
At times, this query is executed in 20+ sessions, lasting hours and hours:

SELECT PROCESSINSTANCEID, PROCESSID, START_DATE, END_DATE, STATUS, PARENTPROCESSINSTANCEID, OUTCOME, DURATION,
USER_IDENTITY, PROCESSVERSION, PROCESSNAME, CORRELATIONKEY, EXTERNALID, PROCESSINSTANCEDESCRIPTION, SLA_DUE_DATE,
SLACOMPLIANCE, LASTMODIFICATIONDATE, ERRORCOUNT
FROM
(SELECT LOG.PROCESSINSTANCEID, LOG.PROCESSID, LOG.START_DATE, LOG.END_DATE, LOG.STATUS, LOG.PARENTPROCESSINSTANCEID, LOG.OUTCOME,
LOG.DURATION, LOG.USER_IDENTITY, LOG.PROCESSVERSION, LOG.PROCESSNAME, LOG.CORRELATIONKEY, LOG.EXTERNALID,
LOG.PROCESSINSTANCEDESCRIPTION, LOG.SLA_DUE_DATE, LOG.SLACOMPLIANCE, COALESCE (INFO.LASTMODIFICATIONDATE, LOG.END_DATE) AS
LASTMODIFICATIONDATE,
(
SELECT COUNT (ERRINFO.ID)
FROM EXECUTIONERRORINFO ERRINFO
WHERE ERRINFO.PROCESS_INST_ID=LOG.PROCESSINSTANCEID
AND ERRINFO.ERROR_ACK=0
) AS ERRORCOUNT
FROM PROCESSINSTANCELOG LOG
LEFT JOIN PROCESSINSTANCEINFO INFO ON INFO.INSTANCEID=LOG.PROCESSINSTANCEID
) "dbSQL"
WHERE ERRORCOUNT > 0.0
ORDER BY START_DATE DESC FETCH FIRST 10 ROWS ONLY

The tables:
● PROCESSINSTANCELOG has 56M rows
● PROCESSINSTANCEINFO has 250K rows
● EXECUTIONERRORINFO has 3K rows

This is what happens:
● The table PROCESSINSTANCELOG is full table scanned and PROCESSINSTANCEINFO is outer joined. This alone already takes something like a a

minute
● However, the COUNT subquery is where things go awry. This subquery has to be executed for each and every row that is returned from

PROCESSINSTANCELOG. In other terms: we run 56M counts in a table of 3K rows! This takes more than an hour.
● What follows only just takes a few seconds, but for completeness sake:

o the 56M rows, completed with the ERRORCOUNT, are scanned and only the ones with an ERRORCOUNT > 0 are withheld.
o The remaining rows are sorted and only the first 10 rows are returned

So, we do an awful lot of work to only just return ten rows.

How can we avoid the COUNT-subquery? Two possibilities:

1. Do not COUNT the rows “inline”, but use an OUTER JOIN instead. Modifications are in red

SELECT PROCESSINSTANCEID, PROCESSID, START_DATE, END_DATE, STATUS, PARENTPROCESSINSTANCEID, OUTCOME, DURATION,
USER_IDENTITY, PROCESSVERSION, PROCESSNAME, CORRELATIONKEY, EXTERNALID, PROCESSINSTANCEDESCRIPTION, SLA_DUE_DATE,
SLACOMPLIANCE, LASTMODIFICATIONDATE, ERRORCOUNT
FROM
(SELECT LOG.PROCESSINSTANCEID, LOG.PROCESSID, LOG.START_DATE, LOG.END_DATE, LOG.STATUS, LOG.PARENTPROCESSINSTANCEID, LOG.OUTCOME,
LOG.DURATION, LOG.USER_IDENTITY, LOG.PROCESSVERSION, LOG.PROCESSNAME, LOG.CORRELATIONKEY, LOG.EXTERNALID,
LOG.PROCESSINSTANCEDESCRIPTION, LOG.SLA_DUE_DATE, LOG.SLACOMPLIANCE, COALESCE (INFO.LASTMODIFICATIONDATE, LOG.END_DATE) AS
LASTMODIFICATIONDATE,
-- the following line ...
eeinfo.errorcount AS ERRORCOUNT
-- ... replaces this COUNT subquery (commented out)
--- (SELECT COUNT (ERRINFO.ID)
--- FROM EXECUTIONERRORINFO ERRINFO
--- WHERE ERRINFO.PROCESS_INST_ID=LOG.PROCESSINSTANCEID
--- AND ERRINFO.ERROR_ACK=0) AS ERRORCOUNT
FROM PROCESSINSTANCELOG LOG
--
LEFT JOIN PROCESSINSTANCEINFO INFO
ON INFO.INSTANCEID=LOG.PROCESSINSTANCEID
--
LEFT OUTER JOIN (
select PROCESS_INST_ID, count(*) as ERRORCOUNT
from EXECUTIONERRORINFO
where ERROR_ACK=0
group by PROCESS_INST_ID
having count(*) > 0
) eeinfo
on eeinfo.PROCESS_INST_ID = LOG.PROCESSINSTANCEID
--
) "dbSQL"
WHERE ERRORCOUNT > 0.0
ORDER BY START_DATE DESC FETCH FIRST 10 ROWS ONLY
/

Response time? The query returns even before my finger leaves the ENTER button:

2

Now I
think of it: even the “WHERE ERRORCOUNT > 0.0” condition is no longer needed as

2. Second alternative: as EXECUTIONERRORINFO is a very small table, make this the driving table. After all, we are only interested in the cases that
have an ERRORCOUNT > 0.

SELECT PROCESSINSTANCEID, PROCESSID, START_DATE, END_DATE, STATUS, PARENTPROCESSINSTANCEID, OUTCOME, DURATION,
USER_IDENTITY, PROCESSVERSION, PROCESSNAME, CORRELATIONKEY, EXTERNALID, PROCESSINSTANCEDESCRIPTION, SLA_DUE_DATE,
SLACOMPLIANCE, LASTMODIFICATIONDATE, ERRORCOUNT
FROM
(SELECT LOG.PROCESSINSTANCEID, LOG.PROCESSID, LOG.START_DATE, LOG.END_DATE, LOG.STATUS, LOG.PARENTPROCESSINSTANCEID, LOG.OUTCOME,
LOG.DURATION, LOG.USER_IDENTITY, LOG.PROCESSVERSION, LOG.PROCESSNAME, LOG.CORRELATIONKEY, LOG.EXTERNALID,
LOG.PROCESSINSTANCEDESCRIPTION, LOG.SLA_DUE_DATE, LOG.SLACOMPLIANCE, COALESCE (INFO.LASTMODIFICATIONDATE, LOG.END_DATE) AS
LASTMODIFICATIONDATE,
(SELECT COUNT (ERRINFO.ID)

3
FROM EXECUTIONERRORINFO ERRINFO
WHERE ERRINFO.PROCESS_INST_ID=LOG.PROCESSINSTANCEID AND
ERRINFO.ERROR_ACK=0) AS ERRORCOUNT FROM PROCESSINSTANCELOG LOG
--
LEFT JOIN PROCESSINSTANCEINFO INFO
ON INFO.INSTANCEID=LOG.PROCESSINSTANCEID
--
WHERE LOG.PROCESSINSTANCEID
in (
select PROCESS_INST_ID
from EXECUTIONERRORINFO
where ERROR_ACK=0
)
--
) "dbSQL"
ORDER BY START_DATE DESC FETCH FIRST 10 ROWS ONLY
/

Same response time: close to nothing.

