
RESTful Atomic Transactions
Mark Little

Red Hat
mark.little@jboss.com

Michael Musgrove
Red Hat

mmusgove@redhat.com

Bill Burke
Red Hat

bill.burke@jboss.com

ABSTRACT

Atomic transactions are a well-known technique for guaranteeing
consistency in the presence of failures. The ACID properties of
atomic transactions ensure that even in complex business
applications consistency of state is preserved, despite concurrent
accesses and failures. However, although this is an extremely
useful fault-tolerance technique, it has yet to see widespread
acceptance or adoption within the Web. Some believe that such
capabilities are already provided within the Web whereas others
think it is simply not possible to provide transactions with REST
principles. In this paper we shall illustrate why transactions are
needed and how they can be provided in a manner that fits within
the Web’s architectural principles. We shall also discuss how this
protocol has been implemented using an open source project as
well as with the JAX-RS standard, which is part of Java
Enterprise Edition 6. Finally we will hint at an alternative
approach to ACID transactions that we are working on currently.

Keywords
REST, transactions, atomicity, ACID, compensation transactions.

1. INTRODUCTION
Distributed systems pose reliability problems not frequently
encountered in centralized systems. A distributed system
consisting of a number of computers connected by a network can
be subject to independent failure of any of its components, such as
the computers themselves, network links, operating systems, or
individual applications, and activities may take an indeterminate
duration to execute. Decentralization allows parts of the system to
fail while other parts remain functioning which leads to the
possibility of abnormal behavior of executing applications.
The Web is the largest distributed system in history and suffers
from failures that can affect both the performance and consistency
of applications run over it. Fortunately for the majority of users
these failures are a minor inconvenience and retrying a request
later is a sufficient compensation approach. However, there are
situations where retrying would not help, such as where
coordination of an outcome across a number of endpoints
(resources) has to be atomic, i.e., they either all do the work or
none of them do the work.

Atomic transactions are a well-known technique for guaranteeing
consistency in the presence of failures [1]. The ACID properties
of atomic transactions (Atomicity, Consistency, Isolation,
Durability) ensure that even in complex business applications
consistency of state is preserved, despite concurrent accesses and
failures. This is an extremely useful fault-tolerance technique,
especially when multiple, possibly remote resources are involved.
Consistency is especially important in a web application with
dynamic servers. When users navigate a web application, they are
viewing snapshots of the server state. If the snapshot is computed
within a transaction, the state returned to the user is consistent.

For many applications this is extremely important. Otherwise the
inconsistent view of the data could be confusing to the user. Many
developers have the incorrect perception that they do not need
transactions if all they are doing is reading a database. However,
if you are doing multiple reads and you want them to be
consistent, then you need to do them within a transaction.

Furthermore, even in the simplest of system, a single user
environment where all operations are idempotent, retrying
requires the capability to remember the list of participating
resources as well as the operation(s) that must be retransmitted,
potentially many times. As we shall see, fortunately this is an
inherent part of a transaction system, provided in a reliable
manner such that it can tolerate its own failures as well as those
that occur elsewhere within the environment.
In this paper we shall discuss a RESTful transaction protocol that
we have developed as well as a corresponding implementation.

2. WHY REST?
REST has grown in popularity recently for a variety of reasons.
Developers are attracted to the simplicity of the interfaces created.
Since HTTP is such a ubiquitous protocol, developers get
lightweight interoperability out of the box because most languages
and platforms support both client and server interactions with
their built-in HTTP support. REST also provides developers with
a strong set of architectural guidelines and constraints. As
developers explore these techniques, they are finding that their
distributed interfaces become more decoupled, usable, and
maintainable over time.
It is true that the Web and REST have progressed well without
transactions. However, we believe that there are circumstances
and particular applications where the use of transactions, or at
least atomicity, would be beneficial. As we have evangelized
REST to our customers and communities, we have found that a
frequent question is: how can application developers leverage
transactions?

This is often the result of having tried to do without transactions
initially and found the resulting systems inadequate. Sometimes
those users have come from backgrounds such as Java Enterprise
Edition, where they expect such capabilities and have architected
for them. Of course it could be that some of these applications
were designed inappropriately and the apparent need for
transactions would disappear through a careful redesign.
However, this cannot account for all of these use cases.
Furthermore, we believe from the input we have received from
architects and users that a REST-based transaction protocol is an
option that should be available for selection in certain situations.

To support this need, we decided to create a RESTful interface to
our existing transaction manager. Beyond satisfying the
requirements of our users and customers, we’ve found that a
RESTful interface to transactions has a lot of benefits in the

implementation of the protocol as a whole. All and all, it was a
win-win scenario.

3. WHY NOT WS-TRANACTIONS?
There is a standard for transactions within the WS-* architecture
[2]. WS-Transactions defines atomic and compensation based
models and has demonstrated interoperability between all of the
major transactions vendors. So the obvious question is why not
simply use WS-Transactions? There are several reasons for this
and we enumerate some of them below:

• The typical Web Services stack is often too large and
complex for many users to want to invest time and
effort in using. By leveraging HTTP as both a rich
protocol and message format we can reduce the
footprint at both the client and the server.

• The HTTP protocol already has a rich vocabulary that
we can use to provide a more flexible protocol. For
instance, we use Links to convey to clients different
ways in which they can interact with the transaction
manager.

• Out of the box the HTTP protocol conveys a set of
guarantees that both the client and server must honour.
For instance, if the coordinator PUTs a message to a
participant and there is a network failure, it is possible
to retransmit.

• The representational nature of REST allows us to
support multiple transaction interaction formats
simultaneously as well as let us evolve the protocol over
time.

For these and other reasons we believe that an approach based on
REST for integrating transaction systems and providing
transaction capabilities to applications, is more suitable than WS-
Transactions.

4. RESTFUL TRANSACTION
PROTOCOLS
For over a decade some of us have been involved with the
development of transaction protocols for the Web [3], but
concentrating mainly on Web Services. However, in the past few
years we have seen a shift in academia as well as industrial
research and development from attempting to use protocols based
around SOAP to those that more completely cooperate with the
Web. Within JBoss we have seen an increased requirement from
our users for transaction protocols that mirror the capabilities that
are available in other enterprise middleware environments, but
which are based on REST principles. Of course there are
continuing arguments as to the benefit of incorporating
transactions with REST [4], but from the perspective of our
customers it seems meaningful and is certainly a requirement.

As such in the next sections we shall describe the atomic
transaction protocol we have developed and implemented. Note

that in order to provide a concrete mapping to a specific
implementation, HTTP was chosen initially. Mappings to other
protocols, such as JMS, are possible but have been left for future
work.

4.1 THE REST-ATOMIC TRANSACTIONS
PROTOCOL
The REST-Atomic Transactions model recognizes that HTTP is a
good protocol for interoperability as much as for the Internet. As
such, interoperability of existing transaction processing systems is
an important consideration for this specification as it is for the
users who have requested it. Business-to-business activities will
typically involve back-end transaction processing systems either
directly or indirectly and being able to tie together these
environments is a common request in the enterprise middleware
arena.

Although traditional atomic transactions may not be suitable for
all Web based applications, they are most definitely suitable for
some, and particularly high-value interactions such as those
involved in finance. As a result, the REST-Atomic Transaction
model has been designed with interoperability in mind. However,
this protocol only defines how to accomplish atomic outcomes
between participations within the scope of the same transaction. It
is assumed that if all ACID properties are required then C, I and D
are provided in some way outside this scope of the protocol. This
means that some applications may use the REST-Atomic
Transaction purely to achieve atomicity. In fact this is consistent
with many transaction protocols, such as the OTS [5] and WS-
Atomic Transactions [6], which are also only concerned with
implementing the consensus protocol necessary to achieve
atomicity.

4.1.1 Reaching consensus
Traditional transaction systems use a two-phase protocol to
achieve atomicity between participants, as illustrated below:
during the first (preparation) phase, an individual participant must
make durable any state changes that occurred during the scope of
the transaction, such that these changes can either be rolled back
or committed later once the transaction outcome has been
determined. Assuming no failures occurred during the first phase,
in the second (commitment) phase participants may “overwrite”
the original state with the state made durable during the first
phase.

The REST-Atomic Transaction (REST-AT) model uses a
traditional two-phase commit protocol [7] with the following
optimizations:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WS-REST 2011, March 2011, Hyderabad, India.
Copyright 2011 ACM 978-1-4503-0623-2/11/03…$5.00.

• Presumed rollback: the transaction coordinator need not
record information about the participants in stable storage until it
decides to commit, i.e., until after the prepare phase has
completed successfully. A definitive answer that a transaction
does not exist can be used to infer that it rolled back.

• One-phase: if the coordinator discovers that only a single
participant is registered then it may omit the prepare phase.

• Read-only: a participant that is responsible for a service that
did not modify any transactional data during the course of the
transaction can indicate to the coordinator during prepare that it is
a read-only participant and the coordinator can omit it from the
second phase of the commit protocol.

The fact that two-phase commit is a blocking protocol raises an
important question: what happens if the coordinator fails?
Normally participants that have passed the prepare state would
remain blocked, potentially forever. Obviously that is not a
suitable situation in practice. Most transaction protocols and
implementations provide a way around this through heuristic
choices.

Participants that have successfully passed the prepare phase are
allowed to make autonomous decisions as to whether they commit
or rollback. A participant that makes such an autonomous choice
must record its decision in case it is eventually contacted to
complete the original transaction. If the coordinator eventually
informs the participant of the fate of the transaction and it is the
same as the autonomous choice the participant made, then there is
obviously no problem: the participant simply got there before the
coordinator did. However, if the decision is contrary, then a non-
atomic outcome has happened: a heuristic outcome, with a
corresponding heuristic decision [7]. Due to space limitations we
shall not say anything more on heuristics except that the REST-
AT protocol supports them.

Note, in what follows, relationships between resources are defined
using the Link Header specification [8]. Furthermore, due to space
considerations in the following discussion we omit some of the
error handling aspects of the protocol.

4.2 ARCHITECTURE
The diagram below illustrates the various resources defined within
the REST-AT protocol. We shall discuss each of these in the
following sections.

These components are enumerated below and discussed in the
following sections:

• Transaction Manager: this is a factory resource that is
responsible for creating new transactions. Once created,
the transaction manager has no further role to play in the
life of the transaction.

• Transaction Coordinator: this is a specific resource for
the transaction. It drives the two-phase commit protocol
and manages interactions with participants.

• Client: the user of transactions.

• Service: a transaction-aware service that performs work
that may need to be coordinated with other such
services elsewhere.

• Participant: a resource that manages the state changes
performed by the service in the context of a transaction.
The participant is driven through two-phase commit by
the coordinator.

4.3 STATE TRANSITIONS
A transaction coordinator and two-phase participant go through
the state transitions shown:

As such, all of the resources in the protocol have statuses that can
be represented as one of these values. Asking a resource to change
its state from, say, Active to Committed, may drive it through all
of the intermediate states and as a result trigger protocol specific
events, such as driving the two-phase commit protocol.

There are new media types to represent the state of a coordinator
and its participants, e.g., application/txstatus, which represents a
return type based on the scheme maintained at www.rest-star.org.
For example:
tx-status=TransactionActive

Other media types, e.g., tx+xml, are used to represent additional
information, such as additional status information, including the
time the transaction was created, the number of participants within
the transaction etc [9].

Understanding state and how it relates to transactions has
influenced our approach to the REST transaction protocol. We
have tried to ensure that the protocol embraces HATEOAS
principles rather than just using HTTP as a means of conveying
message protocols. For instance, if we consider the two-phase

commit protocol, one way of instructing a participant to prepare
and commit would be through the use of multiple URIs, such as
/participant/prepare and /participant/commit, where the root of the
URI (/participant) is the actual participant resource on which the
protocol is ultimately operating and whose state is ultimately
being changed as a result. A POST request on these URIs could
then be used to trigger the relevant operation.
However, as you will see in the remainder of this paper, we took a
different approach; one which is intimately tied to state
management and which we believe is more in the HATEOAS
approach. Rather than define a URI per operation, our protocol
requires a single URI for each participant (as well as coordinator)
and the invoker (e.g., the coordinator) requests that the participant
change its state to the relevant value via PUT, e.g., to prepare a
participant the coordinator would PUT the status Prepare to the
URI.

In the next sections we shall break down the protocol into its
various actors and the ways in which they can interact.

4.4 CLIENT INTERACTIONS
In the REST-AT protocol the transaction manager (transaction
factory) is represented by a resource. In the rest of this
specification we shall assume it is
http://www.fabrikam.com/transaction-factory, but it could be any
URI, since no protocol information is inferred by the structure.

In the next few sections we shall describe the various ways in
which the client interacts with the transaction factory and the
other components illustrated in the previous architecture diagram.
Although uniform URI structures are used in the examples that
follow, they can be of arbitrary format and the protocol does not
require a specific structure for the URIs.

4.4.1 Creating a transaction
In order to use a transaction it must first be created, or begun. A
client accomplishes this by issuing a POST request to the
transaction factory resource. A successful invocation will return
the Location header with the URI of the newly created
transaction-coordinator resource, which is only specific to the
newly created transaction. Several additional related URIs are also
returned, as illustrated in the example response from the
transaction factory:
HTTP 1.1 201 Created
Location: /transaction-coordinator/1234
Link:</transaction-coordinator/1234/terminator>;
rel=”terminator”,
Link:</transaction-coordinator/1234/participant>;
rel=”durable”,
Link:</transaction-coordinator/1234/anotherparticipant>;
rel=”volatile”
One of the Links (the terminator) is used to end the transaction.
The other two Links (the enlisting resources) are used for
participating in the transaction. The first (durable) is mandatory
and is for the traditional two-phase commit protocol, whereas the
second (volatile) is optional and is only returned if the
implementation supports the volatile two-phase commit protocol,
which we describe in a later section.

Note that performing a HEAD on the coordinator must return the
same link information.

Once the transaction is created it will normally be terminated by
the client issuing a commit or rollback request. However, in case
of failures such as a client crash, a timeout is associated with
every transaction. If the transaction has not been terminated
explicitly before the timeout elapses, the system will
automatically roll it back. Performing a POST as shown below
will start a new transaction with the specified timeout in
milliseconds.
POST /transaction-factory HTTP/1.1
timeout=1000

If the transaction is rolled back because of a timeout, the resources
representing the created transaction are deleted. All further
invocations on the transaction-coordinator or any of its related
URIs will return HTTP response code 410 if the implementation
records information about transactions that have rolled back, (not
necessary for presumed rollback semantics) but at a minimum
must return response code 404, i.e., that the specified resource
cannot be found. The invoker can assume this was a rollback.

Performing a GET on the transaction factory returns a list of all
transaction coordinator URIs, both active and those performing
recovery due to failures. Other statistical information, such as the
number of transactions that have committed and aborted, may also
be returned by an implementation.

<transaction-factory>
 <active-transactions>2</active-transactions>
 <coordinator>/transaction-coordinator/1234</coordinator>
 <coordinator>/transaction-coordinator/5678</coordinator>
 <committed>4567</committed>
 <rolledback>72</rolledback>
</transaction-factory>
In the current protocol, attempting to DELETE any transaction
will return a 403. However, we are currently discussing whether
or not it would be beneficial to map DELETE to a rollback
request.

4.4.2 Obtaining the transaction status
Performing a GET on a specific transaction, e.g., /transaction-
coordinator/1234, returns its current status if the appropriate
media type is specified:
GET /transaction-coordinator/1234 HTTP/1.1
Accept: application/txstatus
With an example response:
HTTP/1.1 200 OK
Content-Length: --
Content-Type: application/txstatus
tx-status=Active
It is possible for a client to try to obtain other information, such as
that related to any registered participants, if it specifies the
application/txstatusext+xml media type in the GET request. An
implementation may choose to require authenticated credentials
from the client in order for this to be successful.

4.4.3 Terminating a transaction
In order to commit or roll back the transaction, the client can PUT
the relevant status change to the terminator resource. For example,
performing a PUT as shown below will trigger the commit of the
transaction. Upon termination, the resource and all associated

resources are implicitly deleted. For any subsequent invocation
then an implementation may either return HTTP code 410 or 404
as discussed earlier.
PUT /transaction-coordinator/1234/terminator HTTP/1.1
Content-Type: application/txstatus
Content-Length: --
tx-status=Commit
The state of the transaction must be Active for this operation to
succeed. If the transaction is in an invalid state then the
implementation will return the HTTP 403 code. Otherwise it may
return either 200 or 202 HTTP codes (OK and Accepted,
respectively). In the latter case the Location header should contain
a URI upon which a GET may be performed to obtain the
asynchronous transaction outcome later.

4.5 TRANSACTION CONTEXT
PROPAGATION
When making an invocation on a resource that needs to participate
in a transaction, either the coordinator URI or the enlisting URI
(e.g., /transaction-coordinator/1234/participant) needs to be
propagated to the resource. The following approaches are
recommended.

• The URI is passed as a Link with the relevant service
interaction.

• Participant services return a Link to the client that can
be used to register participation with the coordinator.

4.6 COORDINATOR AND PARTICIPANT
INTERACTIONS
A two-phase aware participant is registered with the coordinator
by POST-ing on the enlisting resource obtained from the
transaction factory when the transaction was created originally:
POST /transaction-coordinator/1234/participant HTTP/1.1
participant=/participant-resource/+
terminator=/participant-resource/terminator

Here the terminator resource is the entity with which the
coordinator will interact and drive through the two-phase state
changes we mentioned earlier.

A successful POST will return HTTP code 201 and typically also
the Location header will point to a URI that the participant may
use later for recovery purposes.
HTTP/1.1 201 Created
Location: /participant-recovery/1234
In many cases, clients will need to interact with services and
resources that are not transaction aware. These services may still
provide logical mechanisms that are similar to prepare, commit,
and rollback. The specification defines a protocol and media type
for registering tx-unaware participants. Due to space constraints
we do not provide the details for this protocol.

Performing a GET on the participant resource will return the
current status.

4.6.1 Terminating a participant
The coordinator drives the participant through the two-phase
commit protocol by a PUT request to the participant’s terminator
URI with the relevant state change as the message content:

PUT /participant-resource HTTP/1.1
Content-Type: application/txstatus
Content-Length: --
tx-status=Prepare
If the operation fails, e.g., because a participant cannot be
committed, then the protocol requires that implementations return
the 409 code, i.e., Conflict. Furthermore, depending upon the
point in the two-phase commit protocol where such a failure
occurs, the transaction must be rolled back to ensure consistency.
If the transaction coordinator receives any response other than 200
for Prepare then the transaction will rollback automatically.
If the participant is not in the correct state for the requested
operation, e.g., it receives a Prepare when it has been already been
prepared, then HTTP gives us another convenient code to return:
412, i.e., Precondition Failed.

The protocol allows the read-only optimization of two-phase
commit that we mentioned earlier, to be modeled as a DELETE
request from the participant to the coordinator. In this way, the
participant can remove itself from the coordinator after prepare is
called and no further invocations will occur.

4.7 RECOVERY
In general it is assumed that failed actors in this protocol, i.e.,
coordinator or participants, will recover on the same URI as they
had prior to the failure. HTTP provides a number of options to
support temporary or permanent changes of address, including
301 (Moved Permanently) and 307 (Temporary Redirect).

However, sometimes it is possible that a participant may crash
and recover on a different URI, e.g., the original machine is
unavailable. In such a situation it may be that the transaction
coordinator is unable to complete the transaction, even during
recovery, because it cannot contact a recovered participant.

As a result the REST-AT protocol provides a way for a recovering
participant to update the information maintained by the
coordinator on its behalf. Performing a PUT on the /participant-
recovery URI returned by the coordinator during the initial
enlistment will overwrite the old participant URI with the new one
supplied, telling the coordinator where the participant is now
located.
PUT /participant-recovery/1234 HTTP/1.1
new-address=URI

4.8 PRE AND POST TWO-PHASE
COMMIT PROCESSING
Most modern transaction processing systems allow the creation of
participants that do not take part in the two-phase commit
protocol, but are informed before it begins and after it has
completed. They are called Synchronizations [5] and are typically
employed to flush volatile (cached) state, which may be being
used to improve performance of an application, to a recoverable
object or database prior to the transaction committing.
This protocol is accomplished in this specification by supporting
an additional two-phase commit protocol that encloses the two-
phase protocol we have already discussed. This protocol will be
termed the Volatile Two Phase Commit protocol, as the
participants involved in it are not required to be durable for the
purposes of data consistency and the coordinator will not record
any durable information on behalf of such participants.

The Volatile prepare phase executes prior to the Durable prepare:
only if this prepare succeeds will the Durable protocol be
executed. If the Durable protocol completes then this may be
communicated to the Volatile participants through the commit or
rollback phases. However, because the coordinator does not
maintain any information about these participants and the Durable
protocol has completed, this should be a best-effort approach
only, i.e., such participants may not be informed about the
transaction outcome. If that is a necessity then they should register
with the Durable protocol instead.

5. IMPLEMENTATION
We have implemented a prototype [10] of the protocol in Java.
The choice of Java and HTTP naturally led us to use the JAX-RS
API [11], which is part of the Java Enterprise Edition standard.
JAX-RS is the Java language support for building REST based
applications - it is both an annotation-based API for defining
resources and a run-time for mapping HTTP requests to Java
methods. We use the JAX-RS compliant Resteasy [12] project in
our implementation.

Although the algorithm (together with its optimizations) for
reaching consensus as described earlier in this paper is simply
stated, there are many subtleties and various failure scenarios that
must be handled in order to ensure that the protocol guarantees are
maintained. Given our industrial credentials, it has been important
that we provide a production ready implementation. Therefore we
used a mature transaction implementation to implement the
atomic guarantees required by the protocol. The JBoss transaction
manager (JBossTS) [13] is particularly suitable since it has an API
that generates notifications whenever there is a state transition
during the execution of the protocol and an API to the transaction
log, which is used to ensure persistent state changes can be
recorded and replayed reliably during recovery. Because of this
flexibility the same core transaction management implementation
has been used to implement a range of transaction protocols over
the years, including Web Services transactions.
From a design standpoint we created resources to match those
architectural components described in Section 4.2. However, the
protocol user must implement the participant resources since they
require semantic information that is only available to the user.
Participant responsibilities are to ensure that changes to a resource
can be driven through the consensus protocol, that changes to
resources are recoverable in the presence of failures and that
changes are durable and isolated from other changes.

The client is responsible for starting and stopping transactions and
for propagating the 'transaction URI' during interactions with
participants.

5.1 TRANSACTION CREATION
Following the protocol description in Section 4.4, the client sends
an HTTP POST request to the transaction factory resource, which
in turn uses JBossTS to start a new transaction. A transaction
coordinator resource is created to represent the transaction and its
URL is returned to the client in the HTTP response Location
Header.

Any language that provides an HTTP API can be used to
implement the client. For example a Java based client might look
like the code snippet shown in Listing 1.
import java.net.HttpURLConncetion;
...
// the well-known URL for creating transaction resources

String TXN_MGR_ADDR =
“http://127.0.0.1:8080/rest-tx/tx/transaction-manager”;

HttpURLConnection connection = new URL(TXN_MGR_ADDR).
 .openConnection();
connection.setRequestMethod(“POST”);
connection.setDoOutput(true);
OutputStream os = connection.getOutputStream();

os.write(new String("timeout=1000").getBytes());
os.flush();

/*
 * check that the transaction coordinator
 * resource was created:
 */
if (connection.getResponseCode() != HTTP_CREATED)
 // something went wrong

/*
 * the Location header of the response contains
 * the transaction URL
 */
String transactionURL =
 connection.getHeaderField("Location”);

Listing 1: Starting a Transaction

Although not shown in the code listing, the client can
subsequently examine the status of the transaction by performing
a GET request on the location URL which should return a
message with Content-Type “application/txstatus” and body “tx-
status=Active”

Also returned in the HTTP headers are the terminator and
enlisting resource URIs that the client can parse and propagate to
services:
Collection<String> linkHeaders;
String participantEnlistmentURL;
String terminatorURL;

linkHeaders = connection.getHeaderFields().get("Link");
participantEnlistmentURL = getLinkHeader(
 linkHeaders, "durable");
terminatorURL = getLinkHeader(linkHeaders, "terminator");

/*
 * the client can pass the participantEnlistmentURL
 * to resources in any way it sees fit. For example,
 * it could pass it using an HTTP query parameter.
 * If pURL is the URL of the participant then the
 * following would suffice:
 */
String query = String.format(“durable=%s",
 URLEncoder.encode(participantEnlistmentURL,
 “UTF-8”));
URLConnection connection = new URL(
 pURL + "?" + query).openConnection();

doStuffWithParticipant(connection);
doStuffWithOtherParticipants(query);

Listing 2: Propagating the Transaction

Later when the client is finished interacting with other participants
it will force all the changes to be made durable by ending the
transaction (by performing an HTTP PUT request to the
terminatorURL). The URL for creating a transaction is mapped to
a method on the transaction factory using JAX-RS annotations.
When the coordinator implementation starts a transaction it
creates an instance of the JBossTS Java transaction class and
invokes the begin method.

5.2 TRANSACTION ENLISTMENT
(PARTICIPANT PERSPECTIVE)
The client interacts with a participant and passes either the
'terminator' or 'enlisting' URL along with HTTP requests. In the
previous listing we showed the client propagating the URL using
an HTTP query parameter (though using a Link header is
probably preferable).

The participant should now associate a unit of work with the
transaction by creating 'participant' and 'terminator' resources
which are passed to the coordinator resource as Link headers by
sending an HTTP POST request to the 'enlisting' URL (which it
received from the client). The response to the POST contains a
URL in the Location header that the participant should durably
record for recovery purposes (for example if it fails and then
migrates to a new server then it will use the URL to inform the
coordinator that it has moved, as we discussed in Section 4.7).

5.3 TRANSACTION ENLISTMENT
(COORDINATOR PERSPECTIVE)
On receipt of the POST request via the 'enlisting' URL, the
coordinator resource creates a representation of the participant
that it will use to drive the participant through the two-phase
commit and/or recovery protocols later. Within JBossTS there is a
helper class, AbstractRecord, which can be used to represent a
range of transactional participants from databases through to file
systems. We create a specific instance of this class to represent the
REST-AT participant. This record is then enlisted with the
transaction. When the coordinator subsequently executes the
termination or recovery protocols the AbstractRecord instance
will be notified.

Since AbstractRecords also hook into the recovery sub system,
they are also notified when durable state must be read or written
(restore_state and save_state). An important piece of information
that is saved is the 'recovery' URL that the coordinator passed to
the participant during enlistment. The URL is used by the
coordinator to discover whether a participant has moved during
transaction completion.

5.4 TRANSACTION COMPLETION
When the client commits or cancels the transaction, it sends an
HTTP PUT request to the transaction 'terminator' URL. The
implementation of the resource representing 'terminator' locates
the instance it created to represent the transaction and calls the
appropriate commit operation on it. If the coordinator has failed
and restarted then the transaction will not be found and the client
can infer "presumed rollback" semantics.
When commit is called, JBossTS calls prepare on the participant
records enlisted with the transaction (unless the one-phase
optimization applies), and the participant record in turn issues an
HTTP PUT request to the real participant resource (via the
participant 'terminator' URL). The transaction system then calls
commit or rollback on each participant record depending on the
results of the prepare phase.

The commit request from the client is mapped onto a method in
the coordinator (using JAX-RS annotations) as show in the next
code listing:
@javax.ws.rs.PUT
@javax.ws.rs.Path(“transaction-manager/{TxId}/terminate")
public Response endTransaction(
 @PathParam("TxId")String txId, String content)

{
 Transaction tx = lookupTransaction(txId);
 if (tx == null)
 // then infer "presumed rollback" semantics

 /*
 * the content contains content type
 * application/txstatus which indicates whether the
 * client is commiting or rolling back the txn
 */
 boolean commit = isCommit(content);
 /*
 * tell JbossTS to associate the transaction
 * with the current thread
 */
 AtomicAction.resume(tx);

 // and commit or abort it
 commit ? tx.commit() : tx.abort();

 AtomicAction.suspend();
 ...
}

When tx.commit() is invoked the transaction system calls into the
AbstractRecord mechanism discussed in the previous section and
calls the topLevelPrepare() and topLevelCommit() methods of the
participant record.

5.5 RECOVERY
There is little benefit in providing transactional integrity unless
recovery is properly addressed. If the coordinator fails after it has
reached its commit decision then it will have logged that decision
and the recovery sub system takes over the responsibly for
completing the transaction. Similarly if a participant fails after the
commit decision is logged the recovery sub system will
periodically retry the final phase of the consensus protocol.
The recovery system (which runs separately from the transaction
factory) scans a transaction log looking for outstanding records
that have initially failed to complete the second phase of the
consensus protocol and attempts to replay that phase on the
record. The log contains durable representations of participant
records. So, in effect, the recovery system recreates the participant
record from the entry in the log and invokes its commit method,
which is then able to call PUT on the original participant
'terminator' URI.

6. CONCLUSIONS AND FUTURE WORK
There is an ongoing discussion about the validity of many
enterprise middleware capabilities, such as transactions, to the
REST area. Our work on the REST-AT protocol is not an attempt
to suggest that REST, or the world of HTTP, needs transactions
and without them is failing to deliver on enterprise capabilities.
However, in our experience there are a class of applications and
use cases where transaction protocols such as REST-AT could
simplify their development.

We believe that the protocol outlined in this paper is a good REST
citizen. However, the use of transactions within a REST
application can break those principles due to the traditional ACID
semantics. Fortunately we also believe that there is a solution in
what are commonly referred to as extended transactions.
Traditional transaction processing systems are sufficient to meet
requirements if an application function can be represented as a
single transaction. However, this is frequently not the case.
Transactions are most suitably viewed as short-lived entities,
performing stable state changes to the system; they are less well
suited for structuring long-lived application functions that run for

minutes, hours, days, or longer. Long-lived transactions may
reduce the concurrency in the system to an unacceptable level by
holding on to resources (usually by locking) for a long time.
Furthermore, if such a transaction aborts much valuable work
already performed will be undone [14][15].

Many business-to-business applications benefit from transactional
support in order to guarantee consistent outcome and correct
execution. These applications often involve long running
computations, loosely coupled systems and components that do
not share data, location, or administration and it is difficult to
incorporate atomic transactions within such architectures.
Fortunately much work has been done in the area of what are
often referred to as extended transactions, which loosen the
various ACID semantics [16][17][18][19].

A popular approach is Sagas [17], where services are requested to
do work but not in a provisional manner as they are in a
traditional transactional setting: the work is done immediately. If
the Saga needs to undo (roll back) then it instructs the services to
perform some compensation work. This means that in a loosely
coupled environment there is no retaining of locks or provisional
state change for long durations. Furthermore, in some models
there is also no requirement for a centralized coordinator, with
information about the transaction being distributed across
participants. It is for this reason that the Web Services transaction
standard [2] supports an extended transaction model as well as a
traditional ACID model, i.e., so that loosely coupled applications
that require some aspects of transaction semantics can obtain them
without forcing them to become closely coupled.

For similar reasons we have been working on a compensation
transaction model for REST [20]. At this stage the compensation
protocol is still under development but the goal is to provide
something that is not only a good REST citizen but also does not
turn a RESTful application that uses it into one that cannot claim
to be RESTful. We hope to be able to discuss this protocol in the
future as well as demonstrate it with another implementation
based on JBossTS.

7. REFERENCES
[1] X/Open CAE Specification – Distributed Transaction

Processing: The XA Specification, X/Open Document
Number XO/CAE/91/300.

[2] Web Services Transaction Technical Committee, OASIS,
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ws-tx

[3] M. C. Little et al, “Constructing Reliable Web Applications
using Atomic Actions”, Proceedings of the 6th World Wide
Web Conference, April 1997, Santa Clara, CA.

[4] InfoQ discussion, July 2009,
http://www.infoq.com/news/2009/06/rest-ts

[5] OMG Object Transaction Service, http://www.omg.org/cgi-
bin/apps/do_doc?formal/02-08-07.pdf

[6] “Shootout at the transaction corral; BTP versus WS-T”,
http://www.objectwatch.com/issue_41.htm

[7] J. Gray and A. Reuter, “Transaction Processing: Concepts
and Techniques”, Morgan Kaufmann, September 1992.

[8] M. Nottingham, “HTTP Header Linking”,
http://www.mnot.net/drafts/draft-nottingham-http-link-
header-07.txt, June 2006.

[9] REST-AT specification, July 2010,
http://www.jboss.org/reststar.

[10] Implementation of the REST-AT protocol:
http://anonsvn.jboss.org/repos/labs/labs/jbosstm/trunk/rest-
tx/

[11] JSR 311: JAX-RS: The Java API for RESTful Web Services,
http://jcp.org/en/jsr/detail?id=311

[12] Resteasy Project: a certified implementation of the JAX-RS
specification, http://www.jboss.org/resteasy

[13] JBoss Transactions, http://www.jboss.org/jbosstm

[14] D. J. Taylor, “How big can an atomic action be?”,
Proceedings of the 5th Symposium on Reliability in
Distributed Software and Database Systems, Los Angeles,
January 1986, pp. 121-124.

[15] A. K. Elmagarmid (ed), “Transaction models for advanced
database applications”, Morgan Kaufmann, 1992.

[16] C. T. Davies, “Data processing spheres of control”, IBM
Systems Journal, Vol. 17, No. 2, 1978, pp. 179-198.

[17] H. Garcia-Molina and K. Salem, “Sagas”, Proceedings of the
ACM SIGMOD International Conference on the
Management of Data, 1987.

[18] I. Houston, M. Little, et al. “The CORBA Activity Service
Framework for Supporting Extended Transactions”,
Proceedings of Middleware 2001, Heidelberg, 2001.

[19] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R.
Gunthor and C. Mohan, “Advanced transaction models in
workflow contexts”, Proc. of 12th Intl. Conf. on Data
Engineering, New Orleans, March 1996.

[20] REST Compensation Transaction protocol specification, July
2010,
http://community.jboss.org/wiki/CompensatingRESTfulTran
sactions

