
Red Hat AMQ 2021.Q1

Deploying AMQ Interconnect on OpenShift

For Use with AMQ Interconnect 1.10

Last Updated: 2021-07-20

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

For Use with AMQ Interconnect 1.10

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0
Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original
version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the
fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and
RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open
source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks
of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install and deploy AMQ Interconnect on OpenShift Container Platform.

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

6

CHAPTER 1. GETTING STARTED WITH AMQ INTERCONNECT ON
OPENSHIFT CONTAINER PLATFORM

AMQ Interconnect is a lightweight AMQP 1.0 message router for building large, highly resilient messaging networks
for hybrid cloud and IoT/edge deployments. AMQ Interconnect automatically learns the addresses of messaging
endpoints (such as clients, servers, and message brokers) and flexibly routes messages between them.

This document describes how to deploy AMQ Interconnect on OpenShift Container Platform by using the AMQ
Interconnect Operator and the Interconnect Custom Resource Definition (CRD) that it provides. The CRD defines
an AMQ Interconnect deployment, and the Operator creates and manages the deployment in OpenShift Container
Platform.

1.1. WHAT OPERATORS ARE

Operators are a method of packaging, deploying, and managing a Kubernetes application. They take human
operational knowledge and encode it into software that is more easily shared with consumers to automate common
or complex tasks.

In OpenShift Container Platform 4.0, the Operator Lifecycle Manager (OLM) helps users install, update, and
generally manage the life cycle of all Operators and their associated services running across their clusters. It is part of
the Operator Framework, an open source toolkit designed to manage Kubernetes native applications (Operators) in
an effective, automated, and scalable way.

The OLM runs by default in OpenShift Container Platform 4.0, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container Platform web
console provides management screens for cluster administrators to install Operators, as well as grant specific
projects access to use the catalog of Operators available on the cluster.

OperatorHub is the graphical interface that OpenShift Container Platform cluster administrators use to discover,
install, and upgrade Operators. With one click, these Operators can be pulled from OperatorHub, installed on the
cluster, and managed by the OLM, ready for engineering teams to self-service manage the software in development,
test, and production environments.

Additional resources

For more information about Operators, see the OpenShift documentation.

1.2. PROVIDED CUSTOM RESOURCES

The AMQ Interconnect Operator provides the Interconnect Custom Resource Definition (CRD), which allows you to
interact with an AMQ Interconnect deployment running on OpenShift Container Platform just like other OpenShift
Container Platform API objects.

The Interconnect CRD represents a deployment of AMQ Interconnect routers. The CRD provides elements for
defining many different aspects of a router deployment in OpenShift Container Platform such as:

Number of AMQ Interconnect routers

Deployment topology

Connectivity

Address semantics

CHAPTER 2. PREPARING TO DEPLOY AMQ INTERCONNECT ON OPENSHIFT CONTAINER PLATFORM

7

https://www.amqp.org/
https://docs.openshift.com/container-platform/4.1/applications/operators/olm-what-operators-are.html

CHAPTER 2. PREPARING TO DEPLOY AMQ INTERCONNECT ON
OPENSHIFT CONTAINER PLATFORM

Before deploying AMQ Interconnect on OpenShift Container Platform, perform one of the following procedures:

Section 2.2, “Adding the Red Hat Integration - AMQ Certificate Manager Operator”

Section 2.1, “Creating secrets for SSL/TLS authentication”

If you are evaluating AMQ Interconnect, you can skip these steps however Red Hat recommends always securing
AMQ Interconnect communication.

2.1. CREATING SECRETS FOR SSL/TLS AUTHENTICATION

NOTE

If you installed the Red Hat Integration - AMQ Certificate Manager Operator you can skip this
procedure, instructions for securing your network with AMQ Certificate Manager are included in the
associated procedures. OpenShift uses objects called Secrets to hold sensitive information such as
SSL/TLS certificates. If you want to secure inter-router traffic, client traffic, or both, then you must
create the SSL/TLS certificates and private keys and provide them to OpenShift as secrets.

Procedure

1. If you do not have an existing certificate authority (CA) certificate for inter-router connections, create one.
These commands create a self-signed CA certificate for inter-router connections:

2. Create a certificate for the router signed by the CA.
These commands create a private key and a certificate, and sign the certificate using the CA created in the
previous step:

where <project_name> is the name of the current OpenShift project.

3. Create a secret containing the private key, router certificate, and CA certificate.
This command creates the secret using the key and certificates that were created in the previous steps:

4. If you want to use SSL/TLS to authenticate client connections (as opposed to authenticating clients using
SASL), create a CA certificate for client connections.
These commands create a self-signed CA certificate for client connections:

Create a new directory for the inter-router certificates.
$ mkdir internal-certs

Create a private key for the CA.
$ openssl genrsa -out internal-certs/ca-key.pem 2048

Create a certificate signing request for the CA.
$ openssl req -new -batch -key internal-certs/ca-key.pem -out internal-certs/ca-csr.pem

Self sign the CA certificate.
$ openssl x509 -req -in internal-certs/ca-csr.pem -signkey internal-certs/ca-key.pem -out internal-
certs/ca.crt

Create a private key.
$ openssl genrsa -out internal-certs/tls.key 2048

Create a certificate signing request for the router.
$ openssl req -new -batch -subj "/CN=amq-interconnect.<project_name>.svc.cluster.local" -key internal-
certs/tls.key -out internal-certs/server-csr.pem

Sign the certificate using the CA.
$ openssl x509 -req -in internal-certs/server-csr.pem -CA internal-certs/ca.crt -CAkey internal-certs/ca-
key.pem -out internal-certs/tls.crt -CAcreateserial

$ oc create secret generic inter-router-certs-secret --from-file=tls.crt=internal-certs/tls.crt --from-
file=tls.key=internal-certs/tls.key --from-file=ca.crt=internal-certs/ca.crt

Create a new directory for the client certificates.

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

8

5. Create a certificate for client connections signed by the CA.
These commands create a private key and a certificate, and then sign the certificate using the CA created in
the previous step:

where <client_name> is unique for each router client.

6. Create a secret containing the CA certificate used to sign client certificates using the certificate that was
created in the previous steps:

2.2. ADDING THE RED HAT INTEGRATION - AMQ CERTIFICATE MANAGER
OPERATOR

The Red Hat Integration - AMQ Certificate Manager Operator (cert-manager) is an optional Kubernetes add-on that
issues and manages TLS certificates. The Red Hat Integration - AMQ Interconnect Operator uses it to automatically
create the TLS certificates needed to secure the router network.

You use OperatorHub to add the Operator to your OpenShift Container Platform cluster.

NOTE

Installing an Operator requires administrator-level privileges for your OpenShift cluster.

Alternatively, you can create and manage TLS certificates as described in Section 2.1, “Creating secrets for SSL/TLS
authentication”.

When installed, the operator is available to all users and projects in the cluster.

Prerequisites

Access to an OpenShift Container Platform 4.6 or 4.7 cluster using a cluster-admin account.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Choose Red Hat Integration - AMQ Certificate Manager Operator from the list of available Operators, and
then click Install.

3. On the Operator Installation page, select All namespaces on the cluster (default), and then click Install.
The Installed Operators page appears displaying the status of the Operator installation.

4. Verify that the Red Hat Integration - AMQ Certificate Manager Operator is displayed and wait until the
Status changes to Succeeded.

$ mkdir client-certs

Create a private key for the CA.
$ openssl genrsa -out client-certs/ca-key.pem 2048

Create a certificate signing request for the CA.
$ openssl req -new -batch -key client-certs/ca-key.pem -out client-certs/ca-csr.pem

Self sign the certificate.
$ openssl x509 -req -in client-certs/ca-csr.pem -signkey client-certs/ca-key.pem -out client-certs/ca.crt

Create a private key.
$ openssl genrsa -out client-certs/tls.key 2048

Create a certificate signing request for the client connections
$ openssl req -new -batch -subj "/CN=<client_name>" -key client-certs/tls.key -out client-certs/client-
csr.pem

Sign the certificate using the CA.
$ openssl x509 -req -in client-certs/client-csr.pem -CA client-certs/ca.crt -CAkey client-certs/ca-key.pem -
out client-certs/tls.crt -CAcreateserial

$ oc create secret generic client-ca-secret --from-file=ca.crt=client-certs/ca.crt --from-file=tls.crt=client-
certs/ca.crt --from-file=tls.key=client-certs/ca-key.pem

CHAPTER 3. ADDING THE RED HAT INTEGRATION - AMQ INTERCONNECT OPERATOR

9

5. If the installation is not successful, troubleshoot the error:

a. Click Red Hat Integration - AMQ Certificate Manager Operator on the Installed Operators page.

b. Select the Subscription tab and view any failures or errors.

Additional resources

For more information about cert-manager, see the cert-manager documentation.

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

10

https://docs.cert-manager.io/en/latest/

CHAPTER 3. ADDING THE RED HAT INTEGRATION - AMQ
INTERCONNECT OPERATOR

The Red Hat Integration - AMQ Interconnect Operator creates and manages AMQ Interconnect router networks in
OpenShift Container Platform. This Operator must be installed separately for each project that uses it.

The options for installing the Operator are:

Section 3.1, “Installing the Operator using the CLI”

Section 3.2, “Installing the Operator using the Operator Lifecycle Manager”

NOTE

Installing an Operator requires administrator-level privileges for your OpenShift cluster.

3.1. INSTALLING THE OPERATOR USING THE CLI

The procedures in this section show how to use the OpenShift command-line interface (CLI) to install and deploy the
latest version of the Red Hat Integration - AMQ Interconnect Operator in a given OpenShift project.

3.1.1. Getting the Operator code

This procedure shows how to access and prepare the code you need to install the latest version of the Operator for
AMQ Interconnect 1.10.

Procedure

1. In your web browser, navigate to the Software Downloads page for AMQ Interconnect releases.

2. Ensure that the value of the Version drop-down list is set to 1.10 and the Releases tab is selected.

3. Next to AMQ Interconnect 1.10.0 Operator Installation and Example Files, click Download.
Download of the amq-interconnect-operator-1.10.0-ocp-install-examples.zip compressed archive
automatically begins.

4. When the download has completed, move the archive to your chosen installation directory. The following
example moves the archive to a directory called ~/router/operator.

5. In your chosen installation directory, extract the contents of the archive. For example:

6. Switch to the directory that was created when you extracted the archive. For example:

7. Log in to OpenShift Container Platform as a cluster administrator. For example:

8. Specify the project in which you want to install the Operator. You can create a new project or switch to an
existing one.

a. Create a new project:

b. Or, switch to an existing project:

9. Create a service account to use with the Operator.

$ mkdir ~/router
$ mv amq-interconnect-operator-1.10.0-ocp-install-examples.zip ~/router

$ cd ~/router
$ unzip amq-interconnect-operator-1.10.0-ocp-install-examples.zip

$ cd operator

$ oc login -u system:admin

$ oc new-project <project-name>

$ oc project <project-name>

CHAPTER 4. CREATING A ROUTER NETWORK

11

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.interconnect

10. Create a role for the Operator.

11. Create a role binding for the Operator. The role binding binds the previously-created service account to the
Operator role, based on the names you specified.

In the procedure that follows, you deploy the Operator in your project.

3.1.2. Deploying the Operator using the CLI

The procedure in this section shows how to use the OpenShift command-line interface (CLI) to deploy the latest
version of the Operator for AMQ Interconnect 1.10 in your OpenShift project.

Prerequisites

You must have already prepared your OpenShift project for the Operator deployment. See Section 3.1.1,
“Getting the Operator code”.

Before you can follow the procedure in this section, you must first complete the steps described in Red Hat
Container Registry Authentication.

Procedure

1. In the OpenShift command-line interface (CLI), log in to OpenShift Container Platform as a cluster
administrator. For example:

2. Switch to the project that you previously prepared for the Operator deployment. For example:

3. Switch to the directory that was created when you previously extracted the Operator installation archive. For
example:

4. Deploy the CRD that is included with the Operator. You must install the CRD in your OpenShift cluster
before deploying and starting the Operator.

5. Link the pull secret associated with the account used for authentication in the Red Hat Ecosystem Catalog
with the default, deployer, and builder service accounts for your OpenShift project.

NOTE

In OpenShift Container Platform 4.1 or later, you can also use the web console to associate a
pull secret with a project in which you want to deploy container images such as the AMQ
Interconnect Operator. To do this, click Administration → Service Accounts. Specify the pull
secret associated with the account that you use for authentication in the Red Hat Container
Registry.

6. Deploy the Operator.

7. Verify that the Operator is running:

$ oc create -f deploy/service_account.yaml

$ oc create -f deploy/role.yaml

$ oc create -f deploy/role_binding.yaml

$ oc login -u system:admin

$ oc project <project-name>

$ cd ~/router/operator/qdr-operator-1.10-ocp-install-examples

$ oc create -f deploy/crds/interconnectedcloud_v1alpha1_interconnect_crd.yaml

$ oc secrets link --for=pull default <secret-name>
$ oc secrets link --for=pull deployer <secret-name>
$ oc secrets link --for=pull builder <secret-name>

$ oc create -f deploy/operator.yaml

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

12

https://access.redhat.com/RegistryAuthentication

If the output does not report the pod is running, use the following command to determine the issue that
prevented it from running:

$ oc describe pod -l name=qdr-operator

8. Verify that the CRD is registered in the cluster and review the CRD details:

NOTE

It is recommended that you deploy only a single instance of the AMQ Interconnect Operator in a
given OpenShift project. Setting the replicas element of your Operator deployment to a value
greater than 1, or deploying the Operator more than once in the same project is not recommended.

Additional resources

For an alternative method of installing the AMQ Interconnect Operator that uses the OperatorHub graphical
interface, see Section 3.2, “Installing the Operator using the Operator Lifecycle Manager” .

3.2. INSTALLING THE OPERATOR USING THE OPERATOR LIFECYCLE
MANAGER

The procedures in this section show how to use the OperatorHub to install and deploy the latest version of the Red
Hat Integration - AMQ Interconnect Operator in a given OpenShift project.

In OpenShift Container Platform 4.1 and later, the Operator Lifecycle Manager (OLM) helps users install, update, and
generally manage the lifecycle of all Operators and their associated services running across their clusters. It is part of
the Operator Framework, an open source toolkit designed to manage Kubernetes native applications (Operators) in
an effective, automated, and scalable way.

Prerequisites

Access to an OpenShift Container Platform 4.6 or 4.7 cluster using a cluster-admin account.

Red Hat Integration - AMQ Certificate Manager Operator is installed in the OpenShift Container Platform
cluster if required.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Choose Red Hat Integration - AMQ Interconnect Operator from the list of available Operators, and then
click Install.

3. On the Operator Installation page, select the namespace into which you want to install the Operator, and
then click Install.
The Installed Operators page appears displaying the status of the Operator installation.

4. Verify that the AMQ Interconnect Operator is displayed and wait until the Status changes to Succeeded.

5. If the installation is not successful, troubleshoot the error:

a. Click Red Hat Integration - AMQ Interconnect Operator on the Installed Operators page.

b. Select the Subscription tab and view any failures or errors.

$ oc get pods -l name=qdr-operator

$ oc get crd
$ oc describe crd interconnects.interconnectedcloud.github.io

CHAPTER 4. CREATING A ROUTER NETWORK

13

1

2

3

CHAPTER 4. CREATING A ROUTER NETWORK
To create a network of AMQ Interconnect routers, you define a deployment in an Interconnect Custom Resource,
and then apply it. The AMQ Interconnect Operator creates the deployment by scheduling the necessary Pods and
creating any needed Resources.

The procedures in this section demonstrate the following router network topologies:

Interior router mesh

Interior router mesh with edge routers for scalability

Inter-cluster router network that connects two OpenShift clusters

Prerequisites

The AMQ Interconnect Operator is installed in your OpenShift Container Platform project.

4.1. CREATING AN INTERIOR ROUTER DEPLOYMENT

Interior routers establish connections with each other and automatically compute the lowest cost paths across the
network.

Procedure

This procedure creates an interior router network of three routers. The routers automatically connect to each other in
a mesh topology, and their connections are secured with mutual SSL/TLS authentication.

1. Create an Interconnect Custom Resource YAML file that describes the interior router deployment.

Sample router-mesh.yaml file

The operating mode of the routers in the deployment. The Operator will automatically connect interior
routers in a mesh topology.

The number of routers to create.

Each router runs in a separate Pod. The placement defines where in the cluster the Operator should
schedule and place the Pods. You can choose the following placement options:

Any
The Pods can run on any node in the OpenShift Container Platform cluster.

Every
The Operator places a router Pod on each node in the cluster. If you choose this option, the Size
property is not needed - the number of routers corresponds to the number of nodes in the cluster.

Anti-Affinity
The Operator ensures that multiple router Pods do not run on the same node in the cluster. If the
size is greater than the number of nodes in the cluster, the extra Pods that cannot be scheduled
will remain in a Pending state.

2. Create the router deployment described in the YAML file.

$ oc apply -f router-mesh.yaml

The Operator creates a deployment of interior routers in a mesh topology that uses default address
semantics. It also creates a Service through which the routers can be accessed, and a Route through which
you can access the web console.

3. Verify that the router mesh was created and the Pods are running.

Each router runs in a separate Pod. They connect to each other automatically using the Service that the

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: router-mesh
spec:
 deploymentPlan:
 role: interior 1
 size: 3 2
 placement: Any 3

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

14

1

2

3

4

Each router runs in a separate Pod. They connect to each other automatically using the Service that the
Operator created.

$ oc get pods
NAME READY STATUS RESTARTS AGE
interconnect-operator-587f94784b-4bzdx 1/1 Running 0 52m
router-mesh-6b48f89bd-588r5 1/1 Running 0 40m
router-mesh-6b48f89bd-bdjc4 1/1 Running 0 40m
router-mesh-6b48f89bd-h6d5r 1/1 Running 0 40m

4. Review the router deployment.

$ oc get interconnect/router-mesh -o yaml
apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
...
spec:
 addresses: 1
 - distribution: closest
 prefix: closest
 - distribution: multicast
 prefix: multicast
 - distribution: closest
 prefix: unicast
 - distribution: closest
 prefix: exclusive
 - distribution: multicast
 prefix: broadcast
 deploymentPlan: 2
 livenessPort: 8888
 placement: Any
 resources: {}
 role: interior
 size: 3
 edgeListeners: 3
 - port: 45672
 interRouterListeners: 4
 - authenticatePeer: true
 expose: true
 port: 55671
 saslMechanisms: EXTERNAL
 sslProfile: inter-router
 listeners: 5
 - port: 5672
 - authenticatePeer: true
 expose: true
 http: true
 port: 8080
 - port: 5671
 sslProfile: default
 sslProfiles: 6
 - credentials: router-mesh-default-tls
 name: default
 - caCert: router-mesh-inter-router-tls
 credentials: router-mesh-inter-router-tls
 mutualAuth: true
 name: inter-router
 users: router-mesh-users 7

The default address configuration. All messages sent to an address that does not match any of these
prefixes are distributed in a balanced anycast pattern .

A router mesh of three interior routers was deployed.

Each interior router listens on port 45672 for connections from edge routers.

The interior routers connect to each other on port 55671. These inter-router connections are secured
with SSL/TLS mutual authentication. The inter-router SSL Profile contains the details of the
certificates that the Operator generated.

CHAPTER 4. CREATING A ROUTER NETWORK

15

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#routing-patterns-message-routing-router-rhel

5

6

7

1

2

3

4

Each interior router listens for connections from external clients on the following ports:

5672 - Unsecure connections from messaging applications.

5671 - Secure connections from messaging applications.

8080 - AMQ Interconnect web console access. Default user name/password security is applied.

Using the Red Hat Integration - AMQ Certificate Manager Operator, the Red Hat Integration - AMQ
Interconnect Operator automatically creates two SSL profiles:

inter-router - The Operator secures the inter-router network with mutual TLS authentication by
creating a Certificate Authority (CA) and generating certificates signed by the CA for each interior
router.

default - The Operator creates TLS certificates for messaging applications to connect to the
interior routers on port 5671.

The AMQ Interconnect web console is secured with user name/password authentication. The Operator
automatically generates the credentials and stores them in the router-mesh-users Secret.

4.2. CREATING AN EDGE ROUTER DEPLOYMENT

You can efficiently scale your router network by adding an edge router deployment. Edge routers act as connection
concentrators for messaging applications. Each edge router maintains a single uplink connection to an interior router,
and messaging applications connect to the edge routers to send and receive messages.

Prerequisites

The interior router mesh is deployed. For more information, see Section 4.1, “Creating an interior router
deployment”.

Procedure

This procedure creates an edge router on each node of the OpenShift Container Platform cluster and connects them
to the previously created interior router mesh.

1. Create an Interconnect Custom Resource YAML file that describes the edge router deployment.

Sample edge-routers.yaml file

An edge router Pod will be deployed on each node in the OpenShift Container Platform cluster. This
placement helps to balance messaging application traffic across the cluster. The Operator will create a
DaemonSet to ensure that the number of Pods scheduled always corresponds to the number of nodes
in the cluster.

Edge connectors define the connections from the edge routers to the interior routers.

The name of the Service that was created for the interior routers.

The port on which the interior routers listen for edge connections. The default is 45672.

2. Create the edge routers described in the YAML file:

$ oc apply -f edge-routers.yaml

The Operator deploys an edge router on each node of the OpenShift Container Platform cluster, and

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: edge-routers
spec:
 deploymentPlan:
 role: edge
 placement: Every 1
 edgeConnectors: 2
 - host: router-mesh 3
 port: 45672 4

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

16

1

2

The Operator deploys an edge router on each node of the OpenShift Container Platform cluster, and
connects them to the interior routers.

3. Verify that the edge routers were created and the Pods are running.
Each router runs in a separate Pod. Each edge router connects to any of the previously created interior
routers.

$ oc get pods
NAME READY STATUS RESTARTS AGE
edge-routers-2jz5j 1/1 Running 0 33s
edge-routers-fhlxv 1/1 Running 0 33s
edge-routers-gg2qb 1/1 Running 0 33s
edge-routers-hj72t 1/1 Running 0 33s
interconnect-operator-587f94784b-4bzdx 1/1 Running 0 54m
router-mesh-6b48f89bd-588r5 1/1 Running 0 42m
router-mesh-6b48f89bd-bdjc4 1/1 Running 0 42m
router-mesh-6b48f89bd-h6d5r 1/1 Running 0 42m

4.3. CREATING AN INTER-CLUSTER ROUTER NETWORK

Depending on whether you are using AMQ Certificate Manager, there are different procedures for creating an inter-
cluster router network.

Section 4.3.2, “Creating an inter-cluster router network using AMQ Certificate Manager”

Section 4.3.1, “Creating an inter-cluster router network using a Certificate Authority”

4.3.1. Creating an inter-cluster router network using a Certificate Authority

You can create a router network from routers running in different OpenShift Container Platform clusters. This
enables you to connect applications running in separate clusters.

Prerequisites

You have already created secrets defining an existing certificate for each router.

Procedure

This procedure creates router deployments in two different OpenShift Container Platform clusters (cluster1 and
cluster2) and connects them together to form an inter-cluster router network. The connection between the router
deployments is secured with SSL/TLS mutual authentication.

1. In the first OpenShift Container Platform cluster (cluster1), create an Interconnect Custom Resource
YAML file that describes the interior router deployment.
This example creates a single interior router with a default configuration.

Sample cluster1-router-mesh.yaml file

authenticatePeer must be set to true to authenticate using TLS certificates

listener host

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: cluster1-router-mesh
spec:
 interRouterListeners:
 - authenticatePeer: true 1
 host: 0.0.0.0 2
 port: 55672 3
 saslMechanisms: EXTERNAL 4
 sslProfile: inter-router-profile 5
 expose: true 6
 sslProfiles:
 - caCert: inter-router-certs-secret 7
 credentials: inter-router-certs-secret 8
 name: inter-router-profile 9

CHAPTER 4. CREATING A ROUTER NETWORK

17

3

4

5

6

7

8

9

1

2

listener port

SASL mechanism to authenticate, use EXTERNAL for TLS certificates

ssl-profile name to use for authenticating clients

exposes a route so that the port is accessible from outside the cluster

name of cluster secret or your CA containing a ca.crt name (in case you’re using the same secret used in
credentials, otherwise it must have a tls.crt)

name of cluster secret with the CA certificate containing tls.crt and tls.key files

ssl-profile name to use for the interRouterListener

2. Create the router deployment described in the YAML file.

$ oc apply -f cluster1-router-mesh.yaml

The Red Hat Integration - AMQ Interconnect Operator creates an interior router with a default configuration
and a listener to authenticate other routers.

3. Log in to the second OpenShift Container Platform cluster (cluster2), and switch to the project where you
want to create the second router deployment.

4. In cluster2, create an Interconnect Custom Resource YAML file to describe the router deployment.

This SSL Profile defines the certificate needed to connect to the router deployment in cluster1.

The URL of the Route for the inter-router listener on cluster1.

5. Create the router deployment described in the YAML file.

$ oc apply -f cluster2-router-mesh.yaml

6. Verify that the routers are connected.
This example displays the connections from the router in cluster2 to the router in cluster1.

$ oc exec cluster2-fb6bc5797-crvb6 -it -- qdstat -c
Connections
 id host container role dir security
authentication tenant

==
==
========================
 1 cluster1-router-mesh-port-55672-myproject.cluster1.openshift.com:443 cluster1-router-mesh-
54cffd9967-9h4vq inter-router out TLSv1/SSLv3(DHE-RSA-AES256-GCM-SHA384) x.509

4.3.2. Creating an inter-cluster router network using AMQ Certificate Manager

You can create a router network from routers running in different OpenShift Container Platform clusters. This

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: cluster2-router-mesh
spec:
 sslProfiles:
 - name: inter-router-profile 1
 credentials: inter-router-certs-secret
 caCert: inter-router-certs-secret
 interRouterConnectors:
 - host: cluster1-router-mesh-port-55672-myproject.cluster1.openshift.com 2
 port: 443
 verifyHostname: false
 sslProfile: inter-router-profile
 name: cluster1

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

18

1

You can create a router network from routers running in different OpenShift Container Platform clusters. This
enables you to connect applications running in separate clusters.

Procedure

This procedure creates router deployments in two different OpenShift Container Platform clusters (cluster1 and
cluster2) and connects them together to form an inter-cluster router network. The connection between the router
deployments is secured with SSL/TLS mutual authentication.

1. In the first OpenShift Container Platform cluster (cluster1), create an Interconnect Custom Resource
YAML file that describes the interior router deployment.
This example creates a single interior router with a default configuration.

Sample cluster1-router-mesh.yaml file

2. Create the router deployment described in the YAML file.

$ oc apply -f cluster1-router-mesh.yaml

The Red Hat Integration - AMQ Interconnect Operator creates an interior router with a default
configuration. It uses the Red Hat Integration - AMQ Certificate Manager Operator to create a Certificate
Authority (CA) and generate a certificate signed by the CA.

3. Generate an additional certificate for the router deployment in the second OpenShift Container Platform
cluster (cluster2).
The router deployment in cluster2 requires a certificate issued by the CA of cluster1.

a. Create a Certificate Custom Resource YAML file to request a certificate.

Sample certificate-request.yaml file

The name of the Issuer that created the inter-router CA for cluster1. By default, the name of the
Issuer is <application-name>-inter-router-ca.

b. Create the certificate described in the YAML file.

$ oc apply -f certificate-request.yaml

c. Extract the certificate that you generated.

$ mkdir /tmp/cluster2-inter-router-tls
$ oc extract secret/cluster2-inter-router-tls-secret --to=/tmp/cluster2-inter-router-tls

4. Log in to the second OpenShift Container Platform cluster (cluster2), and switch to the project where you
want to create the second router deployment.

5. In cluster2, create a Secret containing the certificate that you generated.

$ oc create secret generic cluster2-inter-router-tls-secret --from-file=/tmp/cluster2-inter-router-tls

6. In cluster2, create an Interconnect Custom Resource YAML file to describe the router deployment.

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: cluster1-router-mesh
spec: {}

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:
 name: cluster2-inter-router-tls
spec:
 commonName: cluster1-router-mesh-myproject.cluster2.openshift.com
 issuerRef:
 name: cluster1-router-mesh-inter-router-ca 1
 secretName: cluster2-inter-router-tls-secret

CHAPTER 5. CONNECTING CLIENTS TO THE ROUTER NETWORK

19

1

2

This SSL Profile defines the certificate needed to connect to the router deployment in cluster1.

The URL of the Route for the inter-router listener on cluster1.

7. Create the router deployment described in the YAML file.

$ oc apply -f cluster2-router-mesh.yaml

8. Verify that the routers are connected.
This example displays the connections from the router in cluster2 to the router in cluster1.

$ oc exec cluster2-fb6bc5797-crvb6 -it -- qdstat -c
Connections
 id host container role dir security
authentication tenant

==
==
========================
 1 cluster1-router-mesh-port-55671-myproject.cluster1.openshift.com:443 cluster1-router-mesh-
54cffd9967-9h4vq inter-router out TLSv1/SSLv3(DHE-RSA-AES256-GCM-SHA384) x.509

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: cluster2-router-mesh
spec:
 sslProfiles:
 - name: inter-cluster-tls 1
 credentials: cluster2-inter-router-tls-secret
 caCert: cluster2-inter-router-tls-secret
 interRouterConnectors:
 - host: cluster1-router-mesh-port-55671-myproject.cluster1.openshift.com 2
 port: 443
 verifyHostname: false
 sslProfile: inter-cluster-tls

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

20

CHAPTER 5. CONNECTING CLIENTS TO THE ROUTER NETWORK
After creating a router network, you can connect clients (messaging applications) to it so that they can begin sending
and receiving messages.

By default, the Red Hat Integration - AMQ Interconnect Operator creates a Service for the router deployment and
configures the following ports for client access:

5672 for plain AMQP traffic without authentication

5671 for AMQP traffic secured with TLS authentication

To connect clients to the router network, you can do the following:

If any clients are outside of the OpenShift cluster, expose the ports so that they can connect to the router
network.

Configure your clients to connect to the router network.

5.1. EXPOSING PORTS FOR CLIENTS OUTSIDE OF OPENSHIFT CONTAINER
PLATFORM

You expose ports to enable clients outside of the OpenShift Container Platform cluster to connect to the router
network.

Procedure

1. Start editing the Interconnect Custom Resource YAML file that describes the router deployment for which
you want to expose ports.

$ oc edit -f router-mesh.yaml

2. In the spec.listeners section, expose each port that you want clients outside of the cluster to be able to
access.
In this example, port 5671 is exposed. This enables clients outside of the cluster to authenticate with and
connect to the router network.

Sample router-mesh.yaml file

The Red Hat Integration - AMQ Interconnect Operator creates a Route, which clients from outside the
cluster can use to connect to the router network.

5.2. AUTHENTICATION FOR CLIENT CONNECTIONS

When you create a router deployment, the Red Hat Integration - AMQ Interconnect Operator uses the Red Hat
Integration - AMQ Certificate Manager Operator to create default SSL/TLS certificates for client authentication,
and configures port 5671 for SSL encryption.

5.3. CONFIGURING CLIENTS TO CONNECT TO THE ROUTER NETWORK

You can connect messaging clients running in the same OpenShift cluster as the router network, a different cluster,

 apiVersion: interconnectedcloud.github.io/v1alpha1
 kind: Interconnect
 metadata:
 name: router-mesh
 spec:
 ...
 listeners:
 - port: 5672
 - authenticatePeer: true
 expose: true
 http: true
 port: 8080
 - port: 5671
 sslProfile: default
 expose: true
 ...

CHAPTER 7. CONFIGURING THE ADDRESS SPACE FOR MESSAGE ROUTING

21

You can connect messaging clients running in the same OpenShift cluster as the router network, a different cluster,
or outside of OpenShift altogether so that they can exchange messages.

Prerequisites

If the client is outside of the OpenShift Container Platform cluster, a connecting port must be exposed. For
more information, see Section 5.1, “Exposing ports for clients outside of OpenShift Container Platform” .

Procedure

To connect a client to the router network, use the following connection URL format:

<scheme>://[<username>@]<host>[:<port>]

<scheme>

Use one of the following:

amqp - unencrypted TCP from within the same OpenShift cluster

amqps - for secure connections using SSL/TLS authentication

amqpws - AMQP over WebSockets for unencrypted connections from outside the OpenShift cluster

<username>

If you deployed the router mesh with user name/password authentication, provide the client’s user name.

<host>

If the client is in the same OpenShift cluster as the router network, use the OpenShift Service host name.
Otherwise, use the host name of the Route.

<port>

If you are connecting to a Route, you must specify the port. To connect on an unsecured connection, use
port 80. Otherwise, to connect on a secured connection, use port 443.

NOTE

To connect on an unsecured connection (port 80), the client must use AMQP over
WebSockets (amqpws).

The following table shows some example connection URLs.

URL Description

amqp://admin@router-
mesh:5672

The client and router network are both in the same OpenShift cluster, so the Service
host name is used for the connection URL. In this case, user name/password
authentication is implemented, which requires the user name (admin) to be provided.

amqps://router-mesh-
myproject.mycluster.com:443

The client is outside of OpenShift, so the Route host name is used for the connection
URL. In this case, SSL/TLS authentication is implemented, which requires the amqps
scheme and port 443.

amqpws://router-mesh-
myproject.mycluster.com:80

The client is outside of OpenShift, so the Route host name is used for the connection
URL. In this case, no authentication is implemented, which means the client must use
the amqpws scheme and port 80.

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

22

1

2

CHAPTER 6. CONNECTING TO EXTERNAL SERVICES
You can connect a router to an external service such as a message broker. The services may be running in the same
OpenShift cluster as the router network, or running outside of OpenShift.

Prerequisites

You must have access to a message broker.

Procedure

This procedure describes how to connect a router to a broker and configure a link route to connect messaging clients
to it.

1. Start editing the Interconnect Custom Resource YAML file that describes the router deployment that you
want to connect to a broker.

$ oc edit -f router-mesh.yaml

2. In the spec section, configure the connection and link route.

Sample router-mesh.yaml file

The connection to be used to connect this router to the message broker. The Operator will configure
this connection from every router defined in this router deployment to the broker. If you only want a
single connection between the router network and the broker, then configure a listener instead of a
connector and have the broker establish the connection.

The link route configuration. It defines the incoming and outgoing links and connection to be used to
connect messaging applications to the message broker.

3. Verify that the router has established the link route to the message broker.

$ oc exec router-mesh-fb6bc5797-crvb6 -it -- qdstat --linkroutes
Link Routes
 address dir distrib status
 ====================================
 q1 in linkBalanced active
 q1 out linkBalanced active

Additional resources

For more information about link routes, see Creating link routes .

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: router-mesh
spec:
 ...
 connectors: 1
 - name: my-broker
 host: broker
 port: 5672
 routeContainer: true
 linkRoutes: 2
 - prefix: q1
 direction: in
 connection: my-broker
 - prefix: q1
 direction: out
 connection: my-broker

CHAPTER 8. USING PROMETHEUS AND GRAFANA TO MONITOR THE ROUTER NETWORK

23

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#creating-link-routes-router-rhel

1

CHAPTER 7. CONFIGURING THE ADDRESS SPACE FOR MESSAGE
ROUTING

AMQ Interconnect provides flexible application-layer addressing and delivery semantics. By configuring addresses,
you can route messages in anycast (closest or balanced) or multicast patterns.

7.1. ROUTING MESSAGES BETWEEN CLIENTS

By default, AMQ Interconnect distributes messages in a balanced anycast pattern (each message is delivered to a
single consumer, and AMQ Interconnect attempts to balance the traffic load across the network). This means you
only need to change the address configuration if you want to apply non-default semantics to an address or range of
addresses.

Procedure

This procedure configures an address to use multicast distribution. The router network will distribute a copy of each
message sent to this address to every consumer that is subscribed to the address.

1. Start editing the Interconnect Custom Resource YAML file that describes the router deployment.

$ oc edit -f router-mesh.yaml

2. In the spec section, define the semantics to be applied to addresses.

Sample router-mesh.yaml file

Messages sent to any address that ends with “orders” will be distributed in a multicast pattern.

The Operator applies the changes to the router network and restarts each Pod.

3. If you have additional router deployment Custom Resources that define routers in the router network, repeat
this procedure for each CR.
Each router in the router network must have the same address configuration.

Additional resources

For more information about address semantics that you can configure, see Configuring message routing.

7.2. ROUTING MESSAGES THROUGH BROKERS

If you need to store and forward messages, you can route them through a queue on a message broker. In this
scenario, message producers send messages to a router, and the router sends the messages to a broker queue. When
a consumer connects to the router to receive the messages, the router retrieves them from the broker queue.

You can route messages to brokers running in the same OpenShift cluster as the router network, or to brokers that
are running outside of the cluster.

Prerequisites

You must have access to a message broker.

Procedure

1. Start editing the Interconnect Custom Resource YAML file that describes the router deployment.

$ oc edit -f router-mesh.yaml

2. In the spec section, add a connector to connect to the broker, a waypoint address to point to the broker

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: router-mesh
spec:
 ...
 addresses:
 - pattern: */orders 1
 distribution: multicast

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

24

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#configuring-message-routing-router-rhel

1

2

3

2. In the spec section, add a connector to connect to the broker, a waypoint address to point to the broker
queue, and autolinks to create the links to the queue.

Sample router-mesh.yaml file

The address (or set of addresses) for which messages should be stored on a broker queue.

The autolink configuration. It defines the incoming and outgoing links and connection to be used to
send and receive the messages on the broker.

The connection to be used to connect the routers to the message broker.

The Operator applies the changes to the router network and restarts each Pod.

3. Verify that the router has established the autolinks to the message broker.

$ oc exec router-mesh-6d6dccb57f-x5cqf -it -- qdstat --autolinks
AutoLinks
 addr dir phs extAddr link status lastErr
 ==
 my-queue in 1 26 active
 my-queue out 0 27 active

4. If you have additional router deployment Custom Resources that define routers in the router network, repeat
this procedure for each CR.
Each router in the router network must have the same address configuration.

Additional resources

For more information about routing messages to and from broker queues, see Routing Messages through
broker queues.

apiVersion: interconnectedcloud.github.io/v1alpha1
kind: Interconnect
metadata:
 name: router-mesh
spec:
 ...
 addresses:
 - prefix: my-queue 1
 waypoint: true
 autoLinks: 2
 - address: my-queue
 direction: in
 connection: my-broker
 - address: my-queue
 direction: out
 connection: my-broker
 connectors: 3
 - name: my-broker
 host: broker
 port: 5672
 routeContainer: true

CHAPTER 8. USING PROMETHEUS AND GRAFANA TO MONITOR THE ROUTER NETWORK

25

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#routing-messages-through-broker-queues-router-rhel

CHAPTER 8. USING PROMETHEUS AND GRAFANA TO MONITOR THE
ROUTER NETWORK

Prometheus is container-native software built for storing historical data and for monitoring large, scalable systems
such as AMQ Interconnect. It gathers data over an extended time, rather than just for the currently running session.

You use Prometheus and Alertmanager to monitor and store AMQ Interconnect data so that you can use a graphical
tool, such as Grafana, to visualize and run queries on the data.

8.1. SETTING UP PROMETHEUS AND GRAFANA

Before you can view AMQ Interconnect dashboards, you must deploy and configure Prometheus, Alertmanager, and
Grafana in the OpenShift project in which AMQ Interconnect is deployed. All of the required configuration files are
provided in a GitHub repository.

Procedure

1. Clone the qdr-monitoring GitHub repository.
This repository contains example configuration files needed to set up Prometheus and Grafana to monitor
AMQ Interconnect.

$ git clone https://github.com/interconnectedcloud/qdr-monitoring

2. Set the NAMESPACE environment variable to the name of the project where you deployed AMQ
Interconnect.
For example, if you deployed AMQ Interconnect in the example project, set the NAMESPACE environment
variable as follows:

3. Run the deploy-monitoring.sh script.
This script creates and configures the OpenShift resources needed to deploy Prometheus, Alertmanager,
and Grafana in your OpenShift project. It also configures two dashboards that provide metrics for the router
network.

$./deploy-monitoring.sh

An alternative method of running this script is to to specify the target project as a parameter. For example:

$./deploy-monitoring.sh example

Additional resources

For more information about Prometheus, see the Prometheus documentation.

For more information about Grafana, see the Grafana documentation.

8.2. VIEWING AMQ INTERCONNECT DASHBOARDS IN GRAFANA

After setting up Prometheus and Grafana, you can visualize the AMQ Interconnect data on the following Grafana
dashboards:

Qpid Dispatch Router

Shows metrics for:

Qpid Dispatch Router

Shows metrics for:

Deliveries ingress

Deliveries egress

Deliveries ingress route container

Deliveries egress route container

Deliveries redirected to fallback destination

$ export NAMESPACE=example

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

26

https://github.com/interconnectedcloud/qdr-monitoring
https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/guides/getting_started/

Dropped presettled deliveries

Presettled deliveries

Auto links

Link routes

Address count

Connection count

Link count

Qpid Dispatch Router - Delayed Deliveries

Shows metrics for:

Cumulative delayed 10 seconds

Cumulative delayed 1 second

Rate of new delayed deliveries

For more information about these metrics, see Section 8.3, “Router metrics” .

Procedure

1. In the OpenShift web console, switch to Networking → Routes, and click the URL for the grafana Route.
The Grafana Log In page appears.

2. Enter your user name and password, and then click Log In.
The default Grafana user name and password are both admin. After logging in for the first time, you can
change the password.

3. On the top header, click the dashboard drop-down menu, and then select the Qpid Dispatch Router or
Qpid Dispatch Router - Delayed Deliveries dashboard.

Figure 8.1. Delayed Deliveries dashboard

8.3. ROUTER METRICS

The following metrics are available in Prometheus:

qdr_connections_total

The total number of network connections to the router. This includes connections from and to any AMQP route
container.

qdr_links_total

The total number of incoming and outgoing links attached to the router.

CHAPTER 9. USING THE AMQ INTERCONNECT WEB CONSOLE TO MONITOR THE ROUTER NETWORK

27

qdr_addresses_total

The total number of addresses known to the router.

qdr_routers_total

The total number of routers known to the router.

qdr_link_routes_total

The total number of active and inactive link routes configured for the router. See Understanding link routing for
more details.

qdr_auto_links_total

The total number of incoming and outgoing auto links configured for the router. See Configuring brokered
messaging for more details about autolinks.

qdr_presettled_deliveries_total

The total number of presettled deliveries arriving at the router. The router settles the incoming deliveries and
propagates the settlement to the message destination, also known as fire and forget.

qdr_dropped_presettled_deliveries_total

The total number of presettled deliveries that the router dropped due to congestion. The router settles the
incoming deliveries and propagates the settlement to the message destination, also known as fire and forget.

qdr_accepted_deliveries_total

The total number of deliveries accepted at the router. See Understanding message routing for more information
on accepted deliveries.

qdr_released_deliveries_total

The total number of deliveries released at the router. See Understanding message routing for more information
on released deliveries.

qdr_rejected_deliveries_total

The total number of deliveries rejected at the router. See Understanding message routing for more information
on rejected deliveries.

qdr_modified_deliveries_total

The total number of deliveries modified at the router. See Understanding message routing for more information
on modified deliveries.

qdr_deliveries_ingress_total

The total number of messages delivered to the router from clients. This includes management messages, but not
route control messages.

qdr_deliveries_egress_total

The total number of messages sent from the router to clients. This includes management messages, but not route
control messages.

qdr_deliveries_transit_total, qdr_deliveries_ingress_route_container_total

The total number of messages passing through the router for delivery to a different router.

qdr_deliveries_egress_route_container_total

The total number of deliveries sent to AMQP route containers from the router This includes messages to an AMQ
Broker instance and management messages, but not route control messages.

qdr_deliveries_delayed_1sec_total

The total number of deliveries forwarded by the router that were unsettled for more than one second.

qdr_deliveries_delayed_10sec_total

The total number of deliveries forwarded by the router that were unsettled for more than ten seconds.

qdr_deliveries_stuck_total

The total number of deliveries that cannot be delivered. Typically, deliveries cannot be delivered due to lack of
credit as described in Message routing flow control

qdr_links_blocked_total

The total number of links that are blocked.

qdr_deliveries_redirected_to_fallback_total

The total number of deliveries that were forwarded to a fallback destination. See Handling undeliverable
messages for more information.

Additional information

See Section 8.2, “Viewing AMQ Interconnect dashboards in Grafana” .

Red Hat AMQ 2021.Q1 Deploying AMQ Interconnect on OpenShift

28

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#understanding-link-routing-router-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#configuring-brokered-messaging-router-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#understanding-message-routing-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#understanding-message-routing-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#understanding-message-routing-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#understanding-message-routing-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#message-routing-flow-control-rhel
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#handling-undeliverable-messages-router-rhel

CHAPTER 9. USING THE AMQ INTERCONNECT WEB CONSOLE TO
MONITOR THE ROUTER NETWORK

You can use the AMQ Interconnect web console to monitor the status and performance of your router network. By
default, when you create a router deployment, the AMQ Interconnect Operator generates the credentials to access
the console and stores them in a Secret.

Procedure

1. In OpenShift, switch to Networking → Routes, and click the console Route.
The web console opens in a new tab.

2. To connect to the web console, complete the following fields:

Port

Enter 443.

User name

Enter the user name.
To find the user name and password for accessing the web console, navigate to Workloads → Secrets.
The Secret containing the web console credentials is called <application-name>-users (for example,
router-mesh-users).

The syntax for the user name is <user>@<domain> (the domain is the OpenShift application name, which is
the name of the Custom Resource that describes the router deployment). For example, guest@router-
mesh.

Password

Enter the password defined in the <application-name>-users Secret.

3. Click Connect.
The Routers page is displayed showing all of the routers in the router network.

4. Use the web console tabs to monitor the router network.

This tab… Provides…

Overview Aggregated information about routers, addresses, links, connections, and logs.

Entities Detailed information about each AMQP management entity for each router in the
router network. Some of the attributes have charts that you can add to the Charts
tab.

Topology A graphical view of the router network, including routers, clients, and brokers. The
topology shows how the routers are connected, and how messages are flowing
through the network.

Charts Graphs of the information selected on the Entities tab.

Message Flow A chord diagram showing the real-time message flow by address.

Schema The management schema that controls each of the routers in the router network.

Revised on 2021-07-20 10:00:59 UTC

CHAPTER 9. USING THE AMQ INTERCONNECT WEB CONSOLE TO MONITOR THE ROUTER NETWORK

29

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH AMQ INTERCONNECT ON OPENSHIFT CONTAINER PLATFORM
	1.1. WHAT OPERATORS ARE
	1.2. PROVIDED CUSTOM RESOURCES

	CHAPTER 2. PREPARING TO DEPLOY AMQ INTERCONNECT ON OPENSHIFT CONTAINER PLATFORM
	2.1. CREATING SECRETS FOR SSL/TLS AUTHENTICATION
	2.2. ADDING THE RED HAT INTEGRATION - AMQ CERTIFICATE MANAGER OPERATOR

	CHAPTER 3. ADDING THE RED HAT INTEGRATION - AMQ INTERCONNECT OPERATOR
	3.1. INSTALLING THE OPERATOR USING THE CLI
	3.1.1. Getting the Operator code
	3.1.2. Deploying the Operator using the CLI

	3.2. INSTALLING THE OPERATOR USING THE OPERATOR LIFECYCLE MANAGER

	CHAPTER 4. CREATING A ROUTER NETWORK
	4.1. CREATING AN INTERIOR ROUTER DEPLOYMENT
	4.2. CREATING AN EDGE ROUTER DEPLOYMENT
	4.3. CREATING AN INTER-CLUSTER ROUTER NETWORK
	4.3.1. Creating an inter-cluster router network using a Certificate Authority
	4.3.2. Creating an inter-cluster router network using AMQ Certificate Manager

	CHAPTER 5. CONNECTING CLIENTS TO THE ROUTER NETWORK
	5.1. EXPOSING PORTS FOR CLIENTS OUTSIDE OF OPENSHIFT CONTAINER PLATFORM
	5.2. AUTHENTICATION FOR CLIENT CONNECTIONS
	5.3. CONFIGURING CLIENTS TO CONNECT TO THE ROUTER NETWORK

	CHAPTER 6. CONNECTING TO EXTERNAL SERVICES
	CHAPTER 7. CONFIGURING THE ADDRESS SPACE FOR MESSAGE ROUTING
	7.1. ROUTING MESSAGES BETWEEN CLIENTS
	7.2. ROUTING MESSAGES THROUGH BROKERS

	CHAPTER 8. USING PROMETHEUS AND GRAFANA TO MONITOR THE ROUTER NETWORK
	8.1. SETTING UP PROMETHEUS AND GRAFANA
	8.2. VIEWING AMQ INTERCONNECT DASHBOARDS IN GRAFANA
	8.3. ROUTER METRICS

	CHAPTER 9. USING THE AMQ INTERCONNECT WEB CONSOLE TO MONITOR THE ROUTER NETWORK

