
Efficient continuous latency monitoring with
eBPF

Simon Sundberg1[0000−0002−3570−9525], Anna Brunstrom1[0000−0001−7311−9334],
Simone Ferlin-Reiter1,2[0000−0002−0722−2656], Toke

Høiland-Jørgensen2[0000−0001−5241−6815], and Jesper Dangaard Brouer2

1 Karlstad University, Sweden {simon.sundberg,anna.brunstrom}@kau.se
2 Red Hat {sferlinr,toke,brouer}@redhat.com

Abstract. Network latency is a critical factor for the perceived quality
of experience for many applications. With an increasing focus on inter-
active and real-time applications, which require reliable and low latency,
the ability to continuously and efficiently monitor latency is becoming
more important than ever. Always-on passive monitoring of latency can
provide continuous latency metrics without injecting any traffic into the
network. However, software-based monitoring tools often struggle to keep
up with traffic as packet rates increase, especially on contemporary multi-
Gbps interfaces. We investigate the feasibility of using eBPF to enable
efficient passive network latency monitoring by implementing an evolved
Passive Ping (ePPing). Our evaluation shows that ePPing delivers accu-
rate RTT measurements and can handle over 1 Mpps, or correspondingly
over 10 Gbps, on a single core, greatly improving on state-of-the-art soft-
ware based solutions, such as PPing.

Keywords: Passive monitoring · Network latency · eBPF

1 Introduction

That network latency is an important factor of network performance has long
been known [8]. Various studies have shown that users’ Quality of Experience
(QoE) for many different applications, such as web searches [3], live video [32]
and video games [31], is strongly related to end-to-end latency, where network
latency can be a major component. For highly interactive applications envisioned
for the Tactile Internet or Augmented and Virtual Reality (AR/VR), reliable low
latency will be even more crucial [24]. It is therefore of great interest to Internet
Service Providers (ISPs) to be able to monitor their customers’ network latency
at large. Furthermore, network latency monitoring has a wide range of other use
cases like: verifying Service Level Agreements (SLAs), finding and troubleshoot-
ing network issues such as bufferbloat [28], making routing decisions [34], IP
geolocation [12] and detecting IP spoofing [18] and BGP routing attacks [4].

There exists many tools for actively measuring network latency by sending
out network probes, such as ping [16], IRTT [11], and RIPE Atlas [22]. While
active monitoring is useful for measuring connectivity and idle network latency

in a controlled manner, it is unable to directly infer the latency application traf-
fic experience. The network probes may be treated differently from application
traffic by the network, due to for example active queue management and load
balancing, and therefore their latency may also differ. Furthermore, many active
monitoring tools require agents to be deployed directly on the monitored target,
which is not feasible for an ISP wishing to monitor the latency of its customers.

Passive monitoring techniques avoid these issues by observing existing appli-
cation traffic instead of probing the network. Additionally, passive monitoring
can often run on any device on the path that sees the traffic, not limited to end
hosts. Several tools for passively inferring TCP round trip times (RTTs) already
exist: Tcptrace [25] can compute TCP RTTs from packet traces, but is unable
to operate on live traffic. Wireshark and the related tshark [9] can operate
on live traffic, but are unsuitable for continuous monitoring over longer periods
of time, due to keeping a record of all packets in memory. On the other hand,
PPing [21] uses a streaming algorithm, which allows for continuous monitoring
of live traffic. However, like most other software based passive network moni-
toring solutions, PPing relies on traditional packet capturing techniques such as
libpcap. Packet capturing imposes a high overhead and is unable to keep up
with the high packet rates encountered on modern network links [17].

To enable passive network monitoring at higher packet rates, several recent
works [10,7,35,23] propose solutions based on P4 [6]. While these P4-based so-
lutions can achieve high performance, they require hardware support for P4,
commonly found in Tofino switches. It could be possible to modify such P4
programs to compile with Data Plane Development Kit (DPDK), however, this
would compromise on the guaranteed performance provided by the hardware.
Beyond DPDK and P4, there are many more Linux devices relying on kernel net-
work stacks that could still benefit from monitoring network latency. Examples
include commodity web servers, routers, traffic shapers and Network Intrusion
Detection Systems (NIDS), which use the Linux network stack for their normal
operation.

In recent years, the introduction of eBPF [29] in the Linux kernel added the
ability to attach small programs to various hooks that run in the kernel. This
makes it possible to inspect and modify kernel behavior in a safe and performant
manner, without having to recompile a custom kernel. eBPF is in general well
suited for monitoring processes in the kernel, and the BPF Compiler Collection
(BCC) repository already contains two tools to passively monitor TCP RTT:
tcpconnlat and tcprtt. While these tools expose RTT metrics in an efficient
manner, they rely on the RTT estimations from the kernel’s own TCP stack,
and can therefore only run on end hosts.

While retrieving statistics from the kernel certainly has its uses, Linux Traffic
Controller (tc) BPF and eXpress Data Path (XDP) [13] hooks go a step further
and essentially enable a programmable data plane in the Linux kernel [30]. eBPF
programs attached to tc and XDP hooks can process and take actions on each
packet early in the Linux network stack, without the overhead from cloning
the packet and exposing it to a user space process like packet capturing does.

XDP and tc-BPF have been used to implement for example efficient flow mon-
itoring [1], load balancers [19] and a Kubernetes Container Network Interface
(CNI) [14]. Of particular relevance for this work, [33] proposes an in-band net-
work telemetry approach for measuring one-way latency. It uses eBPF to add
timestamps to a fraction of the packet headers. However, this approach requires
full control over the part of the network that should be monitored as well as
synchronized clocks between source and sink nodes.

In this paper we instead propose using eBPF to efficiently inspect packets
and use a streaming algorithm, such as the one used by PPing, to calculate the
RTT for the packets as they traverse the kernel. Such a solution can continu-
ously monitor network latency from any Linux-based device that is able to see
the traffic in both directions of a flow. Also, our proposal does not require the
control of any other device in the network or end hosts. Furthermore, it avoids
the overhead of packet capturing, and it does not require any modifications to
the Linux kernel or special hardware support. To show the feasibility of this
approach, we make the following contributions:

– We implement an evolved Passive Ping (ePPing), inspired by PPing, but
using eBPF instead of traditional packet capturing.

– We evaluate the accuracy and overhead of ePPing, demonstrating that it
provides accurate RTTs and can operate at high packet rates with consid-
erably lower overhead than PPing, being able to process upwards of 16x as
many packets at a third of the CPU overhead.

– We identify that reporting a large number of RTT values makes up a sig-
nificant part of the overhead of ePPing, and implement simple in-kernel
sampling and aggregation to mitigate it.

The design and implementation of ePPing is covered in Section 2, while the accu-
racy and performance of ePPing is evaluated in Section 3. Finally, we summarize
our conclusions in Section 4.

Ethical considerations This work does not raise any ethical issues as all
experiments have been performed in a controlled testbed with no real user traffic.
However, the presented ePPing tool reports IP addresses and ports, which in
other contexts may contain sensitive information. Like any tool that can collect
and report IP addresses, great care should therefore be taken to ensure that such
information does not leak to unauthorized parties before deploying ePPing in a
public network.

2 Design and implementation

The principle behind ePPing and most other passive latency monitoring tools
is to match replies to previously observed packets and to calculate the RTT as
the time difference between these. How ePPing performs this task is illustrated
in Figure 1. First, each incoming or outgoing packet is parsed for a packet-
identifier that can be used to match the packet against a future reply 1○. If

such an identifier is found, the current time is saved in a hash map using a
combination of the flow tuple and the identifier as a key to uniquely identify
the packet 2○. Then the program checks if the packet contains a suitable reply
identifier, which it can use to match with a previously seen packet in the reverse
direction, and queries the hash map 3○. If a match is found, the RTT is calculated
by subtracting the stored timestamp from the current time 4○. Finally, the RTT
report is pushed to user space 5○, which prints it out 6○. Additionally, ePPing
also keeps track of some state for each flow, e.g., number of packets sent and
minimum RTT observed.

%3)�SURJUDP�

�LQJUHVV���HJUHVV��

8VHUVSDFH�SURJUDP�

+DVK�PDS�

SDFNHW�76���$GG��IORZ��LG!��QRZ�

���3XVK�577

���3ULQW�577 3HULRGLFDOO\�GHOHWH�ROG�IORZV�DQG�WLPHVWDPSV

+DVK�PDS�

IORZ�VWDWH

�8SGDWH��IORZ!��VWDWH�

3HUI�EXIIHU�

HYHQWV

.HUQHO�VSDFH

8VHU�VSDFH

���WV� �/RRNXS��UHYHUVH�IORZ��UHSO\�LG!�

���3DUVH�SDFNHW�

���577� �QRZ���WV

Fig. 1. Overview of ePPing design.

Both ePPing and PPing use the TCP timestamp option [5] as identifiers.
With TCP timestamps, each TCP header will contain two timestamps: TSval
and TSecr. The TSval field will contain a timestamp from the sender, and the
receiver will then echo that timestamp back in the TSecr field. One can thus
use the TSval value as an identifier for an observed packet and later match it
against the TSecr value in a reply. It should be noted that TCP timestamps are
updated at a limited frequency, typically once every millisecond. Thus, multiple
consecutive packets may share the same TSval, which is therefore, especially
at high rates, not a reliable unique identifier. To avoid mismatching replies to
packets and getting underestimated RTTs, we only timestamp the first packet
for each unique TSval in a flow and match it against the first TSecr echoing it. By
only using the edge when TCP timestamps shift, the frequency rather than the
accuracy of the RTT samples is limited to the update rate of TCP timestamps.
Note that matching the first instance of a TSval against the first matching TSecr,
combined with the algorithm for how the receiver sets the TSecr, means that
the calculated RTT will always include a delay component of delayed ACKs [5].
We further discuss the implications of using TCP timestamps as identifiers to
passively monitor the RTT in Appendix A.

Although primarily designed for TCP traffic, the fundamental mechanism
ePPing is based on, to match replies of previously timestamped packets, is not

limited to TCP. As a way to demonstrate this possibility, we have also imple-
mented support for ICMP echo request sequence numbers as identifiers. This
means that ePPing can also passively monitor latency for common ping util-
ities. Other possible extensions for future work include the DNS transaction
ID [20] or the QUIC spin bit [15].

While the underlying logic for passively calculating RTTs is very similar
between ePPing and PPing, the main difference between them is where this logic
runs, i.e., how it is implemented. PPing is a user space application and relies on
traditional packet capturing, i.e., copying packets from kernel to user space. Once
copied to user space, PPing can parse the packet headers to retrieve the necessary
packet identifiers, e.g., the TCP timestamps. In contrast, ePPing implements
most of its logic in eBPF programs running in kernel space, as shown by Figure 1.
By attaching its eBPF programs to the tc-BPF and XDP hooks, ePPing can
parse packet headers directly from the kernel buffers, without any copying. The
logic for parsing and timestamping packets, matching replies and calculating
RTTs is implemented in the eBPF programs. The user space component is only
responsible for loading and attaching the eBPF programs, printing out RTTs
pushed by the eBPF programs, and periodically flushing stale entries in the
hash maps.

Therefore, by moving most of the logic to kernel space and thereby avoiding
the costly packet capturing and related copying of packets, ePPing is able to
operate with lower overhead, significantly outperforming PPing at high packet
rates. ePPing is available as open source [27], and the exact build used in this
work together with the experiment scripts and measurement data is archived
at [26].

3 Results

0LGGOHER[

&DSWXUH�

SRLQW

����*E(����*E(

(QGKRVW (QGKRVW

Fig. 2. Testbed setup.

To evaluate ePPing, we run a number of experiments to evaluate the accuracy
of the reported RTT values as well as the runtime overhead. All experiments are
performed on a testbed setup as depicted in Figure 2. The testbed consists of two
end hosts (Intel i7 7700, 16 GB RAM, kernel 5.16) connected via 100 Gbps links
to a middlebox (Intel Xeon E5-1650, 32 GB RAM, kernel 5.19), which forwards
traffic between the end hosts. In all experiments, the (partial) RTT between the

middlebox and receiver end host is passively monitored from the interface on
the middlebox facing the receiver, unless otherwise specified.

The network offloads Generic Receive Offload (GRO), Generic Segmentation
Offload (GSO) and TCP Segmentation Offload (TSO) are disabled on the mid-
dlebox, but left enabled on the end hosts. With this, we force the middlebox
to process every packet. This is not necessary for PPing or ePPing, however, it
provides a more accurate view of how packets traverse the wire. Furthermore,
disabling the offloads makes it easier to fairly compare performance across a
varying amount of concurrent flows, as the offloads tend to become less effective
as the rate per flow decreases. With the offloads left enabled, the middlebox
would have inherently performed much better for a few flows with very high
packet rates compared to if the same packet rate is distributed across many
flows, even without passive monitoring.

Section 3.1 focuses on the accuracy of the RTTs reported by ePPing by
comparing them to the RTTs reported by PPing, which also relies on TCP
timestamps, and tshark, which instead calculates the RTTs from the sequence
and acknowledgement numbers. Section 3.2 covers the overhead ePPing incurs
on the system compared to PPing, thereby evaluating if implementing a similar
algorithm in eBPF programs instead of relying on packet capturing is a feasible
way to extend passive latency monitoring to higher packet rates.

3.1 RTT accuracy

0 20 40 60 80 100
Time (s)

0

20

40

60

80

100

RT
T

(m
s)

tshark
PPing
ePPing

(a) RTTs reported over the duration of
the test.

count min median max
tshark 129591 17 175 729
PPing 112529 19 180 1056
ePPing 112529 17 178 1054

0 100 200 300 400
RTT above base delay (us)

0.00

0.25

0.50

0.75

EC
DF

tshark
PPing
ePPing

(b) The distribution of RTTs after sub-
tracting configured delay.

Fig. 3. RTT values reported by tshark, PPing and ePPing for a single TCP flow with
0 to 100ms of additional latency added in 10ms steps.

To evaluate the accuracy of the RTT values ePPing reports, we use iperf3

to send data at a paced rate of 100 Mbps over a single flow from the sender to the
receiver end host. To test that ePPing is able to accurately track changes in RTT,

we apply a fixed netem delay, which is increased in 10ms steps every 10 s, going
from 0 to 100ms, see Figure 3a. In addition to running ePPing at the capture
point, we capture the headers of all packets by running tcpdump on the same
interface. PPing, tshark and tcptrace calculate the TCP RTT values from the
capture file, but tcptrace is omitted from the results as it yields identical RTT
values as tshark. To avoid small latency variations from the CPU aggressively
entering different sleep states, we use the tuned-adm profile latency-performance
on the middlebox during these tests.

Figure 3a shows a timeseries of the RTT values calculated by each tool. All
tools provide RTT values closely following the configured netem delay. Figure 3b
instead shows the distribution of how much higher the reported RTT values are
compared to the configured netem delay, to avoid the scale of RTT values to
dwarf the variation. However, in both Figure 3a and 3b the magnitude of the
RTT values and their variation are much larger than the differences between
the tools. Therefore, Figure 4 shows the pairwise difference between each RTT
value for ePPing compared to PPing and tshark, respectively. Note that tshark
reports an RTT value for every ACK, whereas PPing and ePPing only produce an
RTT for ACKs with a new TSecr value, thus providing 13% fewer RTT samples
than tshark in this experiment (see the count field in Figure 3b). Therefore,
Figure 4b only includes the RTT values from tshark that correspond to those
from PPing and ePPing, i.e. the ones from the first ACK with each TSecr value.
Furthermore, differences below 1 µs may be due to rounding as the RTT values
from tshark and PPing have microsecond resolution.

min median mean max std
Difference -101.473 -1.216 -1.220 0.535 0.528

−4 −3 −2 −1 0
RTT-difference (us)

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc
y

(a) Difference between ePPing and PPing.

min median mean max std
Difference -97.473 3.407 3.321 927.927 3.260

0 2 4 6
RTT-difference (us)

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

(b) Difference between ePPing and
tshark.

Fig. 4. Pairwise difference between RTT values reported by ePPing compared to other
tools.

Overall, ePPing reports slightly lower RTT values than PPing. This is ex-
pected as the XDP hook used by ePPing for ingress traffic is triggered before
the packet enters the rest of the Linux network stack, and can be captured by
tcpdump. On the other hand, ePPing provides RTT values that are around 1 to

5 µs higher than those from tshark, which is explained by tshark calculating the
RTT in a different way. Both PPing and ePPing use TCP timestamps, and will
therefore always include the additional latency caused by delayed ACKs. Mean-
while, tshark instead matches sequence and acknowledgement numbers, which
will often exclude this delay component. We have verified that the differences
between ePPing and tshark correspond to the additional latency component
from delayed ACKs. While the difference in how delayed ACKs are handled re-
sult in very small differences in Figure 4b, it can create larger differences for
some particular traffic patterns. In Appendix A we further discuss how relying
on TCP timestamps affect the calculated RTT values.

3.2 Monitoring overhead

The motivation behind implementing ePPing in eBPF was to reduce overhead
and thus allow it to work at higher packet rates. Therefore, we measure what im-
pact ePPing has on the forwarding performance when running on a machine that
is under high packet processing load. This is done by measuring the throughput
iperf3 is able to achieve when sending TCP traffic from the sender to the re-
ceiver end host. The test is first performed without any passive monitoring on
the middlebox to establish a baseline, and is then repeated with either ePPing
or PPing running at the capture point. We run each test 10 times for 120 s, but
discard the results from the first 20 s as a warm-up phase to let cache usage and
CPU frequency scaling stabilize. We then repeat the tests using 1, 10, 100 or
1000 TCP flows to evaluate how performance is affected by the number of flows.

baseline PPing ePPing
0

20

40

60

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput

baseline PPing ePPing
0

20

40

60

80

CP
U

(%
)

(b) CPU (average across all
6 cores)

PPing ePPing
0

20

40

60

80

100

Pr
oc

es
se

d
pa

ck
et

s (
%

)

(c) Packets processed

Fig. 5. Forwarding performance without monitoring (baseline), with PPing and with
ePPing for 10 concurrent iperf3 flows, when middlebox uses all CPU cores.

Figure 5 shows the performance that is achieved with 10 concurrent flows,
which is when the end hosts are able to push the traffic at the highest rate
in our experiments. While Figure 5a shows that neither PPing or ePPing has a
considerable impact on the forwarding throughput, Figure 5b shows that ePPing
has much lower CPU overhead. With a baseline utilization of 47%, ePPing only

increases it to 57%, while PPing increases it all the way to 77%. Meanwhile,
Figure 5c shows that despite PPing having roughly 3 times higher CPU overhead
than ePPing, PPing is actually only processing just over 6% of the packets. This
is due to the packet capturing being unable to keep up with the high packet rate,
and therefore missing the majority of the packets. In contrast, ePPing runs in line
with the rest of the network stack, and sees every packet, meaning it processes
roughly 16 times as many packets. While not apparent from Figure 5, also note
that PPing is implemented as a single-threaded user space application, and is
therefore limited to how fast a single core can process all the logic. While the user
space component reporting the RTT values in ePPing is also single-threaded, the
eBPF programs that contain the logic for calculating the RTT values run on the
cores that the kernel assigns to process each packet, thus distributing the load
across multiple cores in the same manner as the normal network stack processing.

Table 1. Average packets per second processed on single core at capture point when
only forwarding (baseline scenario).

Packet rate (Mpps)
No. flows Tx Rx Total

1 1.86 0.04 1.90
10 1.86 0.09 1.95
100 1.72 0.21 1.92
1000 1.64 0.29 1.93

Although the results in Figure 5 are promising, the end hosts are usually the
bottleneck here, especially as we increase the number of flows. These experiments
are consequently unable to push the middlebox and ePPing to their limits. We
therefore constrain the middlebox to using a single CPU core in the remaining
experiments, moving the bottleneck to the middlebox CPU. This means that the
middlebox is already using all of its CPU capacity just forwarding the traffic,
and any additional overhead from the passive monitoring results in decreased
throughput. Furthermore, we emphasize the total packet rate (sum of trans-
mitted and received packets) rather than the throughput. Packet rate is more
relevant for the performance of PPing and ePPing, as their logic has to run per
packet, and also stays more consistent across a varying number of flows as Ta-
ble 1 shows. As the number of flows increases, the number of ACKs sent back by
the receiver increases (seen by the increase in received packets at the middlebox).
This results in less capacity to forward data packets by the middlebox (decrease
in transmitted packets), and thereby a lower throughput, while the total packet
rate handled remains similar.

Figure 6a summarizes the impact PPing and ePPing have on the forward-
ing performance of the middlebox when it is constrained to a single core. Both
ePPing and PPing now have a considerable impact on the forwarding perfor-
mance, but ePPing clearly sustains a higher packet rate than PPing, at least at

a limited number of flows. As the number of flows increases, the packet rate with
ePPing drops from 1.53 to 1.13Mpps. The reason for this drop in performance
as the number of flows increases is that, due to the limited update rate of TCP
timestamps, the number of potential RTT samples that ePPing has to process
increases with number of flows. This is evident in Figure 6b, which shows that
while ePPing reports the expected 1000 RTT values per second for a single flow,
at 1000 flows this increases to roughly 125,000 values per second.

1 10 100 1000
No. flows

0.0

0.5

1.0

1.5

2.0

Pa
ck

et
 ra

te
 (M

pp
s)

baseline
PPing-fw
PPing-proc
ePPing

(a) Average packet rate

1 10 100 1000
No. flows

103

104

105

RT
T

re
po

rts
/s

PPing
ePPing

(b) Average RTT report rate (log scale)

Fig. 6. Middlebox performance when just forwarding (baseline), with PPing or ePPing
on a single CPU core. PPing misses most packets and thus processes (PPing-proc)
packets at a much lower rate than they are forwarded (PPing-fw).

Meanwhile, the forwarded packet rate with PPing actually appears to increase
slightly with number of flows (0.97Mpps at one flow, 1.18Mpps at 1000 flows),
but this is merely due to the packet capturing missing a larger fraction of packets.
The packet rate actually handled by PPing drops from approximately 170 kpps at
1 and 10 flows, to just 60 kpps at 100 and 1000 flows, meaning ePPing processes
packets at approximately an 18 times higher rate than PPing at 1000 flows.
PPing missing the majority of packets results in it also missing many RTT
samples, which can be seen by the much fewer RTT values reported by PPing

in Figure 6b. Furthermore, the algorithm for matching packets to replies that
PPing and ePPing uses, relies on matching the first instance of each TSval to the
first matching TSecr. As PPing does not see every packet, it cannot guarantee
this, and it may therefore introduce small errors in its RTT values.

However, limiting the load by sampling, as PPing in practice does by miss-
ing packets, can be a valid approach. The high rate of RTT values reported by
ePPing may not be necessary, or even desirable, for many use cases. We there-
fore implement sampling for ePPing, and evaluate if it can be an effective way to
reduce the overhead. While it would be possible to only process a random subset
of the packets, similar to PPing, such an approach has several drawbacks. As al-
ready mentioned, missing packets may interfere with the algorithm for matching
packets and replies, thus resulting in less accurate RTT values. Furthermore, a

random subset of packets is likely to mainly yield RTT samples from elephant
flows, and largely miss sparse flows. However, sparse flows often carry control
traffic and other latency sensitive data, and being able to monitor their RTT
may therefore be at least as important as the RTT of the elephant flows. Instead
of eliminating ePPing’s advantage of being guaranteed to see every packet, we
opt to implement a simple per-flow sample rate limit. With the sample rate limit,
ePPing must wait a time period t after saving a timestamp entry for a packet
before it can timestamp another packet from the same flow. This t may either
be set to a static value, or it can be dynamically adjusted to the RTT of each
flow, so that flows with shorter RTTs get more frequent samples than flows with
longer RTTs.

We repeat the experiments from Figure 6, setting the sample limit t to 0,
10, 100 and 1000ms, in practice corresponding to at most 1000, 100, 10 and 1
RTT values per flow and second, respectively. Figure 7a summarizes the results,
and clearly shows that less frequent sampling greatly reduces the overhead of
ePPing. Already at a sample limit of 10ms we see great improvements. When
limiting it to a single sample every 1000ms per flow (the default rate of ping),
ePPing is able to sustain a packet rate of 1.54Mpps for 1000 flows, compared to
1.14Mpps without sampling. The drop in forwarding performance when going
from 1 to 1000 flows thus decreases from 27% without sampling, to just 1.6%
at t = 1000ms. The drawback of such coarse sampling is that the granularity of
the monitoring is reduced, and one might miss important RTT variations.

1 10 100 1000
No. flows

1.1

1.2

1.3

1.4

1.5

1.6

Pa
ck

et
 ra

te
 (M

pp
s)

sample limit (ms)
0
10
100
1000

(a) Reporting individual RTTs

1 10 100 1000
No. flows

1.1

1.2

1.3

1.4

1.5

1.6

Pa
ck

et
 ra

te
 (M

pp
s)

(b) Aggregated RTT reports

Fig. 7. Impact of different levels of per-flow sample limiting and aggregation. Note that
the Y-axis does not start at 0.

As an alternative approach to sampling, aggregation can be used to reduce
the overhead from frequent RTT reports. We therefore also implement a bare
bones aggregation functionality to evaluate the feasibility of aggregating the RTT
values directly in the kernel. When aggregation is enabled, the eBPF programs
add each RTT value to a global histogram in a BPF map, instead of sending ev-
ery RTT value directly to user space. Additionally, the minimum and maximum

RTTs are tracked. The user space then pulls the aggregated RTT statistics once
per second and prints them out. Figure 7b shows the results when repeating the
experiment in Figure 7a using the aggregation. As can be expected, with a high
sample limit, and consequently few RTT values to aggregate, the aggregation
yields a very modest improvement. However, for smaller sample limits the ag-
gregation becomes more beneficial. In the scenario without any sampling, the
aggregation increases the packet rate at 1000 flows from 1.14 to 1.45Mpps. By
combining sampling and aggregation, we therefore expect ePPing to be able to
maintain a high level of performance, while still providing useful RTT metrics,
at significantly more than 1000 concurrent flows. Due to limitations with the
current testbed, we are however unable to validate performance beyond 1000
flows.

4 Conclusion

In this paper we propose using eBPF to passively monitor network latency,
and demonstrate the feasibility of this by implementing evolved Passive Ping
(ePPing). By using eBPF, ePPing is able to efficiently observe packets as they
pass through the Linux network stack without the overhead associated with
packet capturing. It does not require any modifications to the kernel or replacing
the network stack with DPDK, nor any special hardware support. Our evaluation
shows that ePPing delivers accurate RTTs and has much lower overhead than
PPing, being able to handle over 1 Mpps on a single core, corresponding to more
than 10 Gbps of throughput. We also demonstrate that sampling and aggregation
of RTT values in the kernel can be used to further reduce the overhead from
handling a large amount of RTT samples.

While ePPing overall performs well in our experiments, our evaluation is
heavily based on bulk TCP flows generated by iperf3. In future work we intend
to evaluate how ePPing fares with a more realistic workload by using traffic from
an ISP vantage point. Another important aspect to consider is what impact the
passive monitoring has on end-to-end latency. We are currently working on bet-
ter understanding ePPing’s impact on end-to-end latency. Preliminary findings
indicate that while ePPing only adds a couple of hundred nanoseconds of pro-
cessing latency to each packet (99th percentile of approximately 350 ns), it may
under certain scenarios increase end-to-end latency by hundreds of microseconds.

Furthermore, our current implementation of ePPing has some limitations.
Limitations inherent to using TCP timestamps are further discussed in Ap-
pendix A, with one of the primary ones being the lack of ability to monitor flows
where TCP timestamps are not enabled. Some of the these limitations could
be avoided by using sequence and acknowledgement numbers instead, although
that has its own set of limitations. We are also considering adding support for
other protocols, such as DNS and QUIC. Additionally, the sampling and aggre-
gation methods we employ in this work are relatively simple, and we are working
on more sophisticated ways to sample, filter and aggregate RTTs in-kernel to
provide enhanced RTT metrics while maintaining low overhead.

A Effects of using TCP timestamps to infer RTT

As briefly explained in Section 3.1, using TCP timestamps to match packets to
their corresponding ACKs may yield slightly different RTTs than when matching
sequence and ACK numbers. We here discuss these differences in further detail,
covering the pros and cons of each approach to passively monitor network latency.

5
7
7

�
�H
UU
R
U

$ %

6HT� ������OHQ ����76YDO� ���

$&.� ���
��

76HFU� �
��

6HT� ������OHQ ����
76YDO� ���

(a) Retransmission. Sequence and ac-
knowledgement matching suffer from the
retransmission ambiguity, which may
cause a large over- or underestimation of
the RTT. TCP timestamps can separate
the original from the retransmitted packet
and do therefore not have the ambiguity.

5
7
7

$ %

$&.� �����

76HFU� ���

6HT� ������OHQ ����
76YDO� ���

6HT� ������OHQ ����
76YDO� ���

$&.� �����

76HFU� ���

6HT� ������OHQ ����
76YDO� ���

5
7
7
��
�G
H
OD
\
�

�
�G
H
OD
\

(b) Delayed ACK. TCP timestamps will
always calculate the RTT between the
first packet being ACKed and the ACK,
always including the additional latency
from a delayed ACK. Matching sequence
and acknowledgement numbers will only
include the additional latency if the de-
layed ACK was triggered by a timeout.

Fig. 8. TCP timestamps and sequence and ACK numbers: Differences.

The decision to use TCP timestamps for ePPing was mainly based on having
a simple algorithm that avoids the TCP transmission ambiguity. As illustrated
in Figure 8a, retransmissions can cause approaches that match sequence and
ACK numbers to greatly overestimate or underestimate the RTT, unless they
also detect retransmissions to filter out such spurious RTT samples. However,
for TCP timestamps, the retransmission will typically have a newer TSval, and,
therefore, no additional precautions are needed to calculate a correct RTT.

if SEG.TSval ≥ TS.Recent and SEG.SEQ ≤ Last.ACK.sent then
TS.Recent← SEG.TSval;

end
Algorithm 1: RFC 7323 algorithm for how to update TS.Recent, which is
copied into the TSecr field when an ACK is sent.

Due to how TSecr is updated, TCP timestamps also handle delayed ACKs
a bit differently compared to sequence and ACK number matching: The echoed
TSecr value is not necessarily the latest TSval. Rather, RFC 7323 [5] speci-
fies that TSecr should be set to a recent Tsval, which is updated according to
Algorithm 1, and essentially results in TSecr being set to the TSval from the
oldest in-order unacknowledged segment. The effect of this is that RTTs based
on TCP timestamps will, by design, always include the additional latency from
delayed ACKs. On the other hand, matching sequence and ACK numbers will
only include the delayed ACK if it is triggered by a timeout, as shown in Fig-
ure 8b. Consequently, matching sequence and ACK numbers will usually result
in RTTs that are a bit closer to the underlying network latency, whereas using
TCP timestamps will result in RTTs more similar to those experienced by the
TCP stack. Both methods are, however, prone to include RTT spikes caused by
delayed ACKs timing out.

There are also two noteworthy drawbacks with relying on TCP timestamps:
Firstly, TCP timestamps are optional, and ePPing can therefore only monitor
TCP traffic with TCP timestamps enabled. A recent study [2] found that out
of the most common operating systems (Android, iOS, Windows, MacOS and
Linux), Windows was the only one not supporting TCP timestamps by default.
A lot of traffic these days goes through mobile devices running Android and
iOS, but Windows is still the dominant desktop OS, making this a noteworthy
limitation. Secondly, the TCP timestamp update rate limits how frequently we
can collect RTT samples within a flow. The study in [2] found that among servers
for popular websites, the most common update rate was once per millisecond,
which is what Linux uses since v4.13, but some updated at a slower rate of every
4ms or every 10ms. For most applications we deem that 1000 - 100 RTT samples
per second per flow is plenty, but for very fine-grained analysis requiring an RTT
sample for every ACK this could be problematic.

Furthermore, there are two edge cases in which matching TCP timestamps
may result in slightly overestimating the RTT beyond the delayed ACK com-
ponent: The first case is when a retransmission happens fast enough that the
TSval is not updated from the original transmission. For example, consider if the
retransmission in Figure 8a would still use TSval = 1. This can only occur if the
retransmission occurs faster than the TCP timestamp update rate, and may at
most overestimate the RTT with the TCP timestamp update period. With TCP
timestamps typically being updated every millisecond, this should be very rare in
most environments outside of for example data center networks. The second case
is when the TSval is updated during a delayed ACK and persists into packets
being acknowledged by the next ACK. For example, consider if the third packet
sent by A in Figure 8b would still have TSval = 2. In that case, the RTT for
the second ACK sent by B (ACK = 400) would incorrectly be calculated from
the second packet sent by A (Seq = 200) instead of from the third packet sent
by A (Seq = 300). This error can occur in the presence of delayed ACKs, and if
multiple packets within a flow have the same TSval. Thus, this is also bounded
to at most overestimate the RTT with one TCP timestamp period. This edge

case is more likely to occur than retransmissions without updated timestamps,
however, the magnitude of the error is still small compared to the spikes that
can be caused by delayed ACKs.

Finally, Figure 9 shows an example of how the different handling of delayed
ACKs and overestimations due to the second edge case can impact RTTs based
on TCP timestamps when compared to matching sequence and ACK numbers.
Here, a modified version of the experiment from Figure 4 is used, where the
latency applied with netem is 50ms and the traffic is sent in a burstier manner by
using iperf3’s internal pacing at 50ms intervals (-b 100M –pacing-timer 50000).
Figure 9a shows the additional latency due to the handling of delayed ACKs,
which is typically in the range between 0 to 100µs, with three instances exceeding
1ms, and one reaching 12.4ms. Meanwhile, Figure 9b shows the overestimation
for the 582 out of the 5104 RTT samples where the second edge case occurs.
These overestimations are of a similar scale as the difference due to delayed
ACKs, although the maximum error is just under 1ms. In contrast, both using
TCP timestamps and matching sequence and ACK numbers result in a few
RTT values of over 92ms, exceeding the configured latency by over 40ms, due
to delayed ACKs timing out.

count min median max
5104 0 34 12381

0 50 100 150
Delayed ACK latency (us)

0

500

1000

1500

Fr
eq

ue
nc

y

(a) Difference from including and exclud-
ing the additional latency component of
delayed ACKs.

count min median max
582 0 33 953

0 50 100 150
RTT overestimation (us)

0

50

100

150

Fr
eq

ue
nc

y

(b) Additional overestimation of RTT
from TCP timestamps due to the second
edge case.

Fig. 9. Difference between RTTs computed by matching TCP timestamps compared
to sequence and acknowledgement numbers.

In summary, using TCP timestamps may result in slightly higher RTT values
than matching sequence and ACK numbers, mainly due to different handling of
delayed ACKs. While ePPing could be modified to instead operate on sequence
and ACK numbers, it would then risk missing valid RTT samples, especially on
lossy links, and would still capture the largest RTT spikes from delayed ACKs.

References

1. Abranches, M., Michel, O., Keller, E., Schmid, S.: Efficient Network Monitoring
Applications in the Kernel with eBPF and XDP. In: IEEE NFV-SDN 2021 (2021).
https://doi.org/10.1109/NFV-SDN53031.2021.9665095

2. Barbette, T., Wu, E., Kostić, D., Maguire, G.Q., Papadimitratos, P., Chiesa, M.:
Cheetah: A high-speed programmable load-balancer framework with guaranteed
per-connection-consistency. IEEE/ACM Transactions on Networking 30(1) (2022).
https://doi.org/10.1109/TNET.2021.3113370

3. Barreda-Ángeles, M., Arapakis, I., Bai, X., Cambazoglu, B.B., Pereda-Baños, A.:
Unconscious physiological effects of search latency on users and their click be-
haviour. In: SIGIR ’15 (2015). https://doi.org/10.1145/2766462.2767719

4. Birge-Lee, H., Wang, L., Rexford, J., Mittal, P.: SICO: Surgical inter-
ception attacks by manipulating BGP communities. In: CCS ’19 (2019).
https://doi.org/10.1145/3319535.3363197

5. Borman, D., Braden, R.T., Jacobson, V., Scheffenegger, R.: TCP Extensions for
High Performance. Tech. Rep. RFC 7323, Section 3, Internet Engineering Task
Force (2014). https://doi.org/10.17487/RFC7323

6. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44(3) (2014).
https://doi.org/10.1145/2656877.2656890

7. Chen, X., Kim, H., Aman, J.M., Chang, W., Lee, M., Rexford, J.: Mea-
suring TCP round-trip time in the data plane. In: SPIN ’20 (2020).
https://doi.org/10.1145/3405669.3405823

8. Cheshire, S.: It’s the Latency, Stupid (2001), http://www.stuartcheshire.org/
rants/Latency.html, (accessed 2022-03-07)

9. Combs, G.: Tshark (2022), https://www.wireshark.org/docs/man-pages/tshark.
html, (accessed 2022-05-17)

10. Ghasemi, M., Benson, T., Rexford, J.: Dapper: Data plane performance diagnosis
of TCP. In: SOSR ’17 (2017). https://doi.org/10.1145/3050220.3050228

11. Heist, P.: IRTT (Isochronous Round-Trip Tester) (2021), https://github.com/
heistp/irtt, (accessed 2022-10-31)

12. Hillmann, P., Stiemert, L., Rodosek, G.D., Rose, O.: Dragoon: Advanced mod-
elling of IP geolocation by use of latency measurements. In: ICITST 2015 (2015).
https://doi.org/10.1109/ICITST.2015.7412138

13. Høiland-Jørgensen, T., Brouer, J.D., Borkmann, D., Fastabend, J., Her-
bert, T., Ahern, D., Miller, D.: The eXpress data path: Fast programmable
packet processing in the operating system kernel. In: CoNEXT ’18 (2018).
https://doi.org/10.1145/3281411.3281443

14. Isovalent: Cilium - Linux Native, API-Aware Networking and Security for Con-
tainers (nd), https://cilium.io, (accessed 2022-10-21)

15. Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Trans-
port. Tech. Rep. RFC 9000, Section 17.4, Internet Engineering Task Force (2021).
https://doi.org/10.17487/RFC9000

16. Kuznetsov, A., Yoshifuji, H.: Iputils (2022), https://github.com/iputils/iputils,
(accessed 2022-05-03)

17. Li, J., Wu, C., Ye, J., Ding, J., Fu, Q., Huang, J.: The com-
parison and verification of some efficient packet capture and process-
ing technologies. In: DASC/PiCom/CBDCom/CyberSciTech 2019 (2019).
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00177

https://doi.org/10.1109/NFV-SDN53031.2021.9665095
https://doi.org/10.1109/TNET.2021.3113370
https://doi.org/10.1145/2766462.2767719
https://doi.org/10.1145/3319535.3363197
https://doi.org/10.17487/RFC7323
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3405669.3405823
http://www.stuartcheshire.org/rants/Latency.html
http://www.stuartcheshire.org/rants/Latency.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://doi.org/10.1145/3050220.3050228
https://github.com/heistp/irtt
https://github.com/heistp/irtt
https://doi.org/10.1109/ICITST.2015.7412138
https://doi.org/10.1145/3281411.3281443
https://cilium.io
https://doi.org/10.17487/RFC9000
https://github.com/iputils/iputils
https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00177

18. Maheshwari, R., Krishna, C.R., Brahma, M.S.: Defending network system against
IP spoofing based distributed DoS attacks using DPHCF-RTT packet filtering
technique. In: ICICT 2014 (2014). https://doi.org/10.1109/ICICICT.2014.6781280

19. Meta: Katran: A high performance layer 4 load balancer (2022), https://github.
com/facebookincubator/katran, (accessed 2022-10-21)

20. Mockapetris, P.: Domain names - implementation and specification. Tech.
Rep. RFC 1035, Section 4.1.1, Internet Engineering Task Force (1987).
https://doi.org/10.17487/RFC1035

21. Nichols, K.: Pping: Passive ping network monitoring utility (2018), https://github.
com/pollere/pping, (accessed 2021-09-21)

22. RIPE NCC: Home — RIPE Atlas (nd), https://atlas.ripe.net/, (accessed 2022-10-
20)

23. Sengupta, S., Kim, H., Rexford, J.: Continuous in-network round-trip time moni-
toring. In: SIGCOMM ’22 (2022). https://doi.org/10.1145/3544216.3544222

24. Sharma, S., Woungang, I., Anpalagan, A., Chatzinotas, S.: Toward Tactile Internet
in beyond 5G Era: Recent Advances, Current Issues, and Future Directions. IEEE
Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.2980369

25. Shawn Ostermann: Tcptrace (2013), https://github.com/blitz/tcptrace, (accessed
2022-05-03)

26. Sundberg, S., Brunstrom, A., Ferlin-Reiter, S., Høiland-Jørgensen, T., Brouer,
J.D.: Efficient continious latency monitoring with eBPF - Resources (2023),
https://doi.org/10.5281/zenodo.7555410

27. Sundberg, S., Høiland-Jørgensen, T.: Bpf-examples: PPing using XDP and TC-
BPF (2022), https://github.com/xdp-project/bpf-examples/tree/master/pping,
(accessed 2023-01-26)

28. The Bufferbloat community: Bufferbloat.net (nd), https://www.bufferbloat.net/
projects/, (accessed 2022-05-05)

29. The Linux Foundation: eBPF - Introduction, Tutorials & Community Resources
(2021), https://ebpf.io/, (accessed 2022-05-03)

30. Vieira, M.A.M., Castanho, M.S., Paćıfico, R.D.G., Santos, E.R.S., Júnior,
E.P.M.C., Vieira, L.F.M.: Fast packet processing with eBPF and XDP: Con-
cepts, code, challenges, and applications. ACM Computing Surveys 53(1) (2020).
https://doi.org/10.1145/3371038

31. Vlahovic, S., Suznjevic, M., Skorin-Kapov, L.: The impact of network la-
tency on gaming QoE for an FPS VR game. In: QoMEX 2019 (2019).
https://doi.org/10.1109/QoMEX.2019.8743193

32. Wang, H., Zhang, X., Chen, H., Xu, Y., Ma, Z.: Inferring end-to-end la-
tency in live videos. IEEE Transactions on Broadcasting 68(2) (2022).
https://doi.org/10.1109/TBC.2021.3071060

33. Xhonneux, M., Duchene, F., Bonaventure, O.: Leveraging eBPF for pro-
grammable network functions with IPv6 segment routing. In: CoNEXT ’18 (2018).
https://doi.org/10.1145/3281411.3281426

34. Zhao, Z., Gao, S., Dong, P.: Flexible routing strategy for low-latency
transmission in software defined network. In: ICCBN 2021 (2021).
https://doi.org/10.1145/3456415.3456444

35. Zheng, Y., Chen, X., Braverman, M., Rexford, J.: Unbiased de-
lay measurement in the data plane. In: APOCS 2022 (2022).
https://doi.org/10.1137/1.9781611977059.2

https://doi.org/10.1109/ICICICT.2014.6781280
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://doi.org/10.17487/RFC1035
https://github.com/pollere/pping
https://github.com/pollere/pping
https://atlas.ripe.net/
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1109/ACCESS.2020.2980369
https://github.com/blitz/tcptrace
https://doi.org/10.5281/zenodo.7555410
https://github.com/xdp-project/bpf-examples/tree/master/pping
https://www.bufferbloat.net/projects/
https://www.bufferbloat.net/projects/
https://ebpf.io/
https://doi.org/10.1145/3371038
https://doi.org/10.1109/QoMEX.2019.8743193
https://doi.org/10.1109/TBC.2021.3071060
https://doi.org/10.1145/3281411.3281426
https://doi.org/10.1145/3456415.3456444
https://doi.org/10.1137/1.9781611977059.2

	Efficient continuous latency monitoring with eBPF

