
Developer Preview
declarative configuration for
AuthN/Z Resources
Red Hat Advanced Cluster Security

May 16, 2023

Contents
Introduction 2
Enabling the declarative
config feature for your
RHACS installation 3

Installation via roxctl 3
Installation via Helm 3
Installation via Operator
4

Adding declarative
configurationmounts for
your RHACS installation 4

Installation via roxctl 5
Installation via Helm 5
Installation via Operator5

Restrictions for resources
created from declarative
configurations 6
Creating declarative

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 0

https://access.redhat.com/support/offerings/devpreview

configurations 6
YAML examples for all authN/Z declarative configurations 8

Permission Set 8
Access Scope 9
Role 9
Auth provider 9

OIDC 10
Google IAP 11
SAML 2.0 11
User certificates 13
OpenShift Auth 14

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 1

https://access.redhat.com/support/offerings/devpreview

Introduction
The declarative configuration feature for RHACS allows the creation of resources in a
declarative manner.

This preview is a Developer Preview, for more information on the conditions and warranties of
dev preview, please refer to this document.

Within the preview, the following resources can be created declaratively:

Auth providers & their rules

● Roles
● Permission Sets
● Access Scopes

The configurations will be stored in YAML format within Config Maps / Secrets, which will be
mounted within the Central deployment.

Currently, the preview allows the complete flow of:

● Creating declarative configurations in YAML format
● Applying those declarative configuration within a Config Map / Secret within Central
● Allowing to modify (update / delete) declarative configurations.

However, some specific things are not yet covered within the preview, namely:

Health status for declarative configurations

Currently, all errors that may occur during the reconciliation of declarative configuration (e.g
invalid values, wrong format etc.) are only surfaced within the logs of Central (the logs are at
INFO level, so no adjustment required w.r.t the default log level).

Within the GA release of this feature, the health status and potential errors are surfaced within
the UI's System Health page.

Allowing declarative configurations to reference system resources

Currently, it is only allowed for declarative configurations to reference system roles (e.g. roles
that are added out-of-the-box to your RHACS installation such as Admin, Analyst etc.).
However, it’s currently not possible to reference system permission sets and access scopes.

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 2

https://access.redhat.com/support/offerings/devpreview
https://access.redhat.com/support/offerings/devpreview

Within the GA release of this feature, it will be possible to reference all available system
resources.

Handling references during deletion of declarative configuration

Some of the resources that can be created via declarative configuration reference other
resources (i.e. a role references a permission set and access scope). As an example, if a
permission set that is created via declarative configuration is deleted whilst being referenced by
a role, this currently leads to an error.

Within the GA release of this feature, the resource will be kept but made modifiable via UI / API
to correct the reference.

Creating the declarative configuration YAML has to be done "by hand"

The creation of the YAML format for each resource currently has to be done "by hand", as well
as applying the YAML configurations to a Config Map / Secret.

Within the GA release of this feature, roxctl commands will be available that support generating
the YAML configurations, including linting of the configurations.

Enabling the declarative config feature
for your RHACS installation
The feature is guarded behind the environment variable ROX_DECLARATIVE_CONFIGURATION,
which needs to be enabled within Central, which is dependent on the installation method of
RHACS.

Installation via roxctl
Adjust the YAML template within the bundle generated by roxctl to include setting the
environment variable:

...

env:

- name: "ROX_DECLARATIVE_CONFIGURAITON"

value: "true"

...

Afterwards, update the installation following the documentation.

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 3

https://docs.openshift.com/acs/4.0/installing/installing_other/install-central-other.html#install-using-roxctl-other
https://access.redhat.com/support/offerings/devpreview

Installation via Helm
Create a new declarative-config-values.yaml file:

customize:

envVars:

ROX_DECLARATIVE_CONFIGURATION: true

Afterwards, apply the configuration changes by following the documentation and including the
declarative-config-values.yaml file.

Installation via Operator
Adjust the Central CR to include the environment variable:

...

spec:

customize:

envVars:

- name: ROX_DECLARATIVE_CONFIGURATION

value: 'true'

...

Adding declarative configuration mounts
for your RHACS installation
The declarative configurations will be added via a mount point to the Central instance. The
configuration itself can either reside in Config Maps or Secrets, depending on whether they
contain sensitive information.

Generally, the recommendation for AuthN/Z resources is:
- Configurations for Auth Providers should reside within a Secret.
- For any other configurations, a Config Map should be sufficient.

Note: that a single Config Map / Secret may contain multiple configurations, which is also
recommended to limit the number of volume mounts for the Central instance.

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 4

https://docs.openshift.com/acs/4.0/installing/installing_ocp/install-central-ocp.html#change-config-options-after-deployment-central-services_install-central-ocp
https://access.redhat.com/support/offerings/devpreview

Adding the mount point for declarative configuration to your Central instance is dependent on
your installation method.
Note: The config map / secret does not have to exist prior to adding themount point to
your installation.

Based on your installation method, follow the documentation below on adding the mount points
for your declarative configurations.

Installation via roxctl
Provide the list of config maps / secrets that should be added as declarative config mounts via
the flags during the central bundle generation:

roxctl central generate k8s/openshift \

--declarative-config-config-maps="declarative-configs" \

--declarative-config-secrets="sensitive-declarative-configs"

Afterwards, update the installation following the documentation.

Installation via Helm
Within the declarative-config-values.yaml file created during Enabling the
declarative config feature for your RHACS installation step, add the
declarative config mounts:

customize:

envVars:

ROX_DECLARATIVE_CONFIGURATION: true

central:

declarativeConfiguration:

mounts:

configMaps:

- declarative-configs

secrets:

- sensitive-declarative-configs

Afterwards, apply the configuration changes by following the documentation and including the
declarative-config-values.yaml file.

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 5

https://docs.openshift.com/acs/4.0/installing/installing_other/install-central-other.html#install-using-roxctl-other
https://docs.openshift.com/acs/4.0/installing/installing_ocp/install-central-ocp.html#change-config-options-after-deployment-central-services_install-central-ocp
https://access.redhat.com/support/offerings/devpreview

Installation via Operator
Adjust the Central CR to include the declarative config mounts:

...

spec:

central:

declarativeConfiguration:

configMaps:

- name: "declarative-configs"

secrets:

- name: "sensitive-declarative-configs"

...

Restrictions for resources created from
declarative configurations
Since resources may reference other resources (i.e. a role references both permission set and
access scope), there are some restrictions for references:

1. A declarative configuration can only reference a resource that is either also created
declaratively or a "system" resource, i.e. a resource that is provided out-of-the-box with
RHACS (i.e. system roles / permission sets / access scopes).

2. All references between resources are done via names, meaning all names within the
same resource type have to be unique.

Additionally, the following applies to all resources created from declarative configurations:
1. Resources can only be modified (updated / deleted) by altering the declarative

configuration. It is not possible to change resources via API / UI.

Creating declarative configurations
Here's a walkthrough of creating a permission set and role via declarative configuration:
Note: this walkthrough assumes that you already added the Config Map
"declarative-configs" to your central installation's declarative config mounts within the
Adding declarative configuration mounts for your RHACS installation
step

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 6

https://access.redhat.com/support/offerings/devpreview

1. Creating a YAML configuration for a permission set:

name: restricted

description: Restricted permission set which only allows access to

Administration

resources:

- resource: Administration

access: READ_WRITE_ACCESS

2. Creating a YAML configuration for an access scope:

name: restricted-remote

description: Access scope including only cluster remote

rules:

included:

- cluster: remote

3. Creating a YAML configuration for a role:

name: restricted

description: Restricted role which only allows access to Administration for

all resources

permissionSet: restricted

accessScope: restricted-remote

4. Define a configmap containing all previously defined YAML configurations:

apiVersion: v1

kind: ConfigMap

metadata:

name: declarative-configs

namespace: stackrox # This needs to match the namespace of your RHACS

installation

data:

configs: |

name: restricted

description: Restricted role which only allows access to Administration

for all resources

permissionSet: restricted

accessScope: restricted-remote

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 7

https://access.redhat.com/support/offerings/devpreview

name: restricted

description: Restricted permission set which only allows access to

Administration

resources:

- resource: Administration

access: READ_WRITE_ACCESS

name: restricted-remote

description: Access scope including only cluster remote

rules:

included:

- cluster: remote

5. Create the configmap:

kubectl create -f configmap.yaml

6. After the configmap is created, central will pick up the changes. This may take
some time once reconciliation happens. Afterwards, you will be able to view the
created resources in the UI, as an example the permission set:

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 8

https://access.redhat.com/support/offerings/devpreview

YAML examples for all authN/Z
declarative configurations
Permission Set
For more information on Permission Sets, visit creating custom permission sets in RHACS.

name: A sample permission set

description: A sample permission set created declaratively

resources:

- resource: Integration # For a full list of supported resources, visit

`Access Control -> Permission Sets`

access: READ_ACCESS # Access can be either READ_ACCESS,

READ_WRITE_ACCESS

- resource: Administration

access: READ_WRITE_ACCESS

Access Scope
For more information on Access Scopes, visit creating custom access scopes in RHACS.

name: A sample access scope

description: A sample access scope created declaratively

rules:

included:

- cluster: secured-cluster-A # Cluster where only specific

namespaces should be included within the access scope.

namespaces:

- namespaceA

- cluster: secured-cluster-B # Cluster where _all_ namespaces

should be included within the access scope.

clusterLabelSelectors:

- requirements:

- key: kubernetes.io/metadata.name

operator: IN # Operator to use for the label selection. Can

be IN, NOT_IN, EQUAL, EXISTS, NOT_EXISTS.

values:

- worker-1

- worker-2

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 9

https://docs.openshift.com/acs/4.0/operating/manage-user-access/manage-role-based-access-control-3630.html#create-a-custom-role-3630_manage-role-based-access-control
https://docs.openshift.com/acs/4.0/operating/manage-user-access/manage-role-based-access-control-3630.html#create-a-custom-role-3630_manage-role-based-access-control
https://access.redhat.com/support/offerings/devpreview

- worker-3

Role
For more information on Roles, visit creating custom roles in RHACS.

name: A sample role

description: A sample role created declaratively

permissionSet: A sample permission set # Name of the

declarative permission set.

accessScope: Unrestricted # Name of the

declarative access scope.

Auth provider
RHACS provides support for multiple types of auth providers:

● Google IAP
● OpenID connect
● SAML 2.0
● User Certificates (PKI)
● OpenShift Auth

The configuration for auth provider consists of a generic configuration shared across auth
providers as well as specific configuration for each auth provider type.
Based on the type of auth provider, below are full examples for each supported auth provider.

OIDC

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 10

https://docs.openshift.com/acs/4.0/operating/manage-user-access/manage-role-based-access-control-3630.html#create-a-custom-role-3630_manage-role-based-access-control
https://access.redhat.com/support/offerings/devpreview

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

oidc:

issuer: sample.issuer.com # Expected issuer for the token

mode: auto # OIDC callback mode. Possible values

are: auto, post, query, fragment. `auto` should be the preferred one.

clientID: CLIENT_ID

clientSecret: CLIENT_SECRET

Google IAP

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 11

https://access.redhat.com/support/offerings/devpreview

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

iap:

audience: audience

SAML 2.0
SAML provides two configurations: static and dynamic.

For the dynamic configuration, you only need to provide the following:

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

saml:

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 12

https://access.redhat.com/support/offerings/devpreview

spIssuer: sample.issuer.com

metadataURL: sampl.provider.com/metadata

For the static configuration, you need to provide the following:

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

saml:

spIssuer: sample.issuer.com

cert: |

<cert in PEM format>

ssoURL: saml.provider.com

idpIssuer: idp.issuer.com

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 13

https://access.redhat.com/support/offerings/devpreview

User certificates

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

userpki:

List of certificate authorities that should be accepted.

certificateAuthorities: |

<cert in PEM format>

OpenShift Auth

name: A sample auth provider

minimumRole: Analyst # The minimum role which will

be assigned by default to any user logging in. If left empty, this will be

`None`.

uiEndpoint: central.custom-domain.com:443 # The UI endpoint of your

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 14

https://access.redhat.com/support/offerings/devpreview

Central instance.

extraUIEndpoints: # In case your Central instance

is exposed to different endpoints, you need to specify them here.

- central-alt.custom-domain.com:443

groups: # Groups provide a mapping for

users to a specific role, based on their attributes

- key: email # The key can be any claim

returned from the auth provider.

value: example@example.com

role: Admin # The role which the users

should be given. This can either be a system role, or a declaratively

created one.

- key: group

value: reviewers

role: Analyst

requiredAttributes: # In case attributes returned

from the auth provider should be required. This can be helpful if the

audience should be limited to either a specific organization or group.

- key: org_id

value: "12345"

openshift:

enable: true

This feature is provided as “Developer Preview”. Refer to https://access.redhat.com/support/offerings/devpreview for more
information. 15

https://access.redhat.com/support/offerings/devpreview

