
Administering the API Gateway, 3scale 2.11
December 10, 2021

CHAPTER 12. INTEGRATING 3SCALE AND AN OPENID
CONNECT IDENTITY PROVIDER
To authenticate API requests, 3scale can integrate with an identity provider that complies with the

OpenID Connect specification. The identity provider can be Red Hat Single Sign-on (RH-SSO) or a

third-party identity provider that implements default Keycloak client registration.

The foundation for OpenID Connect is the OAuth 2.0 authentication mechanism, which requires a

JSON Web Token (JWT) in an API request to authenticate that request. When you integrate 3scale

and an OpenID Connect identity provider, the process has two main parts:

● The APIcast gateway parses and verifies the JWT in the request. If successful, this
authenticates the identity of the API consumer client application as well as the particular
application end-user.

● The 3scale Zync component synchronizes 3scale application details with the OpenID Connect
identity provider.

3scale supports both of these integration points when Red Hat Single Sign-On (RH-SSO) is the

OpenID Connect identity provider. See the supported version of RH-SSO on the Supported

Configurations page. However, RH-SSO is not a requirement. You can use any identity provider that

supports the OpenID Connect specification and default Keycloak client registration. 3scale APIcast

integration is tested with RH-SSO and ForgeRock.

Page: 1

https://openid.net/connect/
https://wjw465150.gitbooks.io/keycloak-documentation/content/securing_apps/topics/client-registration.html
https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2798521
https://www.forgerock.com/

The following sections provide information and instructions for configuring the integration between 3scale and
an OpenID Connect identity provider:

● 12.1. Overview of integrating 3scale and an OpenID Connect identity provider
● 12.2. How the 3scale APIcast gateway processes JSON web tokens
● 12.3. How 3scale Zync synchronizes application details with OpenID Connect identity providers
● 12.4. Integrating 3scale with Red Hat Single Sign-on as the OpenID Connect identity provider
● 12.5. Integrating 3scale with third-party OpenID Connect identity providers
● 12.6. Testing 3scale integrations with OpenID Connect identity providers
● 12.7 Example of a 3scale integration with an OpenID Connect identity provider

12.1. Overview of integrating 3scale and an OpenID Connect
identity provider
The figure below shows the main 3scale components. The 3scale API gateway is where authentication
happens. API providers use the Admin Portal to set up authentication flows. If a 3scale-managed API does not
authenticate requests with standard API keys or with application identifier and key pairs, then API providers
must also integrate 3scale with an OpenID Connect identity provider. In the figure below, the OpenID Connect
identity provider is Red Hat Single Sign-on. With authentication configured and a live Developer Portal, API
consumers use your Developer Portal to subscribe to an application plan that provides access to a particular
3scale API product. When OpenID Connect is integrated with 3scale, subscription triggers the OpenID
Connect identity provider to send authentication credentials to the API consumer who subscribed.

Page: 2

https://docs.google.com/document/d/1-NM1QLhPTc0mJmA_sn9-IDbzWWi5sWmbvAXYbvvZ3HA/edit#heading=h.dkwwzdhp1d0q

After subscribing to an application plan, an API consumer receives authentication credentials from the
integrated OpenID Connect identity provider. These credentials enable authentication of requests that an API
consumer application sends to an upstream API, which is the API that is provided by the 3scale product that
the API consumer has access to. Credentials include a client ID and a client secret.

An application that an API consumer creates uses these credentials to obtain a JSON web token from the
OpenID Connect identity provider. An API consumer must develop an application that does the following for
each call to the upstream API backend:

1. Send a request that contains the client ID and client secret to the OpenID Connect identity provider.
2. Receive a JSON web token (JWT) from the identity provider upon authentication.
3. Send an API request that contains the JWT to the upstream API backend.

The 3scale API gateway receives requests from API consumers and checks the JWT in the request. If the
gateway verifies the JWT, the gateway sends the request, including the JWT, to the upstream API backend. In
the figure below, the OpenID Connect identity provider is Red Hat Single Sign-on but configuration with other
OpenID Connect identity providers is possible.

Page: 3

12.2. How the 3scale APIcast gateway processes JSON web
tokens
The 3scale APIcast gateway processes each request by checking the JSON web token (JWT) that the OpenID
Connect identity provider returns when it authenticates a request. The request now contains the JWT in the
format that was issued by the integrated OpenID Connect identity provider. The JWT must be in the
Authorization header and it must use the Bearer schema. For example, the header should look like this:

Authorization: Bearer

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2lkcC5leGFtcGxlL

mNvbSIsInN1YiI6ImFiYzEyMyIsIm5iZiI6MTUzNzg5MjQ5NCwiZXhwIjoxNTM3ODk2MDk0LCJ

pYXQiOjE1Mzc4OTI0OTQsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiQmVhcmVyIn0.LM2PSmQ0k

8mR7eDS_Z8iRdGta-Ea-pJRrf4C6bAiKz-Nzhxpm7fF7oV3BOipFmimwkQ_-mw3kN--oOc3vU1

RE4FTCQGbzO1SAWHOZqG5ZUx5ugaASY-hUHIohy6PC7dQl0e2NlAeqqg4MuZtEwrpESJW-VnGd

ljrAS0HsXzd6nENM0Z_ofo4ZdTKvIKsk2KrdyVBOcjgVjYongtppR0cw30FwnpqfeCkuATeINN

5OKHXOibRA24pQyIF1s81nnmxLnjnVbu24SFE34aMGRXYzs4icMI8sK65eKxbvwV3PIG3mM0C4

ilZPO26doP0YrLfVwFcqEirmENUAcHXz7NuvA

There are a number of open source tools for securely decoding a JWT. Be careful that you do not decode a
JWT in a public web tool. In a decoded JWT, you can see that the token has three parts:

● The header provides information about how the token was formed and what algorithm was

used to sign the token.

● The payload identifies the API consumer that sent the request. The details can include the

read and write actions that this API consumer can perform, an email address for the API

consumer, and other information about the API consumer.

● The signature is a cryptographic signature that indicates that the token has not been tampered

with.

Page: 4

The gateway checks the JWT for the following characteristics:

● Integrity: Is the JWT being tampered with by a malicious user? Is the signature valid?

The JWT contains a signature that the token’s receiver can verify to ensure that the token was

signed by a known issuer and that its content has not been changed. 3scale supports RSA

signatures based on public/private key pairs. The issuer signs the JWT token by using a

private key. APIcast verifies the token by using a public key. APIcast uses OpenID Connect

Discovery for getting the JSON Web Keys (JWK) that can be used to verify the JWT signature.

● Timing: Is the current time later than the time when the token becomes acceptable for

processing? Has the JWT expired?

● Issuer: Was the JWT issued by an OpenID Connect identity provider that is known to the

3scale gateway? In other words, the gateway verifies that the issuer specified in the JWT is the

same issuer that an API provider configured in the OpenID Connect Issuer field. Specification

of the issuer is part of the procedure for integrating 3scale and an OpenID Connect identity

provider.

● Client ID: Does the token contain a 3scale client application ID that is known to the 3scale

gateway? This client ID must match a ClientID Token Claim that an API provider specified in

the procedure for integrating 3scale with the OpenID Connect identity provider.

If any JWT validation or authorization checks fail, the APIcast gateway returns an Authenication failed

error. Otherwise, the gateway sends the request to the 3scale upstream API backend. The

Authorization header remains in the request, so the API backend can also use the JWT to check

the user and client identity.

Page: 5

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41

12.3. How 3scale Zync synchronizes application details with

OpenID Connect identity providers
Zync is a 3scale component that reliably pushes data about 3scale applications to an OpenID Connect

identity provider. In this interaction, a 3scale application corresponds to an OpenID Connect identity

provider client. In other words, Zync communicates with the OpenID Connect identity provider to

create, update and delete OpenID Connect clients.

Zync implements Keycloak default client registration. The use of this API means that the client

representation is specific to Keycloak and RH-SSO. The identity provider returns a client ID and a

client secret, which are the authentication credentials for the 3scale application.

Zync pushes the data in the form of notifications. Each time 3scale creates, updates, or deletes an

application, Zync sends a notification to the OpenID Connect identity provider to update the

corresponding client accordingly.

Successful synchronization requires the following settings for a given 3scale product:

● The authentication mechanism is OpenID Connect.
● The OpenID Connect Issuer Type is either:

○ RH-SSO when Red Hat Single Sign-on is the OpenID Connect identity provider. With

this issuer type, Zync sends client registration requests according to OpenID Connect

Dynamic Client Registration.

○ REST API for other OpenID Connect identity providers. With this issuer type, Zync

sends client registration requests as shown in the Zync REST API example.

● A URL such as the following is the OpenID Connect Issuer:
http://id:secret@example.com/api_endpoint

Page: 6

https://wjw465150.gitbooks.io/keycloak-documentation/content/securing_apps/topics/client-registration.html
https://openid.net/specs/openid-connect-registration-1_0.html#RegistrationRequest
https://openid.net/specs/openid-connect-registration-1_0.html#RegistrationRequest
https://github.com/3scale/zync/tree/master/examples/rest-api

When deployed to an OpenShift cluster, there are two Zync processes:

● zync is a REST API that receives notifications from system-sidekiq and enqueues background

jobs to zync-que. There are notifications for new, updated, and deleted 3scale applications.

● zync-que processes these background jobs, which communicate with system-app, with the

cluster API, and with the OpenID Connect identity provider.

For example, when RH-SSO is the configured OpenID Connect identity provider, Zync creates,

updates and deletes clients in the RH-SSO realm.

12.4. Integrating 3scale with Red Hat Single Sign-on as the
OpenID Connect identity provider
As an API provider, you can integrate 3scale with Red Hat Single Sign-On (RH-SSO) as the identity

provider for authenticating API requests. Part of this procedure is to establish an SSL connection

between 3scale Zync and Red Hat Single Sign-On (RH-SSO), because Zync communicates with

RH-SSO to exchange tokens. If you do not configure the SSL connection between Zync and

RH-SSO, the tokens would be open for anyone listening.

3scale 2.2 and later supports custom CA certificates for RH-SSO with the SSL_CERT_FILE

environment variable. This variable points to the local path of the certificates bundle.

Integrating 3scale with RH-SSO as the OpenID Connect identity provider consists of configuring the

following elements in the following order:

● Optional: 3scale Zync to use custom Certificate Authority certificates. This is not required if RH-SSO
uses a certificate issued by a trusted CA.

● Red Hat Single Sign-on to have a 3scale client
● 3scale to work with Red Hat Single Sign-on

Page: 7

Prerequisites

● The RH-SSO server must be available over https and it must be reachable by zync-que. To
test this, you can run curl https://rhsso-fqdn

● OpenShift cluster administrator permissions.

● A 3scale API product for which you want to configure OpenID Connect integration with
RH-SSO.

Procedure

1. Optional: Configure 3scale Zync to use custom Certificate Authority (CA) certificates. This is not
required if RH-SSO uses a certificate issued by a trusted CA.

1. Replace the placeholders as appropriate and run the following command to get a proper
certificate chain:

echo -n | openssl s_client -connect <rhsso_fqdn>:<rhsso_port>
-servername <rhsso_fqdn> --showcerts | sed -ne '/-BEGIN
CERTIFICATE-/,/-END CERTIFICATE-/p' > customCA.pem

Some versions of OpenSSL accept -showcerts instead of --showcerts. If necessary,
modify the command according to the version you are using. Replace the
<rhsso_fqdn> placeholder with the fully qualified domain name (fqdn) in
human-readable format, for example, host.example.com.

2. Validate the new certificate with the following cURL command. The expected response
is a JSON configuration of the RH-SSO realm. If validation fails your certificate may not
be correct.

curl -v https://<secure-sso-host>/auth/realms/master --cacert
customCA.pem

Page: 8

https://rhsso-fqdn

3. Gather the existing content of the /etc/pki/tls/cert.pem file on the Zync pod by
running the following command:

oc exec <zync-que-pod-id> cat /etc/pki/tls/cert.pem > zync.pem

4. Append the contents of the custom CA certificate file to zync.pem:

cat customCA.pem >> zync.pem

5. Attach the new file to the Zync pod as a configmap object:

oc create configmap zync-ca-bundle --from-file=./zync.pem
oc set volume dc/zync-que --add --name=zync-ca-bundle
--mount-path /etc/pki/tls/zync/zync.pem --sub-path zync.pem
--source='{"configMap":{"name":"zync-ca-bundle","items":[{"key":
"zync.pem","path":"zync.pem"}]}}'

Addition of the certificate bundle to the Zync pod is complete.

6. Verify that the certificate is attached and the content is correct:

oc exec <zync-pod-id> cat /etc/pki/tls/zync/zync.pem

7. Configure the SSL_CERT_FILE environment variable on Zync to point to the new CA
certificate bundle:

oc set env dc/zync-que SSL_CERT_FILE=/etc/pki/tls/zync/zync.pem

2. In your OpenShift RH-SSO dashboard, configure RH-SSO to have a 3scale client:

1. Create a realm for a 3scale client or select an existing realm to contain your 3scale
client.

2. In the new or selected realm, create a client:

Page: 9

a. In the Client ID field, specify a name that helps you identify this client as the
3scale client, for example oidc-issuer-for-3scale.

b. Set the Client Protocol field to openid-connect.

c. Save the new client.

3. In the settings for the new client, set and save the following:

a. Access Type to confidential.
b. Standard Flow Enabled to OFF.
c. Direct Access Grants Enabled to OFF.
d. Service Accounts Enabled to ON. This setting enables this client to issue

service accounts.

4. Set the service account roles for the client:

a. Navigate to the Service Account Roles tab of the client.
b. In the Client Roles dropdown list, click realm-management.
c. In the Available Roles pane, select manage-clients list and assign the role by

clicking Add selected >>.

5. Note the client credentials:
a. Make a note of the client ID (<client_id>).
b. Navigate to the Credentials tab of the client and make a note of the Secret field

(<client_secret>).

6. Add a user to the realm:
a. On the left side of the window, expand Users.
b. Click Add user.
c. Enter a username, set Email Verified to ON, and click Save.
d. On the Credentials tab, set the password. Enter the password in both fields, set

the Temporary switch to OFF to avoid the password reset at the next login, and
click Reset Password.

e. When the pop-up window displays, click Change password.

Page: 10

3. In the 3scale Admin Portal, configure 3scale to work with Red Hat Single Sign-on:

1. In the top level selector, click Products and select the 3scale API product for which you
are enabling OpenID Connect authentication.

2. Navigate to [your_product_name] > Integration > Settings.
3. Under Authentication , select OpenID Connect Use OpenID Connect for any OAuth 2.0

flow. This displays the OPENID CONNECT (OIDC) BASICS section.

4. In the OpenID Connect Issuer Type field, ensure that the setting is Red Hat Single
Sign-On.

5. In the OpenID Connect Issuer field, enter the URL for the configured OpenID Connect
identity provider. The format for this URL looks like this:

https://<client_id>:<client_secret>@<rhsso_host>:<rhsso_port>/au
th/realms/<realm_name>

Replace the placeholders with the noted RH-SSO client credentials, the host and port
for your RH-SSO server, and the name of the realm that contains the RH-SSO client.

6. Under OIDC AUTHORIZATION FLOW, select one or more of the following:
○ Authorization Code Flow
○ Implicit Flow
○ Service Accounts Flow
○ Direct Access Grant Flow

This configures how API consumers receive JSON web tokens from the OpenID
Connect identity provider. When 3scale integrates Red Hat Single Sign-on as the
OpenID Connect identity provider, Zync creates RH-SSO clients that have only the
Authorization Code Flow enabled. This flow is recommended as the most secure and
suitable for most cases. Be sure to select an OAuth 2.0 flow that is supported by your
OpenID Connect identity provider.

7. Scroll down and click Update Product to save the configuration.

Page: 11

https://auth0.com/docs/authorization/flows

12.5. Integrating 3scale with third-party OpenID Connect
identity providers
As an API provider, you can configure an HTTP integration between 3scale and a third-party OpenID

Connect identity provider. That is, you can configure an OpenID Connect identity provider other than

Red Hat Single Sign-on. 3scale can use this integration to authenticate requests from API consumers

and to update the third-party identity provider with the latest 3scale application details.

Most of the work required to integrate 3scale with a third-party OpenID Connect identity provider

involves the following two tasks:

● Meeting the 3scale Zync-related prerequisites.

● Configuring your OpenID Connect identity provider to authorize requests from 3scale

applications.

After that, you just need to configure a 3scale API product to use your OpenID Connect identity

provider. You do this in the 3scale Admin Portal.

Prerequisites

● 3scale Zync is installed.

● Your chosen third-party OpenID Connect identity provider:

○ Adheres to Zync’s OpenAPI specification as provided by 3scale.
○ Allows registration of a client with <client_id> & <client_secret> declared as a

parameter in the request. 3scale is always the source of client identity management in
the integration between 3scale and a third-party OpenID Connect identity provider.

○ Is configured for authorizing requests from 3scale applications.

Page: 12

https://github.com/3scale/zync/blob/3scale-2.11-stable/INSTALL.md
https://github.com/3scale/zync/blob/3scale-2.11-stable/examples/rest-api/openapi.yml

● An adapter for Zync to interact with your OpenID Connect identity provider. To create this
adapter, you can modify rest_adapter.rb, which is part of the 3scale Zync REST API example.

You can include the rest_adapter.rb module in the zync pod according to the method that
best fits your requirements. For example, you could mount a configMap through a volume or
you can build a new image for Zync. oc build a new image for Zync.

Procedure

1. In the 3scale Admin Portal, in the top level selector, click Products and select the 3scale API
product for which you are enabling OpenID Connect authentication.

2. Navigate to [your_product_name] > Integration > Settings.

3. Under Authentication, select OpenID Connect Use OpenID Connect for any OAuth 2.0 flow.

This displays the OPENID CONNECT (OIDC) BASICS section.

4. In the OpenID Connect Issuer Type field, ensure that the setting is REST API.

5. In the OpenID Connect Issuer field, enter the URL for your OpenID Connect identity provider.
The format for this URL looks like this:

https://<client_id>:<client_secret>@<oidc_host>:<oidc_port>/<endpoint>

For example, in the Zync rest_adapter.rb example, the URL endpoint is hard-coded as
{endpoint}/clients. Your endpoint might be {endpoint}/register or something else.

6. Under OIDC AUTHORIZATION FLOW, select one or more of the following:

○ Authorization Code Flow
○ Implicit Flow
○ Service Accounts Flow
○ Direct Access Grant Flow

Page: 13

https://github.com/3scale/zync/blob/3scale-2.11-stable/app/adapters/rest_adapter.rb
https://github.com/3scale/zync/tree/3scale-2.11-stable/examples/rest-api
https://github.com/3scale/zync/blob/3scale-2.11-stable/app/adapters/rest_adapter.rb

This configures how API consumers receive JSON web tokens from the OpenID Connect
identity provider. The Authorization Code Flow is recommended as the most secure and
suitable for most cases. Be sure to select an OAuth 2.0 flow that is supported by your OpenID
Connect identity provider.

7. Scroll down and click Update Product to save the configuration.

12.6. Testing 3scale integrations with OpenID Connect identity
providers
After integrating 3scale with an OpenID Connect identity provider, you should test the integration to

confirm the following:

● API consumers receive access credentials when they subscribe to a 3scale-managed API.

● The 3scale APIcast gateway can authenticate requests from API consumers.

Prerequisites
● Integration between 3scale and your OpenID Connect identity provider is in place for a particular 3scale

product.

● An application plan is available for API consumers to subscribe to in your Developer Portal. This

application plan provides access to a 3scale-managed API, that is, a 3scale product, for which you

configured OpenID Connect authentication.

● An application that sends requests to the upstream API. The upstream API is a backend of the 3scale

product that the API consumer has access to as a result of the subscription. Alternatively, you can use

Postman to send requests.

Page: 14

https://auth0.com/docs/authorization/flows

Procedure

1. In the Developer Portal, subscribe to an application plan.

This creates an application in the Developer Portal. The OpenID Connect identity provider
should return a client ID and a client secret that you can see in your application’s page in the
Developer Portal.

2. Note the client ID and the client secret for the application.

3. Verify that your OpenID Connect identity provider now has a client with the same client ID and
client secret. For example, when RH-SSO is the OpenID Connect identity provider, you should
see a new client in the configured Red Hat Single Sign-on realm.

4. In the application page in the Developer Portal, in the REDIRECT URL field, enter the URL for
the application that sends API requests to the upstream API.

5. Verify that your OpenID Connect identity provider has the correct redirect URL.

6. Discover the URL that receives authentication requests for your OpenID Connect identity provider by
using this endpoint:

.well-known/openid-configuration

For example:

https://<RHSSO_HOST>:<RHSSO_PORT>/auth/realms/<REALM_NAME>/.well-known/ope
nid-configuration

For the base URL, use the value that an API provider configured in the OpenID Connect Issuer
field.

7. In an application that consumes the upstream API, do the following:

a. Send an authentication request to your OpenConnect identity provider. This request must
contain the 3scale application’s client ID and client secret. In some cases, the end-user identity
is also required.

Page: 15

b. Receive the identity provider’s response, which contains the JWT.

c. Send an API request that contains the JWT to the upstream API backend.

If the 3scale gateway can authenticate the JSON web token in the request, your application should
receive a response from the API backend.

Alternatively, in place of an API consumer application, use Postman to test that the token flow is
correctly implemented.

12.7 Example of a 3scale integration with Red Hat Single Sign-on as
the OpenID Connect identity provider
This example shows the flow when you integrate 3scale with Red Hat Single-Sign-on as the OpenID

Connect identity provider. This example has the following characteristics:

● In the Admin Portal, an API provider defined a 3scale API product and configured that product

to use Red Hat Single Sign-on as the OpenID Connect identity provider.

● This product’s OpenID Connect configuration includes:

○ Public base URL: https://api.example.com

○ Private base URL: https://internal-api.example.com

○ OpenID Connect Issuer:
https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/aut

h/realms/myrealm

○ RH-SSO realm: myrealm

○ 3scale zync client in myrealm has the correct Service Account roles

●

Page: 16

https://developers.redhat.com/blog/2017/11/21/setup-3scale-openid-connect-oidc-integration-rh-sso#test_the_integration
https://developers.redhat.com/blog/2017/11/21/setup-3scale-openid-connect-oidc-integration-rh-sso#test_the_integration
https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/auth/realms/myrealm
https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/auth/realms/myrealm

● In the 3scale Developer Portal, there is an application with the following characteristics. This
application is the result of an API consumer subscribing for access to a 3scale API product
provided by a particular application plan in the Developer Portal.

○ Client ID: myclientid
○ Client Secret: myclientsecret
○ Redirect URL: https://myapp.example.com

● In Red Hat Single Sign-on, in the myrealm realm, there is a client with these same
characteristics:

○ Client ID; myclientid
○ Client Secret: myclientsecret
○ Redirect URL: https://myapp.example.com

Authorization Code Flow, which is the standard flow, is enabled on this client.

● The myrealm realm has this user:

○ Username: myuser
○ Password: mypassword

The flow is as follows:

1. The application that the API consumer created sends an authorization request to RH-SSO by
using this endpoint:

https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/auth

In the request, the application provides these parameters:

○ Client ID: myclientid

○ Client Secret: myclientsecret
○ Redirect URL: https://myapp.example.com

Page: 17

https://myapp.example.com/
https://myapp.example.com/
https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/auth
https://myapp.example.com/

2. RH-SSO shows the login window, where the user must provide their credentials:

○ Username: myuser
○ Password: mypassword

3. Depending on the configuration, and whether this is the first time that the user is authenticating
in this specific application, the consent window might display.

4. After RH-SSO authenticates the user, the application sends a token request to RH-SSO by
using this endpoint:

https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token

The request contains these parameters:

○ Client ID: myclientid
○ Client secret: myclientsecret
○ Redirect URL https://myapp.example.com.

5. RH-SSO returns a JSON web token with an "access_token" field such as
eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

6. The application that the API consumer created sends an API request to
https://api.example.com with the header Authorization: Bearer

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

7. The application should receive a successful response from
https://internal-api.example.com.

Page: 18

https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token
https://myapp.example.com/
https://api.example.com/
https://internal-api.example.com/

