
Cluster Capacity Issues

Introduction
Diagnosis
Lower Lane Environment testing
Conclussion:

Introduction
The RHACM observability dashboard is either incorrect or can be misleading with respect to CPU request as a percentage of allocatable CPU within the
cluster. This is a key metric for cluster health and capacity management, so it is essential that this is accurate.

A locally customised prometheus expression appears to be more accurate and can be further developed and integrated into our cluster fleet management.

We will raise a case with Red Hat for RCA on the dashboard metrics & suggestions on an ideal metric for alerting and capacity management of our fleet of
clusters.

Diagnosis
Ilustration from a production cluster (useast16), using RHACM grafana dashboard

This shows near linear growth of CPU requests due to "completed" jobs and shows the current value to be well over 100% (112%) ; which is patently
inaccurate as the kubernetes scheduler will not overallocate cpu_requests.

The local openshift grafana dashboard is showing a current snapshot value of 69.3% which also contradicts the RHACM observability dashboard.

The locally modified Prometheus expression appears more accurate , but also differs from the local openshift grafana dashboard:

Using the PROMQL below shows a cpu request utilisation of 76% of available & allocatable cpu resource as compared to 69.3% from openshift grafana &
112% from RHACM grafana

Modified prometheus expression for accurate utilisation of CPU requests as a percentage of allocatable resource

sum((kube_pod_container_resource_requests{resource="cpu"} * on (pod,namespace) group_left (phase)
kube_pod_status_phase{phase="Running"}) * on (node) group_left (role) kube_node_role{role="app"})/
sum(kube_node_status_allocatable{resource="cpu"} * on (node) group_left(role) kube_node_role{role="app"})

Notes:

The expression attempts to be more accurate by:

Aggregating cpu requests, , for pods in "Running" state only & for pods running on kube_pod_container_resource_requests{resource="cpu"}
"APP" nodes.
The cpu allocatable resource is also modified by only inclusing resources from "app" worker nodes.

While this is a custom prometheus expression for our "app" worker nodes, we will ask Red Hat to see if this can be improved?

Lower Lane Environment testing
A more extreme example test in a lower lane environment where we used a cronjob to continuously run with a high CPU request; the accumulated
completed jobs demonstrate that the cpu requests that accumulate are not actually impacting the cluster.

Sample cronjob details:

sample cronjob

apiVersion: batch/v1
kind: CronJob
metadata:
 creationTimestamp: "2023-03-06T17:17:10Z"
 generation: 5
 name: example1
 namespace: zkys6ky-gpu-namespace
 resourceVersion: "791697289"
 uid: 93c5a6bb-40d6-4a47-be21-45bd99822a1c
spec:
 concurrencyPolicy: Forbid
 failedJobsHistoryLimit: 9999999
 jobTemplate:
 metadata:
 creationTimestamp: null
 spec:
 template:
 metadata:
 creationTimestamp: null
 spec:
 containers:
 - args:
 - /bin/sh
 - -c
 - date; echo Hello from the Kubernetes cluster
 image: registry-eng.sdi.corp.bankofamerica.com/bac/ubi8-minimal:latest
 imagePullPolicy: Always
 name: hello
 resources:
 requests:
 cpu: "20"
 memory: "100"
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 dnsPolicy: ClusterFirst
 restartPolicy: Never
 schedulerName: default-scheduler
 securityContext: {}
 terminationGracePeriodSeconds: 30
 schedule: '* * * * *'
 successfulJobsHistoryLimit: 9999999
 suspend: false

CPU request commitment after 24 hours, shown by the overview RHACM observability dashboard looks normal at 49.74% for "local-cluster":

However, if we drill down, into local-cluster, we see incorrect values for Overestimation & CPU Requests Commitment of 1956% :

If we "explore" the metric "CPU requests Commitment" and display a range we see the effect of our test ranging from approximately 50% to 1950%

Conclussion:
I think this clearly demonstrates that thre is a bug in the RHACM observability dashboards.

We also want to confirm the best metrics to monitor cpu requests as a real percentage of available space.

The metric below is from the "kubernetes/Compute Resources/Cluster" dashboard shows 49.84% , which matches the RHACM overview dashboard:

metric from OCP dashboard

sum(namespace_cpu:kube_pod_container_resource_requests:sum{cluster=""}) / sum(kube_node_status_allocatable{job="
kube-state-metrics",resource="cpu",cluster=""})

While the custom query, shows a more conservative value of 59%

custom promql

sum((kube_pod_container_resource_requests{resource="cpu"} * on (pod,namespace) group_left (phase)
kube_pod_status_phase{phase="Running"}) * on (node) group_left (role) kube_node_role{role="app"})/
sum(kube_node_status_allocatable{resource="cpu"} * on (node) group_left(role) kube_node_role{role="app"})

Results:

	Cluster Capacity Issues

