point-to-point and thus the
systems and data are hardwired to each other. Modern architectures require flexibility and a clear
separation of concerns in an IIoT system. Many companies are looking for the adaptiveness,
flexibility and ease of implementation found in IT landscapes but with the reliability, security and
predictability required for OT landscapes. A new architecture is needed for this paradigm shift.

A New Architecture for IIoT — Sparkplug and MQTT

The new IIoT architecture blueprint, as depicted in picture 2, adds several benefits compared to
the traditional IIoT architectures, such as:

•	 Decoupling of producers and consumers of data.
•	 �Report by Exception (RBE), which saves bandwidth, memory and computational power on the

producer and the consumers of data.
•	 �One-to-many communication, as data only needs to be sent once and multiple receivers can

receive it.
•	 �Flexibility, as devices and applications can be added and removed anytime without affecting

the system as a whole.
•	 Data governance by having centralized permission and policy handling.
•	 Shopfloor-to-cloud connectivity by distributing data from cloud to the edge.

 hivemq.com

7

Many companies were using MQTT in the past for creating decoupled architectures for their
factories. This is no surprise as MQTT was originally invented with SCADA systems in mind.

•	 For IIoT use cases using MQTT there are still pieces of the puzzle missing, such as:
•	 An MQTT topic structure definition
•	 MQTT state management
•	 Payload data definitions

Sparkplug adds these capabilities to MQTT and a Sparkplug architecture, which usually looks like
in picture 3.

Picture 3: Sparkplug Architecture

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

8

Chapter 4 – Principles and Mechanisms of Sparkplug
The Sparkplug architecture is elegant compared to legacy solutions because it builds upon the
following principles and mechanisms:

1.	 Pub / Sub: It uses MQTT as a publish / subscribe architecture for the underlying application
transport layer and decouples producers and consumers of data. MQTT is based on push
communication, which means data is distributed instantly to all interested parties.

2.	 Report by Exception: Data and device state is only updated if it changes. This dramatically
saves bandwidth and computing power for all components as only new and fresh data is sent
over the network.

3.	 Continuous Session Awareness: Sparkplug and MQTT have the concept of continuous
session awareness. It informs all the clients that care about the real-time information of the
device online/offline state if it changes. This concept also makes sure that data in transit
is continued to be sent to devices if they change state from offline to online again. With
Sparkplug, you get a real-time correct view of all the devices, gateways, and applications of
the deployment.

4.	 Death and Birth Certificates: Sparkplug introduces Death and Birth Certificates that are used
for the management and discovery of device state. Birth certificates encapsulate information
about the device and the data it can and will send. Death certificates are using the MQTT
Last Will and Testament mechanism to push device offline information to all interested
applications.

5.	 Persistent Connections: All devices, gateways and applications are by default always on and
use persistent TCP connections.

6.	 Auto Discovery: Applications and devices can auto-discover what data (and the
corresponding topic) will get sent by all participants in the Sparkplug deployment as well as
the online/offline devices that are connected.

7.	 Standardized Payload Definition: The Sparkplug data format for all messages is
standardized and can be decoded and encoded by all communication participants.

8.	 Standardized Topic Namespace: All Sparkplug participants use a common topic namespace.
The topic namespace allows for fine-grained subscriptions of specific data and allows for
dynamic addition and removal of participants.

Chapter 5 – The Components of Sparkplug
Sparkplug recognizes that there are different types of devices/sensors, gateways, applications
and other software (as well as hardware) involved in any non-trivial IIoT scenario. Sparkplug
defines the behavior and semantics for the different kinds of participants in the architecture.

https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

 hivemq.com

9

A traditional Sparkplug Architecture consists of the following components:
•	 SCADA / IIoT Host
•	 Edge of Network (EoN) Nodes
•	 Devices / Sensors
•	 MQTT Application Nodes
•	 MQTT Broker

We will look at these components now in detail.

5.1 SCADA / IIoT Host
The SCADA / IIoT Host, sometimes also referred to as Primary Application, is the supervising
application responsible for monitoring and control of the MQTT EoN nodes and their respective
devices and sensors. Continuous Session State Awareness is key in an IIoT system, which
means the current state of all participants (machines, devices, PLCs, sensors, gateways and
applications) needs to be known at a central place at any given time. This central application
managing the state (and acting upon state changes) is the SCADA / IIoT Host application. It is
the central application that is used by the operators of the system to manage and supervise the
health of the overall system.

In contrast to most traditional SCADA system architectures, the SCADA / IIoT Host is NOT
responsible for establishing and maintaining connections to the devices directly. In a Sparkplug
architecture, devices, Edge of Network (EoN) nodes and the SCADA / IIoT Host connect to a
central MQTT broker and publish and subscribe to data, which allows a report by exception (RBE)
functionality to only update data when changed.

5.2 Edge of Network (EoN) Nodes
An Edge of Network (EoN) node is one of the key roles in any Sparkplug system. EoN nodes
usually provide physical or logical gateway functions for sensors/devices who don’t implement
Sparkplug themselves and let them participate in the MQTT Topic namespace. EoN nodes
manage the state and session of itself and the sensors and devices connected to this EoN node
via protocols like OPC-UA, Modbus, proprietary PLC vendor protocols, HTTP, MQTT or local
discrete I/O. The EoN node is responsible for managing the lifecycle and state of these connected
devices and sensors as well as receiving and sending data for the devices to the Sparkplug
infrastructure. EoN nodes are a critical part of any Sparkplug infrastructure and very often EoN
nodes are used to bridge legacy infrastructure to Sparkplug.

5.3 Devices / Sensors
Devices and sensors are the backbone of any industrial automation. A device is usually a physical
or logical thing that sends and/or receives data over one or multiple industrial communication
protocols. Usually, these industrial protocols are based on poll/response protocols. In the
Sparkplug context, devices are connected to the Sparkplug infrastructure via EoN nodes. The EoN
nodes bridge the publish / subscribe nature of MQTT Sparkplug to these poll / response protocols.

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

10

5.4 MQTT Enabled Sensors and Devices
While most devices and sensors use protocols like Modbus, OPC-UA, Beckhoff ADS and other
standardized and proprietary protocols, many vendors offer native MQTT functionality with
their devices and sensors. If the MQTT enabled device is already equipped with Sparkplug by
providing the appropriate data format and topic structure, then the device can participate directly
with the Sparkplug infrastructure. In this case, it will identify itself as EoN node to the Sparkplug
infrastructure. If the MQTT enabled device supports only standard MQTT without Sparkplug
awareness, then it still needs to connect to EoN node.

5.5 MQTT Application Node
MQTT Application Nodes are nodes participating in the Sparkplug communication and can
produce and consume messages but are not the SCADA / IIoT Host. These are sometimes
called Secondary Applications. Usually, these are software systems which provide dedicated
functionality like MES (Manufacturing Execution Systems), Historian and Analytics. Many
deployments also use customized software dedicated to specific use cases that need to
consume data produced by the other Sparkplug participants.

5.6 MQTT Broker
The MQTT broker is the central data distribution component. All Sparkplug enabled devices, EoN
nodes, SCADA / IIoT Hosts and MQTT applications connect to the broker via MQTT. The broker
is responsible for authentication, authorization, state management of the participants and data
distribution between Sparkplug enabled systems. The MQTT broker needs to be 100% compliant
to MQTT 3.1.1 as features like retained messages, Last Will and Testament, and QoS are needed.

Incomplete, non-MQTT compliant cloud brokers like AWS IoT and Azure IoTHub don’t work
with Sparkplug as they only support a subset of MQTT features and are technically not MQTT
compliant. If the Sparkplug MQTT broker should reside in the cloud, AWS and Azure can still be
used with a fully compliant broker implementation like HiveMQ hosted in the cloud.

It’s important to understand that in MQTT architectures, the MQTT broker is a single point of
failure as all communication fails when the MQTT broker is offline. This would mean the whole
Sparkplug system is offline. While Sparkplug defines a very complex and limited way of high
availability with multiple, separated brokers, there is a better way to achieve high availability
easily without any modification on the application and EoN side: Brokers like HiveMQ allow for
elastic clustering that provides high availability and resiliency with a cluster architecture. Even if
one or more instances of the broker cluster fail (e.g. due to hardware problems), the system as
a whole is fully operable, resulting in zero downtime. This is also true if you update the broker
version, as rolling upgrades allow for zero downtime upgrades. This is especially important for
mission critical 24/7 operations.

https://www.hivemq.com/blog/mqtt-security-fundamentals-authentication-username-password/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-security-fundamentals-authorization/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

 hivemq.com

11

Chapter 6 – Publish / Subscribe for Sparkplug

Sparkplug uses the Pub/Sub architecture pattern for scalable and efficient communication,
which is dramatically different to traditional Poll/Response protocols used in the last 40+ years
in industrial automation, discrete manufacturing, and in industries like Oil & Gas. This means
that the communication protocols of the last decades require a very tight coupling between
the producer of data (often PLCs) and the consumers of data. This makes it difficult to change
workflows and processes, makes it hard to set up new systems and facilities and makes it
difficult to impossible to use and analyze data across the entire system.

Picture 4 shows the traditional Poll / Response way to get data from PLCs, gateways and
applications. A polling system is requesting data from the device that produces the data or is
the single source of truth for specific data. In order to get data as soon as possible, the polling
system is asking for data in a very high frequency, otherwise new data won’t be available to
the system that needs that data. This approach is very inefficient as it wastes bandwidth and
processing power scale very well.

Jonathan Hottell compared MQTT vs OPC-UA vs Modbus in this presentation and showed that
even for basic scenarios, there are orders of magnitudes in efficiency gains when using MQTT
Sparkplug compared to OPC-UA. If you want to add security via encrypted communication (which
you MUST do if you are connecting things over the internet), then overhead produced by legacy
protocols compared to Sparkplug is even more significant. Picture 5 depicts that for each new
data producer a system needs to poll. This means in the worst case each tag needs to be polled
individually.

Picture 4: Poll / Response way

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://cdn2.hubspot.net/hubfs/2335443/Johnathan-Hottell-IIoT-Protocol-Benchmarks.pdf

12

This polling approach is used widely in the industry and protocols like Modbus and OPC-UA. The
exponential growth of data produced and the hyper-connectivity locally on the site as well as
worldwide showed the limitations of the poll / response approach. Companies today require data
that is produced globally in up to hundreds of factories and thousands of machines in an instant
and expect that important data is accessible to all stakeholders easily, independent of where they
are in the world. The industry is now finally moving towards a world where data silos must be
broken down.

Poll / Response comes with some severe disadvantages compared to modern publish / subscribe
approaches from a technical point of view:

•	 �No state awareness: Most IIoT protocols today are not state aware, which means state needs
to be polled all the time, sometimes multiple times per second for every device to make sure
no important data or state change is lost

•	 �Massive amount of unnecessary data traffic: Data producers are getting polled up to multiple
times per second even if no status change or data change occurred

•	 �Only periodic check for new data: No instantaneous push based mechanism to get data and
events as they happen

•	 �Compute intensive on the polled devices: Lots of unnecessary compute cycles are wasted as
data is requested all the time even if it didn’t change

Picture 5: Poll / Response of many producers

https://www.techerati.com/the-stack-archive/data-centre/2018/05/14/smart-manufacturing-factory-automation/

 hivemq.com

13

•	 �Tight coupling between polled and polling components: If a data producer needs to be
changed / replaced, multiple systems need to be reconfigured, possibly with downtime

•	 Doesn’t scale to large amounts of data producers.

There clearly must be a better way. And this is why MQTT Sparkplug started with a blank sheet
of paper and asked: “What if we could use the most lightweight communication protocol (MQTT)
and add in all the learnings from the last 40+ years to finally bridge the OT/IT gap and provide
plug and play interoperability.”

To overcome the disadvantages of legacy protocols, Sparkplug uses a modern publish-subscribe
based architecture, as depicted in picture 6.

This MQTT based architecture has the following advantages:

•	 �Report by Exception: Data and state are published only when something changes.
•	 �Minimal compute intensive: Devices and applications decide themselves when they send data

and no compute cycles are wasted unnecessarily.
•	 �Scales to hundreds of thousands or even millions of devices with multiple billions of tag data

and state changes per day with a single broker (cluster).
•	 Push based communication
•	 �Completely decoupled: To change, add, or remove data consumers or producers, no other

components need to be changed.

Picture 6: Publish / Subscribe Architecture

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

14

Chapter 7 - Use Case Examples of Implementing Sparkplug
in the Real-World
In an industry 4.0 setup, such as a smart factory and smart manufacturing ecosystem, integrating
and sharing data between heterogeneous systems and services is a huge challenge. One way
to overcome this challenge is adopting MQTT Sparkplug open-source IoT specification in the
hardware systems and the edge devices. For the reason that, Sparkplug provides MQTT clients
the framework to seamlessly integrate industrial data across the entire ecosystem of hardware
vendors and application providers, like SCADA, MES, and Historian vendors, within the MQTT
infrastructure in a bi-directional and interoperable way.

How to Practically Implement MQTT Sparkplug in Your IoT Applications?
We will showcase two use case examples, which will demonstrate how easy it is to connect
different Industry 4.0 products using MQTT Sparkplug specification and a cloud MQTT broker.

Use Case Example 1 – Connecting a Smart Factory to the Cloud Using Sparkplug
In a smart factory and smart manufacturing ecosystem, integrating and sharing data between
heterogeneous systems and services is a huge challenge. One way to overcome this challenge is
adopting MQTT Sparkplug open-source IoT specification in hardware systems and edge devices.
Sparkplug provides MQTT clients the framework to seamlessly integrate industrial data across
the entire ecosystem of hardware vendors and application providers, like SCADA, MES, and
Historian vendors, within the MQTT infrastructure in a bi-directional and interoperable way.
So, with the help of Sparkplug, you can connect an edge device on the plant floor, such as Opto
22 groov Rio using HiveMQ Cloud MQTT broker that supports MQTT Sparkplug specification and
then forward the data to Canary Cloud for analysis as shown in picture 7.

This use case example not only shows how Sparkplug helps connect a Smart Factory to the cloud
but also shows how it can bring plug-and-play interoperability while integrating old existing OT
infrastructure and the current software applications.

Picture 7: Using Sparkplug to Connect a Smart Factory to the Cloud

https://www.hivemq.com/blog/industry-4-0-part1-mqtt-sparkplug-iiot-smart-factory/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

 hivemq.com

15

 Use Case Example 2 – Monitoring Greenhouse Data Remotely Using Sparkplug
This use case example showcases how to use the MQTT Sparkplug specification to make
greenhouse information discoverable by industry 4.0 applications that may join an MQTT
network.

Picture 8: Using Sparkplug to Remotely Monitor a Greenhouse Data

Picture 8 depicts a simulation of a simple greenhouse remote monitoring system using Raspberry
Pis, Node-Red, and HiveMQ Cloud as the MQTT broker. In the setup, there are two Raspberry
Pis. One of the Raspberry Pis will act as a greenhouse control unit measuring humidity and
temperature. We will use a DHT11 sensor for that. The same Raspberry Pi will also monitor
unauthorized access using a proximity sensor. The other Raspberry Pi will act as a remote
monitoring station, which receives greenhouse telemetry data and displays the temperature and
humidity data on an HMI. The second Raspberry Pi will also monitor the intrusion and switch ON
an AC lamp when an intrusion is detected. To monitor the telemetry data, we will send and receive
MQTT Sparkplug messages using Raspberry Pi, Node-RED, and HiveMQ Cloud.

With the help of the above two use case examples, you now have a gist of how real-world
implementation of Sparkplug looks like.

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://www.hivemq.com/blog/industry-4-0-part2-mqtt-sparkplug-b-messages-raspberrypi-nodered-hivemq-cloud/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

16

Chapter 8 – Conclusion
When you adopt Sparkplug specification, you bring in a common language to establish
communication between MQTT supporting devices, non-MQTT devices that support protocols
like OPC-UA or Modbus, and the software. This brings plug-and-play interoperability to IIoT.

The increasing popularity of Sparkplug in most industries can be explained with the clear
advantages over legacy protocols and the ability to even integrate these legacy protocols in a
Sparkplug architecture.

HiveMQ and Sparkplug
HiveMQ provides the MQTT broker platform required for any Sparkplug architecture. HiveMQ
offers the following capabilities to Sparkplug deployments:

•	 100% compatible with MQTT 3.1.1 and MQTT 5
•	 An MQTT broker for business critical systems that is reliable and scalable.
•	 Easy integration with OT and IT systems with an extension SDK.
•	 The ability to deploy on-premise, on Microsoft Azure or AWS, or with HiveMQ Cloud.

HiveMQ is also a member of the Sparkplug working group. Get in touch with us if you need
assistance in implementing Sparkplug in your IoT use case.

HiveMQ Partners in Sparkplug

Contact us:
Contact us 	  info@hivemq.com
Find out more 	  hivemq.com
Subscribe to our 	 Newsletter

mailto:info%40hivemq.com?subject=MQTT%20Essentials%20eBook
https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials
https://hivemq.us7.list-manage.com/subscribe?u=1a4404f30db2dd0062e8c536d&id=ec725a003f

HiveMQ
Ergoldingerstr. 2a
84030 Landshut
Germany
hivemq.com
© HiveMQ Gmbh

https://www.hivemq.com/?utm_source=ebook&utm_medium=web&utm_campaign=SparkplugEssentials

