

W H I T E P A P E R

RED HAT OPENSHIFT
CONTAINER PLATFORM
ARCHITECTURE
DESIGN GUIDE FOR
PCI DSS V3.2.1
ARCHITECTURE DESIGN GUIDE TO ASSIST
CUSTOMERS IN PCI DSS V3 .2 .1 DEPLOYMENTS

JA SON MA CALLI STER

CHRI S KRUEG ER | C ISSP
F I N A L V 1 . 0

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 2

TABLE OF CONTENTS
Executive Summary ... 3

Coalfire Opinion ... 3

Overview of PCI DSS Version 3.2.1 ... 4

Understanding PCI DSS Scope.. 4

Network Segmentation ... 5

PCI DSS Requirements ... 6

New and Emerging Technology Challenges to Compliance ... 6

Scope and ADG Review Methodology .. 8

Scope of Technology and Security standard to review ... 8

Evaluation of Architecture .. 9

OpenShift Container Platform and Architecture .. 9

OpenShift Container Platform Components and Roles ... 9

Components Used to Construct the Suggested Design ...12

Verification of ADG Findings ...24

Segmentation ..24

Background and Considerations ..24

Requirement 1 ..27

Requirement 2 ..31

Requirement 3 ..34

Requirement 4 ..35

Requirement 5 ..35

Requirement 6 ..36

Requirement 7 ..37

Requirement 8 ..40

Requirement 9 ..41

Requirement 10 ..41

Requirement 11 ..44

Requirement 12 ..44

Conclusion and Coalfire Opinion ...45

A Comment Regarding Regulatory Compliance ..45

Legal Disclaimer ...45

Additional Information, Resources, and References ..46

Red Hat ...46

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 3

Payment Card Industry Security Standards Council ..46

EXECUTIVE SUMMARY
Red Hat, Inc. (Red Hat) delivers a comprehensive portfolio of products and services built from open source

software components using an affordable, predictable subscription and support model. Red Hat has

engaged Coalfire, a respected Payment Card Industry (PCI) Qualified Security Assessor Company (QSAC),

to conduct an independent technical review of Red Hat OpenShift Container Platform (OpenShift or OCP)

version 4.5 on Red Hat Enterprise Linux CoreOS (Red Hat CoreOS). The result of this review is provided

in this Architecture Design Guide (ADG). This guide examines a use case for a payment entity’s deployment

of OpenShift in alignment with technical requirements to the Payment Card Industry Data Security Standard

version 3.2.1 (PCI DSS version 3.2.1). The paper outlines Coalfire’s methodology for assessment, the

tangible approach used for the review; summarizes findings from our review of product capabilities,

provides context into the possible use for this narrative, defines parameters to form a common basis of

understanding, and opines as to the usefulness of OpenShift 4.5 within a program of compliance for PCI

DSS version 3.2.1. This Coalfire ADG may be used to inform customer designs which intend to have self-

assessment questionnaire (SAQ) or third-party Qualified Security Assessor (QSA) Report on Compliance

(ROC) attestations performed.

This architecture design guide may be useful to any payment entity that is considering using OpenShift on

Red Hat Enterprise Linux CoreOS as part of their cardholder data environment (CDE). This paper discusses

segmentation strategies using OpenShift’s software-defined networking (SDN) to isolate CDE systems from

out-of-scope systems in an OpenShift environment. It further discusses control of data flow between

containers or pods in an OpenShift environment using the OpenShift SDN’s capabilities, e.g., between

connected-to or security-impacting systems and the CDE. Finally, the paper outlines the PCI DSS version

3.2.1 requirements that are applicable to OpenShift on Red Hat Enterprise Linux and discusses and verifies

the control implementation in the suggested design.

The review, findings, and opinions in this paper are only relevant to OpenShift 4.5 on RHEL CoreOS and

are not applicable to any underlying hardware or platforms upon which OpenShift was deployed. General

references to dependent infrastructure and adjacent technologies are mentioned to provide context for the

deployed container platform.

COALFIRE OPINION

Security controls, features, and functionality that are built into OpenShift Container Platform on Red Hat

Enterprise Linux CoreOS can support and/or address relevant technical PCI DSS version 3.2.1

requirements. OpenShift Container Platform provides granular control and improved security at scale for

containerized workloads.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 4

OVERVIEW OF PCI DSS VERSION 3.2.1
PCI DSS version 3.2.1 is a proprietary information security standard that was developed by the Payment

Card Industry Security Standards Council (PCI SSC) to encourage and enhance cardholder data (CHD)

security by stipulating a set of requirements regulating the use of information systems that handle CHD.

PCI DSS is not an optional standard. As stated, all entities who process, store, or transmit CHD, regardless

of geographic location, must comply with the standard or they can be fined and refused access to the card

brand’s payment system. To address OpenShift’s usability by payment entities in PCI DSS relevant use

cases, Coalfire utilized additional guidance provided by the PCI SSC including the Information Supplement:

Guidance for PCI DSS Scoping and Network Segmentation May 2017, Information Supplement: PCI SSC

Cloud Computing Guidelines April 2018, Information Supplement: PCI DSS Virtualization Guidelines June

2011, PCI DSS v3.2.1 Template for Report on Compliance, and other similar materials.

UNDERSTANDING PCI DSS SCOPE

A reliable approach for determining where PCI DSS is required to be applied begins with identification and

definition of the scope of the entity’s cardholder data environment (CDE) and PCI-DSS required, supporting

systems for review. Per PCI DSS Requirements and Security Assessment Procedures, “PCI DSS security

requirements apply to all system components included in or connected to the CDE. The CDE is comprised

of people, processes, and technologies that store, process, or transmit cardholder data and sensitive

authentication data.” (PCI SSC, 2018). PCI DSS recommends that an assessed entity confirm the accuracy

of their PCI DSS scope at least annually or prior to the annual assessment. To help identify scope, the

payment entity should evaluate their systems to identify all locations and flows of CHD and identify all

systems that are connected to or, if compromised, could impact the CDE. These systems should be

included in scope for review.

For creation of Coalfire’s ADG, the PCI DSS version 3.2.1 requirements were limited primarily to technical

requirements pertaining to OpenShift on Red Hat CoreOS, including “network devices, servers, computing

devices, and applications.” (PCI SSC, 2018). The technical evaluation assumed the use of OCP 4.5 on Red

Hat CoreOS for developing, testing, building, managing, monitoring, orchestrating, deploying, and hosting

a payment entity’s CDE applications. Categorizing the infrastructure and application components helps to

identify the role that systems play with respect to the processing, transmission, and/or storage of CHD. PCI

DSS provides three scoping categories: CDE systems, connected-to or security-impacting systems, and

out-of-scope systems. Figure 1, taken from the PCI DSS Scoping and Segmentation Guide, illustrates how

systems can be categorized and the factors for determining the appropriate category to assign.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 5

Figure 1 - PCI DSS Scoping Categories (PCI SSC, 2017)

Once the information or data is categorized, the payment entity can be better equipped to properly secure

the data or apply necessary and required controls. Where data of differing categories is comingled, the

level of security and control that must be applied is equal to the highest watermark for data in the information

system. For instance, using PCI DSS data categories, if CDE systems, connected-to or security-impacting

systems (C-T/SIS), and out-of-scope systems reside on the same flat network without network controls to

limit connectivity between them, all systems, regardless of category, would require the same level of

controls and safeguards to be applied. Network segmentation to isolate or control communication between

categories of information and systems is useful for narrowing or minimizing the potential impact that one

system could have on another.

NETWORK SEGMENTATION

Network segmentation is a recommended method for providing isolation for each category of system.

According to PCI DSS version 3.2.1, isolating (segmenting) the CDE from the remainder of an entity’s

network is not a PCI DSS requirement; however, it is strongly recommended as a method that may reduce:

• The scope of the PCI DSS assessment

• The cost of the PCI DSS assessment

• The cost and difficulty of implementing and maintaining PCI DSS controls

• The risk to an organization (reduced by consolidating CHD into fewer, more controlled

locations) (PCI SSC, 2018)

To evaluate the possibility for the use of segmentation to reduce scope, the payment entity must have a

clear understanding of business needs and processes related to the storage, processing, or transmission

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 6

of CHD. There is an assumption that risk to an organization is reduced through reduction and consolidation

of CHD into fewer and more controlled locations as it pertains to storage, processing, and transmission.

This is a fair assumption given that the reduction in scope decreases the surface area for attack and

minimizes the number of entry points needed to be controlled.

The payment entity will need to consider the presence and placement of OpenShift and OpenShift

components (control plane nodes, the Cluster Network Operator, the Ingress Operator, network policy

objects, infrastructure pods, and so forth) within their overall infrastructure, especially as it relates to the

use of network segmentation techniques to isolate CDE systems. Likewise, the payment entity will need to

understand what categorization the components of OpenShift should have, as it relates to the role each

component plays relative to the CDE systems. In that regard, each payment entity can benefit from

understanding segmentation and control capabilities that are present within OpenShift on Red Hat CoreOS

to enable the isolation of workloads. With OpenShift, workloads can be isolated to separate hosts in a

container cluster as well as isolated on the network using OpenShift SDN capabilities. Current guidance

from PCI SSC Cloud Special Interest Group strongly recommends separation of workloads representing

differing zones of trust onto separate hosts. (Cloud Special Interest Group PCI SSC, 2018).

PCI DSS REQUIREMENTS

The PCI DSS standard is comprised of six “control objectives” with twelve “requirements”. The following is

a listing of control objectives and their associated requirements. These technical and operational

requirements were evaluated for applicability with the use of OpenShift on Red Hat CoreOS by a payment

entity in a PCI DSS regulated environment. Ultimately, the burden for implementing PCI DSS requirements

is on the payment entity, regardless of present capabilities of the technology to provide control.

Figure 2: PCI DSS High-Level Overview (PCI SSC, 2018)

NEW AND EMERGING TECHNOLOGY CHALLENGES TO
COMPLIANCE

Containerization technologies can provide valuable benefits to the businesses that incorporate them into

their service development and delivery process. Some of the benefits include increased developer

productivity; decreased time to application deployment; increased application portability, agility, and

scalability to align with changes in service demand; and increased compute efficiencies. Containerization

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 7

technologies are beneficial to organizations looking to migrate to or expand their presence in the cloud.

The compute efficiencies gained from containerization may potentially reduce the cost of cloud deployments

over traditional bare-metal or virtualization deployments.

At the same time, challenges exist as it pertains to utilizing new and transformative technologies in the

context of security compliance frameworks. Organizations seek to understand how introducing new

technologies in their day-to-day operations may positively or negatively impact their security posture and/or

compliance programs. It can be challenging to align security requirements to the new technology to address

security application. Assessors who are responsible for measuring an entity’s compliance program

effectiveness may not be familiar with the technology. Traditional methods for security application may not

be relevant or useful in the new environment.

Traditional anti-malware solutions, vulnerability scanning techniques, intrusion detection, and audit logging

processes; for instance, may not be as effective in container run-time environments. The nature of how

containers are executed on a container platform can limit the capabilities of traditional security tools to

detect malware and identify vulnerabilities. However, with a proper understanding of container

environments and the container lifecycle, new methods of applying security techniques to achieve the same

or better outcome can be implemented. As an example, in most cases, containers that are deployed and

executed in the container runtime are immutable. Containers are deployed from images. Images are stored

in repositories or a registry waiting to be deployed and executed. With this knowledge, it seems reasonable

to target scanning of vulnerabilities and malware at the image repository. In addition, as part of the systems

development lifecycle, entities can establish a gate to inspect and digitally sign images prior to their

placement in the image repository.

Many of the new and emerging technologies, such as containerization, software-defined data center, SDN,

software-defined storage, and others, provide more efficient, scalable, extensible, and expedient means to

support and deliver services for business and their customers. However, often the challenge with initial

adoption of newer technologies is to understand and properly address the impact that a new technology

has on security and compliance. A 2018 PCI SSC Special Interest Group’s publication released in 2018

provided guidance on the use of many new technologies, with emphasis on cloud and new virtualization

techniques, including containers; however, new technologies often emerge and evolve faster than

regulating bodies are capable to address them. For organizations wishing to gain early benefits of a new

technology, the level of risk must be evaluated and mitigated, especially as it may impact compliance

requirements and the security of protected data.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 8

SCOPE AND ADG REVIEW METHODOLOGY
Coalfire’s understanding of OpenShift on Red Hat CoreOS and their combined capabilities was gained

through product specification, installation, configuration, administration, and integration documentation

provided by Red Hat and generally made publicly available from Red Hat’s public-facing website. Coalfire

further conducted interviews and engaged in live product demonstrations with Red Hat personnel. For live

product demonstration purposes, OpenShift was deployed on Red Hat CoreOS in a lab environment to

provide hands-on testing and analysis of the system’s capabilities to support compliance.

Coalfire’s review of OpenShift on Red Hat CoreOS began with a general alignment of the applicability of

the technology against PCI DSS version 3.2.1 requirements. This was further narrowed down to specific

requirements that were considered applicable to either OpenShift or the underlying operating system (OS).

An analysis of capability for the reviewed technology to address the applicable requirements was then

conducted. This analysis primarily focused on what an assessor might review when following the PCI DSS

version 3.2.1 testing guidance during an assessment of applicable requirements.

Supporting material in the form of a previous PCI DSS 3.2-focused report may be found in the 2017

OpenShift Product Applicability Guide for PCI DSS version 3.2.. This document is being revised to

incorporate both changes to OpenShift 4.5 and to the PCI DSS standard version 3.2.1.

Expanding on the general alignment, Coalfire engaged in a process of verification of control capabilities in

a reference architecture designed and implemented by Red Hat. The verification used guidance from the

PCI SSC when assessing PCI DSS as well as expectations for verification found in the companion Report

on Compliance template.

SCOPE OF TECHNOLOGY AND SECURITY STANDARD TO REVIEW

Coalfire was tasked by Red Hat to review OpenShift as deployed on Red Hat CoreOS. The primary focus

of the review included the components, features, and functionality of OpenShift along with the supporting

underlying OS features and functionality when the components are deployed on Red Hat CoreOS.

Workload pods and containers that were deployed in the lab environment were used for the purposes of

demonstrating the platform’s orchestration, deployment, and management capabilities. The pods and

containers also served to support testing of segmentation within the environment to affirm that the deployed

OpenShift SDN configuration was effective in isolating CDE from out-of-scope systems and to limit the

connectivity of connected-to and security-impacting systems. Furthermore, Coalfire did not assess

available image registries or repositories that may be used for acquiring applications, services,

dependencies, or other elements to be hosted on or used within OpenShift.

For this review, Coalfire included requirements from the Payment Card Industry (PCI) Data Security

Standard Requirements and Security Assessment Procedures Version 3.2.1, April 2016 publication

available from https://www.pcisecuritystandards.org. For a broader understanding of the requirements and

their applicability to technical solution implementation, Coalfire also reviewed supporting documentation

provided by PCI SSC including controls assessment guidance, guidance on cloud and virtualization,

scoping and segmentation guidelines, and other guidance that is made generally available from PCI SSC.

Applied understanding of PCI DSS version 3.2.1 requirements and guidance was supplemented by

documentation and guidance on relevant subjects. As OpenShift is a container platform, Coalfire also

applied guidance from NIST Special Publication 800-190 Application Container Security Guide September

2017 publication as well as Information Supplement: PCI SSC Cloud Computing Guidelines April 2018

publication, specifically Appendix E.7 on Containers.

https://www.pcisecuritystandards.org/

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 9

EVALUATION OF ARCHITECTURE

Coalfire evaluated the architecture to understand the components of an OpenShift implementation and the

role these components have in the overall security of the OpenShift platform as well as the security

capabilities that are extended to the running containers or workloads on the platform. Coalfire also

evaluated the architecture to understand the capabilities of OpenShift on Red Hat CoreOS to properly

isolate identified workloads according to their security categorization.

OPENSHIFT CONTAINER PLATFORM AND
ARCHITECTURE
OpenShift offers a consistent hybrid cloud foundation for building, deploying and scaling containerized

applications. OCP delivers a single, consistent Kubernetes platform anywhere Red Hat CoreOS runs. It is

an integrated platform to run, orchestrate, monitor, and scale containers. OCP provides both streamlined

automated installations as well as options for more customized installations where organizations have

requirements not met by the automated defaults. OCP allows organizations to control, defend, and extend

the application platform throughout an application’s lifecycle. It also enables a secure software supply chain

to make applications more secure.

OCP helps maximize developer productivity with specially configured toolsets and tools. One of these tools

is a workflow that includes built-in Continuous Integration/Continuous Delivery (CI/CD) pipelines and a

source-to-image capability that enables developers to go directly from application code to container. These

updated toolsets help provide consistent operations and management experience across infrastructures

and in support of many teams.

The following architectural elements are specific to each deployed cluster of OpenShift Container Platform.

Coalfire has highlighted the elements that were most instrumental in supporting security and compliance

for PCI DSS version 3.2.1. The deployed architecture is intended to serve as an example of how to deploy

and utilize OpenShift in a manner that can be supported in the context of PCI DSS compliance.

For relevance to PCI DSS version 3.2.1, Coalfire and Red Hat considered the use case of a payment entity

deploying CDE system components in an OpenShift environment in support of an e-commerce system.

The OpenShift environment was inclusive of workloads representative of CDE systems, out-of-scope

corporate LAN systems, and the C-T/SIS systems in-scope and servicing both the CDE and corporate LAN.

OPENSHIFT CONTAINER PLATFORM COMPONENTS AND ROLES

The following is a listing of components and roles that support OpenShift and were part of the deployed

design:

• Red Hat CoreOS – OCP uses Red Hat CoreOS, a container-optimized operating system

specifically configured for running the container platform. Red Hat CoreOS is installed and

managed as part of OpenShift similarly to an appliance.

Red Hat CoreOS is a single-purpose, container- and Kubernetes-optimized, minimal-footprint OS

powered by the same binaries as RHEL. This OS can assist organizations with meeting

requirements for system hardening with the least functionality through its lightweight, purpose-built

nature; it only includes the necessary features, functions, and services to host containers in an

OCP environment.

Red Hat CoreOS is designed to be more tightly managed than a default RHEL installation.

Management is performed remotely from the OCP cluster. When the OCP cluster is set up and

Red Hat CoreOS is deployed, customers can only modify a few system settings.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 10

Red Hat CoreOS has built-in security features and functionality that, as configured in an OCP

installation, provide a secure platform for supporting the OCP components and the workloads in

containers that OCP orchestrates.

For this PCI DSS studied implementation, as outlined in this design guide, OpenShift was deployed on Red

Hat CoreOS. The following features of Red Hat CoreOS are configured by default. These features align

with container orchestration recommendations from PCI SSC in PCI SSC Cloud Guidelines version 3.

• Linux namespaces are a fundamental aspect of containers in Linux and are used for

creating an abstraction of a particular global system resource to make it appear as a

separate instance to processes within the namespace. The kernel provides isolation by

creating separate namespaces for containers. The types of namespaces used by

containers in Red Hat CoreOS include mount namespaces, UTS namespaces, IPC

namespaces, PID namespaces, and network namespaces.

• SELinux (Security-Enhanced Linux as delivered in RH CoreOS) provides an additional

layer of security to keep containers isolated from each other and from the host. SELinux

enforces mandatory access control (MAC) for every user, application, process, and file on

a Linux system. It provides secure separation of containers by applying SELinux policy and

labels. SELINUX=enforcing and SELINUXTYPE=targeted is a default in Red Hat

CoreOS and configured in the /etc/selinux/config file (which is now a soft link to

/etc/sysconfig/selinux in Red Hat CoreOS) as shown here:

Figure 3 - /etc/selinux/config

• CGroups (control groups) are used to limit, account for, and isolate the resource usage

(CPU, memory, disk I/O, network, etc.) of a collection of processes. These are used to

ensure that containers on the same host will not be impacted by other containers. CGroups

allocate CPU time, system memory, network bandwidth, or combinations of these among

user-defined groups of tasks.

• Secure computing mode (seccomp) profiles are used with containers to restrict available

system calls. By defaut, OCP runs containers unconfined by seccomp. OCP can be

configured to apply seccomp profiles.

Red Hat CoreOS is a container optimized OS, designed to support OCP. Red Hat CoreOS is

deployed and managed as part of OpenShift. When the OCP cluster is setup and Red Hat CoreOS

is deployed, customers can only modify a few system settings.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 11

• Operating Environment – OpenShift can be deployed on bare-metal physical hardware, VMware

vSphere, Red Hat Virtualization (RHV), OpenStack, or other major cloud providers. It can be

deployed on private or certified public cloud environments, depending on the organization’s specific

use cases.

• Open Container Initiative (OCI) Runtime – Container Runtime Interface-Orchestration (CRI-O)

is an OCI-compatible runtime that is installed on every Red Hat CoreOS host. As such, CRI-O

enables the use of OCI-compatible containers. OCI has an open governance structure used to

create open industry standards around container formats and runtimes. The CRI-O engine focuses

on features needed by Kubernetes platforms, such as OCP, and offers specific compatibility with

different Kubernetes versions.

• Kubernetes – Kubernetes is an open-source container orchestration engine for automating the

deployment, scaling, scheduling, and management of containerized applications across the cluster.

Kubernetes provides orchestration for complex multi-container services – serving as the de facto

standard for orchestrating containers.

• Containers – End-user application instances, application components, or other services are run in

Linux containers. A container should only include the necessary libraries, functions, elements, and

code required to run the application.

• Pods – While application components run in containers, OCP orchestrates and manages pods. A

Kubernetes pod is a group of containers that are deployed together on the same host. A pod is an

orchestrated unit in OCP made up of one or more containers. A pod should only contain a single

function, such as an application server or web server, and should not include multiple functions

such as both a database and application server.

• Operators – An Operator is a method of packaging, deploying, and managing a Kubernetes-native

application. Operators automate the lifecycle management of containerized applications within

Kubernetes. A Kubernetes-native application is an application that is both deployed on Kubernetes

and managed using the Kubernetes APIs and kubectl tooling. A controller is a core concept of

Kubernetes. It is implemented as a software loop that runs continuously, compares, and, if

necessary, reconciles the expressed desired state and the current state of an object. Objects are

resources like Pods, Services, ConfigMaps, or PersistentVolumes; but, through Custom Resource

Definitions (CRDs) could be any object. Operators apply the model of controller at the level of entire

applications and are, in effect, application-specific custom controllers.

OCP adds developer- and operations-centric tools to Kubernetes that help enable rapid application

development, simplified deployment, and scaling, and long-term lifecycle maintenance for

applications. OCP also leverages integrated components to automate application builds,

deployments, scaling, and health management.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 12

Components Used to Construct the Suggested Design

The following components are essential elements of OCP 4.5:

• OpenShift Operators – As OCP is a fully containerized platform that consists of many different

components, OCP takes advantage of Operators for driving the installation, configuration,

management, and upgrades of OCP and all its services. Operators are both the fundamental unit

of the OCP 4.5 cluster and a way to deploy applications and software components for the OCP

customer’s applications to use. Operators deploy and manage OpenShift’s native functions

including the Kubernetes core services along with monitoring (e.g., Prometheus), logging (e.g.,

Elasticsearch, Fluentd, Kibana), software-defined networking, storage, registry. Operators serve

as the platform foundation that removes the need for manual upgrades of the OSs and OCP control

plane applications. The Cluster Version Operator and Machine Config Operator allow simplified

cluster-wide management of those critical components. All the components of the platform are

managed throughout their lifecycle with Operators.

• Operator Lifecycle Manager – The Operator Lifecycle Manager (OLM) is the backplane that

facilitates the management of Operators on a Kubernetes cluster. OLM helps administrators of the

cluster control which Operators are available in which namespaces, and who can interact with the

running Operators. The permissions of an Operator are configured automatically to follow a least-

privilege approach. The OLM helps users install, update, and manage the lifecycle of all Operators

and their associated services running across their clusters. The OLM runs by default in OCP 4,

which aids administrators in installing, upgrading, and granting access to Operators running on

their cluster. Because OpenShift Container Platform is fundamentally composed of components

deployed and managed by operators, OLM also facilitates the upgrading of the entire OpenShift

Container Platform cluster.

• Machine Config Operator (MCO) – The MCO manages OS updates and OS configuration

changes. The MCO allows platform administrators to ensure consistent configuration across all

Red Hat CoreOS nodes, monitoring for drift, and alerting on unsupported configurations.

• OpenShift Worker Nodes – In the default deployment, 2 worker nodes represent instances of Red

Hat CoreOS with the OCP 4.5 software deployed. Worker nodes are where end-user applications

and workload infrastructure components, such as routers, run in containers. Worker nodes will

contain the necessary OCP node daemon, the kubelet, the container runtime, and other services

required to support the hosting of containers. Most of the software components that run above the

OS (e.g., the software-defined network [SDN] daemon) run in containers on the Nodes.

Worker node configurations are bootstrapped at install time. The worker nodes advertise their

capacity and the scheduler, which is part of the master services, determines on which nodes to

start containers and pods. Important services run on each worker node, including CRI-O (the

container engine), kubelet (the service that accepts and fulfills requests for running and stopping

container workloads), and a service proxy (manages communication for pods across workers). The

quantity of worker nodes is configurable at deployment and may be easily scaled up to increase

application capacity and performance.

• OpenShift Control Plane Nodes – In the default deployment, 3 nodes comprise the control plane

for OCP. The control plane maintains and understands the state of the cluster and orchestrates all

activity that occurs on the worker nodes. The OCP Control Plane nodes are run on Red Hat

CoreOS. While it is possible to configure the Control Plane nodes to run application instances, for

separation of function, application instances (pods) should not be scheduled on Control Plane

nodes. The following are the four functions of the OCP control plane:

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 13

– API and Authentication – The Control Plane provides a single API where all tooling and

systems interact. Everything that interacts with OCP must go through this API. All API requests

are Transport Layer Security (TLS) encrypted and must be authenticated. Authorizations are

handled by fine-grained role-based access control (RBAC). It is recommended to tie the Control

Plane to an external identity and access management system using Lightweight Directory

Access Protocol (LDAP), OpenID Connect, or other providers. The Control Plane evaluates

requests for both authentication (AuthN) and authorization (AuthZ). Users of OCP who have

been granted access can be authorized to work with specific projects.

– Desired and Current State – The state of OCP is held in the OCP data store. The data store

uses etcd, a distributed key-value store. The data store houses information about the OCP

environment, including OCP user account information and the RBAC rules, the OpenShift

environment state, application environment information and important environment variables,

secrets data, and other information.

– Scheduler – The scheduler determines pod placement within OCP. It uses a combination of

configuration and environment state (CPU, memory, and other environmental factors) to

determine the best fit for running pods across the Nodes in the environment. The scheduler is

configured with a JSON file in combination with Node labels to carve up OCP resources. This

allows the placement of pods within OCP to be based on the real-world topology, making use

of concepts such as regions, zones, or other constructs relevant to the enterprise. These

factors can contribute to the scheduled placement of pods in the environment and can ensure

that pods run on appropriate Nodes associated with their function.

– Health and Scaling – The OCP Control Plane is also responsible for monitoring the health of

pods and scaling the pods as desired to handle additional load. The OCP Control Plane

executes liveness and readiness tests using probes that are defined by users. The OCP Control

Plane can detect failed pods and remediate failures as they occur.

• Service Layer – The OpenShift Service Layer allows for application components to easily

communicate with one another. For instance, a front-end web service containing multiple web servers

would connect to database instances by communication via the database service. OpenShift

automatically and transparently handles load balancing across the services’ instances. In conjunction

with health probes, the OpenShift Service Layer ensures that traffic is only directed toward healthy

pods, which helps to maintain component availability.

• Persistent Storage – Linux containers are natively ephemeral and only maintain data for as long as

they are running. Applications and/or application components may require access to a long-term

persistent storage repository, such as may be required for a database engine. OpenShift provides the

means to connect pods to external real-world storage, which allows for stateful applications to be used

on the platform. Persistent storage types that are usable include iSCSI, Fiber Channel, and NFS, as

well as cloud-type storage and software-defined storage options such as Red Hat OpenShift Container

Storage. Persistent storage can be dynamically provisioned upon the user’s request, provided the

storage solution has an integration with OpenShift.

• Ingress Controller – The Ingress Controller is commonly used to allow external access to an OCP

cluster. The Ingress Operator manages Ingress Controllers. An Ingress Controller is configured to

accept external requests and proxy them based on the configured routes. External requests are

limited to HTTP and HTTPS using Server Name Indication (SNI) and Transport Layer Security (TLS),

which is enough for web applications and services. Ingress works in partnership with the service layer

to provide automated load balancing to pods for external clients. The Ingress Controller uses the

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 14

service endpoint information to determine where to route and load balance traffic; however, it does

not route traffic through the Service Layer.

• OpenShift SDN – The OCP software-defined network (SDN) is a unified cluster network that enables

the communication between pods across the OCP cluster. The OCP SDN configures an overlay

network that uses Open vSwitch (OVS). Red Hat currently provides one SDN mode for the OCP pod

network – the networkpolicy mode. The network policy mode provides fine-grained access control via

user-defined rules. Network policy rules can be built in a mandatory access control (MAC) style,

where all traffic is denied by default unless a rule explicitly exists, even for pods/containers on the

same host.

• OpenShift Registry – The OpenShift Registry provides integrated storage and management for

sharing container images. OpenShift can utilize existing OCI-compliant container registries accessible

to the Nodes and the OpenShift Control Plane via the network.

Figure 4 below provides a high-level OpenShift Container Platform Overview.

Figure 4: High-level OpenShift Container Platform Overview

Projects – A project is a Kubernetes namespace with additional OCP annotations and metadata. It is the

central vehicle by which access to regular users' resources is managed and is the tenancy model of OCP

and Kubernetes. A project allows a community of users to organize and manage their content in isolation

from other communities.

Types of Users

When it comes to direct use and management of an OpenShift cluster, regular users (who typically run

workloads and may do some administration) and system users (who can interact with the API), and

service accounts used for automation purposes.

• Users – User (operators, developers, application administrators) access to OCP is provided

through standard interfaces, including the Web UI, CLI, and IDEs. These interfaces go through

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 15

the authenticated and RBAC-controlled API. Users do not require system-level access to any of

the OCP hosts, even for complex application debugging and troubleshooting tasks.

Three types of users can exist in an OCP environment: regular users, system users, and service

accounts.

• – Regular Users: A user most commonly represents a real person who interacts with

the OCP cluster in some way. Since the OCP management is performed on the API, this

includes both administrators of the cluster and regular cluster users who run their

workloads.

• – System Users: Many of the system users are created automatically when the OCP

infrastructure is defined to enable the infrastructure to interact with the API securely.

System users include a cluster administrator (with access to everything), a per-node

user, users for use by ingress controllers and registries, and various others. There is also

an anonymous system user that is used by default for unauthenticated requests. All

unauthenticated requests are subject to authorization. Examples of these users are

system:admin, system:openshift-registry, and system:node:node1.example.com.

• – Service Accounts: These are non-human system users, often associated with

projects and used for API access in automation situations. Some default service accounts

are created and associated when a project is first created. Project and cluster

administrators can create additional service accounts for defining access to the contents

of each project.

For more information on OpenShift concepts, features, and functions, please refer to Red Hat’s product

documentation.

Architecture Design

This PCI DSS design pattern was implemented following Red Hat’s recommendation for production

OpenShift environments where two MachineSets were created during installation. The master MachineSet

pertains to the control plane assets, while the worker machine set is created to support user applications.

Worker role machines drive compute workloads that are governed by a specific machine pool that

autoscales them. These worker machines are classed as compute machines. Custom machine sets can

be created by cluster-admins. Node selectors or references to MachineSets can be used to determine the

placement of pods onto nodes using the scheduler.

Using a default configuration, the cluster was deployed with three Control Plane nodes to provide high

availability (HA) for both the control plane and the etcd datastore. The studied environment used an

additional load balancer (HAProxy) in front of the control plane to separate access to the control plane. It

should be noted that this control plane load balancer is completely different from the OpenShift router even

though they are both implemented using HAProxy.

• OpenShift Machine Sets

For this PCI DSS suggested implementation, additional distinct MachineSets are created to represent PCI

DSS v3.2.1 scoping security categories. The cardholder data environment (CDE) nodes are assigned a

role with the label cde, the connected-to and security-impacting systems are assigned a role with the label

support, and the out-of-scope systems are assigned the default role with the label compute. Node labels

were assigned to each of the node groups.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 16

Nodes for the Control Plane have their own specific node groups. Additional MachineSets were created for

further segmenting the OpenShift infrastructure components - specifically, the OpenShift router to the pods

and log aggregation and cluster metrics collection solutions included with the platform. The nature of the

OpenShift components that run on these nodes relative to the CDE systems also make them in scope for

PCI DSS assessment as the category connected-to and security-impacting systems.

Figure 5 illustrates these node groupings, the naming of the nodes in each of the groups, and notionally the

deployed pods that are running on each of the nodes. The alignment of application pods and containers by

security category to the separate node groupings served to provide host-level isolation for the workloads.

The diagram also illustrates the relationship of OpenShift to the underlying and surrounding or supporting

infrastructure. The depiction of the diagram of Developer and Operations illustrate the administrative

connectivity to the environment for management and operational support of OpenShift and the workloads.

The PCI DSS design pattern includes three master nodes, three dedicated infrastructure nodes, three

compute nodes, three cde nodes, three support nodes, and two router nodes. Dedicated infrastructure

nodes and router nodes are used to allow registry, logging, metrics and router pods to run on hosts

separately from pods used for user applications.

Proper node labeling and project node selector definitions ensure workloads land on appropriate hosts.

Two methods of controlling workload residence on particular nodes may be used in OCP 4.5: A legacy

method formerly the choice for OCP 3 designs – default node selection via the editing of the Scheduler

Operator defaultNodeSelector variable in the spec: section; or the preferred newer method employing

Taint / Toleration approaches to regulate pods onto desired hosts.

Figure 5: CoreOS OCP Architecture

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 17

A Taint is a kind of labeling that allows a host to repel a set of pods that do not have the capability to run

on them. Applied through the node specification (NodeSpec), Taints may be used to ensure that workload

pods avoid control-plane hosts and to select appropriate worker nodes in desired regions.

A Toleration is a way to overcome a taint. By editing the pod specification (PodSpec) the developer may

create exceptions to the Taint model, should those be desired.

With this new approach, OCP implementation recommendations are to use the Taint labeling is to create

host allocation to support the PCI DSS segmentation objectives for pods by specifically tainting hosts which

are intended to run CDE and connected-to/security-affecting workloads with a unique label to enforce

segmentation requirements for later PCI DSS assessment. In a similar way, restriction of out-of-scope

pods can be enforced with taints on hosts used for non-CDE purposes.

Toleration labeling on pods could also be used to illustrate enforcement onto appropriate hosts, or to create

exceptions, perhaps for staging or test pods to temporarily run on out-of-scope tainted hosts, for instance.

The Taint/Toleration constructs are powerful ways to enable proper project node selection and are the

currently recommended approaches to ensure enforcement of pod allocation to desired nodes and to create

an implementation that may be easily reviewed by PCI DSS QSAs.

Through RBAC assignments, activities can be restricted for OpenShift administration, project

administration, and workload administration. For instance, the cluster is configured so that only cluster

admins are capable of creating projects with Taints/Tolerations or NodeSelectors that will land workloads

on the cde or support nodes.

When setting up the OpenShift environment for PCI DSS deployments, a set of users should be configured

to be production admins with restrictions to allow these users to deploy/modify workloads in the

CDE/support environments.

User Workloads

Much like distinct node groups are defined according to PCI DSS security category, user workload

containers and pods are deployed in the studied design to represent the different security categories. The

deployed workload notionally represents an e-commerce system with payment components. Additional

workloads were deployed to represent out-of-scope systems and connected-to and security-impacting

systems. While the workloads in an OpenShift environment may be handled by the payment entity

according to applicable and relevant security requirements, it is generally understood that the security

features and functions of the OpenShift environment are universally applied regardless of the running

workload.

Special care should be taken when deploying privileged containers. For the most part, the use of privileged

containers should be limited to special circumstances where such privileges are required for successful

operation of the container. If possible, custom security context constraints (SCC) with only the required

privileges should be created to minimize the possibility for security issues. Privileged containers should

additionally be restricted to specific nodes to avoid possible security risks, should such containers be

compromised. In general, the use of the explicit privileged SCC should be avoided at all costs for security

reasons.

Managing Ingress

The OpenShift router was placed on dedicated router nodes as shown in Figure 6. The routers support

ingress to the applications hosted in OpenShift and sit between the public/DMZ network and the internal

container network. Router pods are only deployed to node hosts with the Taint label of infra, and with

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 18

Toleration PodSpecs for CDE. Figure 5 depicts utilization of dedicated router nodes with router pods to

provide isolation between the network external to OpenShift and the internal OpenShift SDN. Ingress traffic

flows in through OpenShift’s routing layer to ingress routers and then is directed appropriately to the

targeted workload. This figure also depicts the optional use of unique router nodes and pods for handling

of Internet traffic separate from intranet traffic where Internet router nodes and pods are connected to the

DMZ.

Figure 6 - OpenShift Router Configuration

Ingress for workloads (pods/containers) in the environment flow through dedicated router pods deployed in

this design on dedicated router nodes. The private network depicted in Figure 6 represents the virtual or

physical network attached to the OpenShift hosts. This network supports node communication to external

services such as DNS, LDAP, and NTP as well as provides connectivity for users to the API, CLI, and web

console.

OpenShift DNS

OpenShift Container Platform includes an internal DNS subsystem that provides hostname resolution as it

relates to Kubernetes Services. Using service hostnames allows for flexibility in deployment across different

software development lifecycle (SDLC) environments, which helps to prevent misconfigurations when

promoting workloads.

OpenShift SDN and Network Policies

The SDN provides extremely fine-grained access control via user-defined network policy rules. Network

policy rules can be built in a “mandatory access control” style, where all traffic is denied by default unless

a rule explicitly exists, even for pods/containers on the same host.

The studied implementation utilizes network policy rules for fine grained control for supporting approved

traffic between pods associated with different projects and between pods within the same project. Network

policy rules also allowed for default policy enforcement to block all traffic regardless of source with traffic

only being allowed to the destination by explicit policy declaration.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 19

A recap of PCI DSS requirements illustrate that the basic segmentation best practices are to be created in

the architecture, as shown in figure 7. These rules are summarized here: out-of-scope corporate LAN

cannot communicate with Support/Infrastructure or CDE nodes and pods; connected-to/security affecting

pods (Support/Infrastructure) can communicate with each other and with the CDE nodes and pods; and

obviously nodes and pods of the same type can communicate with each other.

Figure 7 - High-level OCP Network Topology

On an OpenShift Control Plane, OpenShift SDN maintains a registry of nodes, stored in etcd. When a node

is registered into the cluster, OpenShift allocates an unused subnet from the cluster SDN and stores this

subnet in the registry. When a node is deleted, OpenShift deletes the subnet from the registry and

considers the subnet available to be allocated again. Control PlaneControl PlaneControl Plane

On the node, once the OpenShift SDN registers the local host with the SDN Control Plane, the OpenShift

SDN creates three network devices: br0, tun0, and vxlan_sys_4789.

br0 is the OVS bridge device that pod containers will be attached to. OpenShift SDN also configures

a set of non-subnet-specific flow rules on this bridge.

tun0 is an OVS internal port (port 2 on br0). This gets assigned the cluster subnet gateway address

and is used for external network access. OpenShift SDN configures netfilter and routing rules to

enable access from the cluster subnet to the external network via NAT.

vxlan_sys_4789 is the OVS VXLAN device (port1 on br0), which provides access to containers

on remote nodes. This is also referred to as vxlan0 in the OVS rules.

Each time a pod is started on the host, OpenShift SDN assigns the pod a free IP address from the node’s

cluster subnet, attaches the host side of the pod’s veth interface pair (veth0/1) to the OVS bridge br0, and

adds OpenFlow rules to the OVS database to route the traffic addressed to the new pod to the correct OVS

port. The ovs-networkpolicy plug-in allows for NetworkPolicy rules to be injected into br0 where the rules

can be applied to packets destined for the target pod.

Figure illustrates the flow of traffic from a pod on one node to a pod on a remote node in the cluster. Traffic

policy enforcement is applied at the OVS bridge device. In this case traffic will traverse the network outside

of the node over vxlan0.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 20

Figure 8 - OpenShift SDN - OVS Packet Flow Across Nodes

For pod to pod traffic on the same node, the traffic will go from pod 1 veth0 to br0. NetworkPolicy rules are

applied at br0. If a rule exists to permit the traffic flow, then the packet will flow to to pod 2 veth0 and to

pod 2 as depicted in 8. If the traffic is not permitted, the communication will be denied using the default

rule and the packet will be dropped.

Figure 9 - OpenShift SDN - OVS Packet Flow Intra-Node

Ingress traffic coming in from the network external to the OpenShift environment to the router node is

managed by the Ingress controller. It is also likely and recommended that all traffic coming into the

OpenShift environment will first be inspected by physical edge firewalls, IDS/IPS, and so forth. This ingress

traffic may also be configured for PCI DSS required TLS 1.2/1.3 cypher suite support of data encryption in

transit. Figure 10 illustrates that traffic can be applied for ingress to explicitly permit traffic to certain pods.

NetworkPolicy is in place to control packet flow between components of the application served by different

pods. In this way, traffic can be limited to only what is needed for the proper function of the application.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 21

Figure 10 - Ingress Routing and Traffic Flow Control

Managing Egress

To add an additional layer of protection regarding the CDE systems in OpenShift pertaining to their access

to external resources, the following two layers of security can be employed.

• Egress NetworkPolicy (firewall) – An egress network policy can be applied to a project where

an application runs. The policy will act as a firewall, restricting the access to only the approved

targeted off-cluster resources. As an example, the egress NetworkPolicy object can be used

to ensure that an OpenShift project’s pods can only access a specific Classless Inter-Domain

Routing (CIDR) block or DNS name representing an external database outside of the cluster

holding CHD or payment tokens.

• Static IPs for external traffic – When using the OpenShift SDN, each OpenShift project can

receive an isolated network namespace. These namespaces can have IP addresses

associated with them such that traffic leaving the OpenShift cluster appears to come from these

IP addresses. The assignment of specified IP addresses to the controlled workloads allows

for external (off-cluster) resources to whitelist the IP addresses for external access.

By combining the two layers of security, access for the OpenShift workloads to external

services or resources can be tightly controlled. Figure 11 illustrates the traffic flow control for

egress utilizing these two methods.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 22

Figure 11 - Controlled Egress using NetworkPolicy Objects and Static IP

Using an egress router allows for the creation of identifiable services to send traffic to certain destinations,

ensuring those external destinations treat traffic as though it were coming from a known source. This helps

with security, because it allows for secure connections to external services, such as a database, so that

only specific pods in a namespace can talk to a service (the egress router), which proxies the traffic to the

external service. The egress router runs a service that redirects traffic to a specified remote server, using

a private source IP address that is not used for anything else. This service allows pods to talk to servers

that are set up to only allow access from whitelisted IP addresses. Figure 12 illustrates this type of controlled

egress.

Figure 12 – Controlled Egress using Egress Service, Egress Router Pod, and External Service

Managing Container Registries –

It is recommended to block all container registries that are not explicitly known to the enterprise unless

there are specific documented exceptions or reasons to allow access. For example, the enterprise should

not allow access to anything but the Red Hat and/or enterprise private registries. Any additional third-party

registries should be scrutinized with additional processes for testing images (scanning, tagging, etc.) that

come from them before being admitted to the cluster.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 23

OpenShift includes an integrated container registry that provides basic functionality supporting build and

deployment automation within the cluster, tied into the OpenShift RBAC. Within the context of an

organization needing to adhere to more stringent compliance requirements, such as PCI DSS 3.2.1, Red

Hat Quay its optional Container Security Operator (CSO) is an additional product that provides a registry

with capabilities for both RBAC and pod vulnerability scanning of applications and software in images and

more. This CSO can be deployed to the OpenShift cluster, providing a view in the OpenShift console of

known vulnerabilities in images deployed to the cluster from Quay.

Managing Users –

User (operators, developers, application administrators) access to OpenShift is provided through standard

interfaces including the Web UI, CLI, and IDEs. These interfaces go through the authenticated and RBAC-

controlled API. Users do not require system-level access to any of the OpenShift hosts, even for

complicated application debugging and troubleshooting tasks.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 24

VERIFICATION OF ADG FINDINGS
An actual construction of the design candidate for this ADG was created in a supplied Red Hat OCP lab

and was used to support operation and analysis, and to perform the capture of screens and configuration

snippets shown in this white paper.

The following sections represent in-scope requirements selected for testing along with the examined

findings.

SEGMENTATION

The verification begins with review of capabilities to appropriately segment workloads within the OpenShift

environment. Information Supplement: PCI SSC Cloud Computing Guidelines dated April 2018 Appendix

E.7 states, “As containers can be used to achieve a similar level of execution, organizations may choose

to use them to segment their PCI DSS scope in a manner similar to virtual machines. The Customer must

validate that the container orchestration technology or solution offered by the Provider has all the features

required to fully isolate containers.” (Cloud Special Interest Group PCI SSC, 2018).

It is also noteworthy that the determination of actual compliance, in a real and not hypothetical payment

card application using Red Hat CoreOS and OCP, is performed by the QSA responsible for the assessment

(for merchants who meet or exceed the card transaction requirement for mandatory QSA reporting) and

validation of sufficient isolation is based upon supplied artifacts and observations conducted by the QSA.

Since segmentation is a best practice and not a requirement, selection of artifacts which verify isolation

must adequately confirm Requirement 1 firewall controls and be satisfactory for any specific inquiries

pertaining to scoping, virtualization and cloud guidance as provided in PCI SSC information supplements.

This point of view is elaborated on in the following sections.

Background and Considerations

PCI DSS considers everything in scope until verified otherwise. Consequently, it is important to be able to

demonstrate that the segmentation technique is sufficient to isolate CDE systems from out-of-scope

systems.

One challenging statement in the PCI DSS segmentation guide is “In a flat network, all systems are in scope

if any single system stores, processes, or transmits account data.” The existence of separate network

segments alone does not automatically create PCI DSS segmentation. Segmentation is achieved via

purpose-built controls that specifically create and enforce separation and to prevent compromises

originating from the out-of-scope network(s) from reaching CHD. The PCI DSS segmentation guide also

states, “If network segmentation is in place and being used to reduce the scope of the PCI DSS assessment,

the assessor must verify that the segmentation is adequate to reduce the scope of the assessment.” (PCI

SSC, 2017)

It will be necessary for the payment entity to sufficiently demonstrate that the logical constructs in place are

sufficient to provide isolation such that no component of out-of-scope systems can poison the CDE in any

way including, but not limited to, the spread of malware from a compromised system, unauthorized east-

west access, and capture of packets transmitted over a common transit network. Depending on the size

and complexity of the organization, out-of-scope systems being included in scope due to lack of adequate

segmentation may result in increased cost. The same security measures to address compliance

requirements would need to be applied to all systems, users, networks, storage, and so forth, regardless

of how the payment entity categorizes the system. All systems, devices, users, networks, storage, and so

forth would be in scope for assessment, thus increasing the cost of assessment.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 25

Consequently, many organizations will opt to build out entirely separate infrastructure to support their CDE

systems physically isolated from their out-of-scope or general support systems. This is not only seen with

traditional physical server infrastructures, but also with virtualized infrastructures where payment entities

are building separate virtualization infrastructure stacks to service each type of workload independently.

The advent of SDN solutions has eased some of the restrictiveness, which can provide support for improved

consolidation and efficiency while maintaining workload isolation. Despite the logical segmentation

capabilities afforded by SDN, organizations are more often opting to, at a minimum, continue to isolate CDE

systems to separate compute nodes. In this case, consolidation of resources would be limited to the sharing

of common management and control planes, where the data plane would continue to be isolated and unique

to each security category. The management and control planes would be scoped according to their

proximity and ability to influence or impact the CDE systems and would be considered connected-to and

security-impacting systems. In most cases, the common management and control plane are in scope;

consequently, there should be careful consideration for placement of these components within the network

and on compute nodes as well. Ideally, these components would be segmented to their own management

network and likewise their own compute nodes.

Use of OCP to satisfy the previous considerations does allow for consolidated infrastructure if the

requirement for firewall isolation can be demonstrated to the PCI QSA via verification of access control

rules restricting network access to eliminate all out-of-scope system access to the CDE and to vise-versa.

In the following sections on segmentation testing, tangible examples of QSA verification methods are

described.

Regardless of logical methods to isolate virtual machines, any compute node that hosts CDE systems would

be considered, by extension, in scope for assessment.

Segmentation Testing

Test that segmentation controls prevent communication from out-of-scope systems to CDE

systems.

Coalfire found that NetworkPolicy rules allow for restriction of traffic flowing into applications. NetworkPolicy

ruless essentially work like a virtual firewall. This allows for micro-segmentation of workloads within the

OpenShift environment to control network traffic between pods in the OpenShift environment. To isolate

one or more pods in a project, NetworkPolicy ruless can be created to indicate the allowed incoming

connections. Pods that do not have NetworkPolicy ruless pointing to them are fully accessible, whereas

pods that have one or more NetworkPolicy ruless pointing to them are isolated. Isolated pods only accept

connections that are accepted by at least one of their NetworkPolicy rules.

A default deny-all policy was created such that even pods in the same project are unable communicate with

each other on the network.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 26

A policy was created to authorize specific traffic between pods.

This explicitly permits traffic between pods with the label sammy to pods with the label noah with protocol

TCP and port 8080.

The results of the NetworkPolicy ruless show that Support3 flow rule tags packets from sammy

source pod IP (because it has the correct labels) with the VNID of the Support1 Namespace.

cookie=0x0, duration=1033474.948s, table=20, n_packets=2505533,

n_bytes=439815806, priority=100,ip,in_port=4,nw_src=10.131.2.3

actions=load:0xce981f->NXM_NX_REG0[],goto_table:21

CDE1 flow rule tags packets destined for noah pod IP (because it has the correct labels) with the VNID of

the CDE1 Namespace.

cookie=0x0, duration=1033587.577s, table=70, n_packets=2491997,

n_bytes=721525199, priority=100,ip,nw_dst=10.130.4.3

actions=load:0x334953->NXM_NX_REG1[],load:0x4-

>NXM_NX_REG2[],goto_table:80

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 27

CDE1 flow rule allows packets destined for noah pod IP (because it has the correct labels) with the VNID

of the CDE1 Namespace and the VNID of the Support1 Namespace.

cookie=0x0, duration=1246.896s, table=80, n_packets=0, n_bytes=0,

priority=150,tcp,reg0=0xce981f,reg1=0x334953,nw_dst=10.130.4.3,tp_dst=8

080 actions=output:NXM_NX_REG2[]

The SDN implementation is responsible for tracking all NetworkPolicy rules and creating OVS flow rules on

the nodes and for the POD IPs as required.

Packet flows are only possible when an explicit flow rule exists. Otherwise the behavior is to deny-by-default

(because of the deny all NetworkPolicy rule).

Across projects, the policy can allow everything or nothing. Inside a project, one can be granular in how

the pods can communicate with each other.

REQUIREMENT 1

Install and maintain a firewall configuration to protect cardholder data.

Requirement 1 is primarily concerned with traditional edge protections between the Internet or “untrusted

networks” and internal networks. It is recommended that the OpenShift environment be placed in an internal

controlled network that is protected with traditional edge protections provided by third-party solutions. As

such, Coalfire determined that most, if not all, of these requirements were not pertinent to OpenShift’s

capabilities. However, assessors often look at implementation of firewalls and routers on internal networks

used to isolate or segment workloads as a method of reducing assessment scope in pursuit of the best

practice of network segmentation to reduce scope. With this in mind, many of the requirements may apply

to the internal network elements that perform segmentation, including the SDN elements provided by

OpenShift.

Where firewalls are required in the review conducted for this ADG, they were considered to be present

notionally, and would be supplied outside of the context of Red Hat CoreOS and OCP.

1.1 Establish and implement firewall and router configuration standards that include the following:

In addition to standards that address traditional firewalls and routers, the payment entity’s firewall and router

standards should also address the use of SDN constructs to provide micro-segmentation capabilities and/or

isolate workloads within the internal network. Much like traditional network hardware, these technologies

can be used to efficiently enable segmentation and isolation of workloads in support of compliance

objectives as well as provide additional layers of protection between a DMZ and internal secure networks.

1.1.1 A formal process for approving and testing all network connections and changes to the firewall

and router configurations.

Included with procedures for testing and evaluating traditional edge protections, the payment entity should

additionally provide documented procedures for testing the efficacy of NetworkPolicy ruless to provide the

entity’s designed segmentation of workloads, and clearly note how they relate to firewalls preforming

enforcement of security rules. These procedures would be used for testing approved network connections

as well as changes to firewall and router configurations. This should include changes to NetworkPolicy

objects, as well as modifications to OpenShift ingress and egress routing methods in support of workloads

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 28

hosted in OpenShift. The payment entity should be able to demonstrate for assessment purposes that the

network controls are sufficient to prevent unauthorized access from non-CDE systems to CDE systems.

1.1.2 Current network diagram that identifies all connections between the cardholder data

environment and other networks, including any wireless networks.

In addition to the physical network infrastructure supporting OpenShift, the payment entity should be

prepared to include network topography diagrams that include virtual network connections within the

OpenShift environment that illustrate virtual network connectivity between containerized workloads. Where

workloads are segmented, logical topography diagrams should include the control mechanisms that isolate

and/or restrict communication between workloads.

1.1.3 Current diagrams that show all cardholder data flows across systems and networks.

The payment entity would also be responsible for illustrating the flow of CHD across the systems and

networks. These illustrations should be able to identify the methods and techniques for isolating workloads

in support of segmentation and scope reduction efforts to maintain a separate and isolated CDE systems

segment within the OpenShift environment.

Diagrams typically provided include data flows performed by container (and conventional virtualized

machine) CDE systems within security boundaries for CDE and C-T/SIS assets, as well as dataflows from

end-users (in the case of web commerce systems, or other on-line activities), operators and automated

processes within the payment system. Payment processor dataflows via dedicated circuits and over the

internet are also a required part of these diagrams. These diagrams should ideally be part of a company-

wide portfolio of documentation which depicts PCI DSS in-scope and other corporate LAN, out-of-scope

systems as a whole.

1.1.4 Requirement for a firewall at each Internet connection and between any demilitarized zone

(DMZ) and the internal network zone.

It is recommended to place the OpenShift environment on the internal network protected by the payment

entity’s placement of firewalls at each Internet connection and between any DMZ and the internal network

zone.

1.1.5 Description of groups, roles, and responsibilities for management of network components.

In addition to groups, roles, and responsibilities defined for traditional network components, the payment

entity should also identify and describe the groups, roles, and responsibilities for management of the

OpenShift SDN.

1.1.6 Documentation of business justification and approval for use of all services, protocols, and

ports allowed, including documentation of security features implemented for those protocols

considered to be insecure.

The payment entity will be responsible for providing documented justification for the use of services,

protocols, and ports allowed. This includes the use of services, protocols, and ports relative to the

workloads deployed in OpenShift as well as the services, protocols, and ports used by the OpenShift

environment. Red Hat provides a listing of services, protocols, and ports that are required for the proper

functioning of OpenShift that is readily available from their customer portal.

Excluding payment entity deployed workloads in the OpenShift environment, in general, services, protocols,

and ports that are insecure are not commonly in use by OpenShift. The payment entity should take care

to avoid the use of insecure ports, protocols, and services such as FTP, Telnet, POP3, IMAP, SNMP v1

and v2, and other such protocols where data is transmitted in the clear without sufficiently strong encryption

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 29

to prevent compromise. Some services like DNS, LDAP and NTP are not commonly encrypted, but may

be allowable depending on the degree that these services could be used as an attack vector. It is of utmost

importance that the payment entity avoids clear, unencrypted transmission or storage of authentication

credentials that could be used by an attacker to gain unauthorized access to the system. OpenShift is

configured to use secure LDAP. Likewise, CHD should not be transmitted over the network in the clear,

especially where the transport zone is shared with systems other than CDE systems.

1.1.7 Requirement to review firewall and router rule sets at least every six months.

In addition to the inspection of edge firewall and router rule sets and where the payment entity is using SDN

to support segmentation, the payment entity should also include inspection of any internal firewall and router

rulesets defined within the virtualized or containerized environment; this includes those rulesets defined

and enforced within the OpenShift environment.

1.2 Build firewall and router configurations that restrict connections between untrusted networks

and any system component in the cardholder data environment. Note: An “untrusted network” is

any network that is external to the networks belonging to the entity under review, and/or which is

out of the entity’s ability to control or manage.

It is recommended to implement OpenShift within the controlled internal network. Network protection for

the OpenShift environment would be provided by the payment entity’s edge, DMZ and C-T/SIS firewall or

ACL-based security solution.

1.2.1 Restrict inbound and outbound traffic to that which is necessary for the cardholder data

environment, and specifically deny all other traffic.

This protection is primarily provided by the payment entity’s implementation of, external to OpenShift,

firewalls and routers between the Internet edge and the internal network. Egress traffic from OpenShift can

be made identifiable to allow for proper application of outbound policy at the network’s edge. This allows

for egress traffic for CDE systems hosted within OpenShift to be distinguishable from support system traffic

or out-of-scope system traffic.

Additionally, OpenShift SDN NetworkPolicy objects can be used to control the flow of traffic within the

OpenShift environment, including the ability to establish policies by workload to explicitly deny all traffic and

allow traffic by exception.

1.2.2 Secure and synchronize router configuration files.

While primarily applicable to the organizations edge protections, access to the OpenShift SDN configuration

can be controlled through RBAC. All changes made to the SDN configuration are immediate and

synchronized throughout the OpenShift environment.

1.2.3 Install perimeter firewalls between all wireless networks and the cardholder data environment,

and configure these firewalls to deny or, if traffic is necessary for business purposes, permit only

authorized traffic between the wireless environment and the cardholder data environment.

This may not be applicable to OpenShift or the contained workloads. Coalfire recommends implementing

OpenShift on a wired network within the secure confines of the payment entity’s facilities. Where wireless

networks are utilized by the payment entity, the payment entity must implement a perimeter firewall between

any wireless network in use by the enterprise and the CDE on the wired network.

1.3 Prohibit direct public access between the Internet and any system component in the cardholder

data environment.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 30

The expectation is that the choke router at the Internet, the DMZ router and firewall, and/or the perimeter

firewalls and routers will provide a layer of protection between the Internet and the internal systems,

including the OpenShift environment. This allows for adequate inspection and filtering of requests from the

internet to determine the legitimacy of the request and to properly direct the traffic and ensure that it meets

security requirements before passing the traffic to the internal workloads and/or DMZ-hosted workloads.

This includes the implementation of a DMZ to limit inbound traffic to only system components that provide

authorized publicly accessible services, protocols, and ports (1.3.1) and limiting inbound Internet traffic to

IP addresses within the DMZ (1.3.2). To a limited degree, OpenShift ingress routing and the NetworkPolicy

objects can support restriction of inbound traffic to pods that are designated for external access. In this

way, pods that are purely internal can be isolated from any access external to the OpenShift environment.

In a similar way, authorization of outbound traffic can be supported with an architecture within OpenShift

using egress policy objects or an egress service in coordination with IP mappings to direct traffic to be

handled further by an external firewall (1.3.4).

Likewise, the external network security devices should provide required anti-spoofing measures to detect

and block forged source IP addresses from entering the network (1.3.3). This can be provided by a third-

party stateful firewall (1.3.5) with anti-spoofing features and is external to OpenShift.

Systems can be further segmented (1.3.6) to provide further isolation such that internal systems are placed

on an internal network zone and segregated from the DMZ or other untrusted networks. Where some pods

within the OpenShift environment can be implemented to allow ingress or egress, others can be strictly

enabled for internal communication only, including internal and designated connections to data sources,

such as databases.

Protections against disclosure of private IP addresses (1.3.7) should be handled by solutions external to

OpenShift such as edge firewalls or routers, or DMZ routers or firewalls. These devices are more equipped

to provide services such as Network Address Translation (NAT). With the OpenShift SDN, workloads are

identified by DNS name and IP addresses, which are dynamically assigned to pods based on namespace

designations and are obfuscated outside of the OpenShift environment. OpenShift ingress routers direct

traffic to targets based on mappings, much like a load balancer.

1.4 Install personal firewall software or equivalent functionality on any portable computing devices

(including company and/or employee-owned) that connect to the Internet when outside the network

(for example, laptops used by employees), and which are also used to access the CDE. Firewall (or

equivalent) configurations include:

• Specific configuration settings are defined.

• Personal firewall (or equivalent functionality) is actively running.

• Personal firewall (or equivalent functionality) is not alterable by users of the portable

computing devices

It is not recommended to install OpenShift on personal computing devices. The organization will want to

ensure that endpoint devices that are being used by administrators and users of the OpenShift environment

are sufficiently protected to meet this requirement.

1.5 Ensure that security policies and operational procedures for managing firewalls are

documented, in use, and known to all affected parties.

The organization will want to ensure that they include in security policies and operational procedures for

managing the OpenShift SDN and OpenShift NetworkPolicy objects within the OpenShift environment.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 31

These procedures should be part of the organization’s active documentation and understood by those

designated as responsible parties for managing these network components.

REQUIREMENT 2

Do not use vendor-supplied defaults for system passwords and other security parameters

Remove or disable unnecessary default accounts and authenticators. This includes default user accounts,

administrator accounts, root accounts, and SNMP community strings. If an account is necessary to the

function of the OS, the application, or the system, there will need to be a justification for the account’s

existence. At the very least, the authenticators or passwords should be uniquely set during the initial setup

and should be protected from unauthorized access. When these accounts are required for normal operation

of a system, they should be monitored for abnormal or anomalous activities that are likely indicators of

compromise or unauthorized access. Likewise, generic accounts like root or system:admin are only used

interactively in cases of emergency recovery and audited for approved usage. Normal administrative and

user access should always take place with named user accounts, which personally identifies the user for

whom the account is assigned.

2.1 Always change vendor-supplied defaults and remove or disable unnecessary accounts before

installing a system on the network. This applies to ALL default passwords, including, but not limited

to those used by operating systems, software that provides security services, application and

system accounts, point-of-sale (POS) terminals, payment applications, Simple Network

Management Protocol (SNMP) community strings, etc.).

No vendor-provided default passwords are provided or in use for OpenShift or Red Hat CoreOS.

Authenticators are uniquely created at the time that OpenShift is deployed, including a kubeadmin account,

which has a per-system unique, randomly generated password. This kubeadmin account is traditionally

removed, after the external IDP is configured.

The initial cluster administrator account kubeadmin, present at the onset of installation, should be

deprecated after the creation of working cluster administrators which are then subsequently used for

OpenShift administration thereafter. The only users that exist on an Red Hat CoreOS OpenShift node are

root and core. The core user is a member of the wheel group, which gives it permission to use sudo for

running privileged commands. Adding additional users at the node level is highly discouraged. By default,

the only way to access a shell on a node in an OpenShift cluster is via the CLI command oc debug

node/<node>. It is important to note that this provides a shell logged in as root on the node. This is only

available to users with the cluster-admin role. Users with the cluster-admin role should be limited as much

as possible.

The host’s root account is necessary for OS operations as well as some OpenShift host interactions. It has

no default password and is not SSH-enabled. Default authenticators are protected such that no other users

to the system or underlying OS can access the protected folders or files.

2.1.1 is not applicable to OpenShift as OpenShift should not be deployed in a wireless environment, nor

does it provide wireless capabilities. Where the payment entity uses wireless environments for their CDEs,

the payment entity will be responsible for meeting 2.1.1 requirements relative to wireless vendor defaults

and security settings.

2.2 Develop configuration standards for all system components. Assure that these standards

address all known security vulnerabilities and are consistent with industry-accepted system

hardening standards. Sources of industry-accepted system hardening standards may include, but

are not limited to:

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 32

• Center for Internet Security (CIS)

• International Organization for Standardization (ISO)

• SysAdmin Audit Network Security (SANS) Institute

• National Institute of Standards and Technology (NIST)

The payment entity is responsible for developing configuration standards and adhering to industry-accepted

system hardening standards. This responsibility applies to the OpenShift environment, including OpenShift,

container security, and the underlying operating environment upon which OpenShift is deployed. Red Hat

provides guidance with best practices concerning Red Hat CoreOS, OpenShift, and the container

environment deployments. The Red Hat OpenShift Container Security Guide is a good resource for

properly deploying and securing the platform and the workloads.

OpenShift Compliance Operator

The optional Compliance operator is available starting with OpenShift 4.6 (outside of the scope of this ADG).

The Compliance Operator lets OpenShift Container Platform administrators audit the desired compliance

state of a cluster and provides them with an overview of gaps and ways to remediate them. The Compliance

Operator assesses compliance of both the Kubernetes API resources of OpenShift Container Platform, as

well as the nodes running the cluster. The Compliance Operator uses OpenSCAP, a NIST-certified tool, to

scan and enforce security policies provided by the content.

OpenShift runs on Red Hat CoreOS and makes use of security capabilities of the host OS. The following

are features of Red Hat CoreOS that make containers secure on the platform.

• Linux kernel namespaces enable creating an abstraction of a particular global system

resource to make it appear as a separate instance to processes within a namespace.

Consequently, several containers can use the same resource simultaneously without creating

conflict.

• SELinux provides an additional layer of security to keep containers isolated from each other

and from the host. SELinux allows administrators to enforce MAC for every user, application,

process, and file.

• CGroups (control groups) limit, account for, and isolate the resource usage (CPU, memory,

disk I/O, network, etc.) of a collection of processes. CGroups are used to ensure that containers

on the same host are not impacted by each other.

• Secure computing mode (seccomp) profiles can be associated with a container to restrict

available system calls.

• Deploying containers using a CoreOS reduces the surface area of attack by minimizing the

host environment and tuning it specifically for containers.

These capabilities protect the workloads running in containers such that different workloads do not have

access to keys, identity tokens, or other sensitive information used by other containers in a cluster. The

containers can only see what the container is authorized, by design, to see and cannot see or access

another container’s information. The container security capabilities of OpenShift on Red Hat CoreOS are

in alignment with and in support of the PCI SSC Cloud Computing Guidelines - Information Supplement

Appendix E.7.

The OpenShift environment provides network and administrative isolation capabilities between containers

hosting different workloads based on the container-specific network interface and SDN. OpenShift

administrators and project administrators can establish NetworkPolicy rules that control the flow of

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 33

information between containers per the payment entity’s design and in support of PCI SSC

recommendations for segmentation.

Changes to NetworkPolicy rules including creation, modification, and/or deletion are logged and can be

reviewed according to the payment entity’s change control policies. It is recommended that OpenShift

Container Platform administrators configure RBAC such that only specific, known users may modify

NetworkPolicy objects for in-scope namespaces/projects.

2.2.1 Implement only one primary function per server to prevent functions that require different

security levels from co-existing on the same server. (For example, web servers, database servers,

and DNS should be implemented on separate servers.) Note: Where virtualization technologies are

in use, implement only one primary function per virtual system component.

As a virtualization technology, OpenShift provides the means to separate application workloads within the

OpenShift cluster onto separate hosts and containers within the cluster. A significant and primary benefit

of using containers helps to eliminate the vulnerability which this control addresses: multiple functions on a

single virtual machine/bare-metal server. Proper container and pod design is required to support this

control.

2.2.2 Enable only necessary services, protocols, daemons, etc., as required for the function of the

system.

The payment entity can harden the OS, pods and containers to limit the services, protocols, daemons, etc.,

as required for the function of the applications in the CDE. Although RHEL CoreOS only contains the

services, protocols and daemons needed to run OpenShift, Red Hat provides guidance pertaining to

additional platform hardening options in their documentation.

2.2.3 Implement additional security features for any required services, protocols, or daemons that

are considered to be insecure.

OpenShift does not require insecure services, protocols, or daemons for proper functioning. It is

recommended to avoid the use of insecure services, protocols, or daemons either with the platform

components or with the workloads that are deployed with OpenShift. See 1.1.6 for details.

2.2.4 Configure system security parameters to prevent misuse.

The payment entity’s OpenShift administrators and users should be aware of the configuration parameters

that are in use for securing the OpenShift environment.

2.2.5 Remove all unnecessary functionality, such as scripts, drivers, features, subsystems, file

systems, and unnecessary web servers.

The payment entity will deploy Red Hat CoreOS which does not include any extra unnecessary functionality.

2.3 Encrypt all non-console administrative access using strong cryptography.

The only way to access the OpenShift Control Plane or other OpenShift cluster hosts for non-console

administrative access is through the OpenShift CLI or SSH. Administrative access to the OpenShift cluster

via the CLI requires an account with the cluster-admin role. The only host user that is SSH-enabled is the

“core” user, but it has no SSH keys by default, and is not enabled for password authentication. Logging

into the Red Hat CoreOS host with SSH is discouraged as all administrative functions can be managed

through the CLI by a user with the OpenShift cluster admin role. Telnet is not enabled. Administrative

access to the API or the Web User Interface occurs over TLS 1.2/1.3.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 34

2.4 Maintain an inventory of system components that are in scope for PCI DSS.

The payment entity will be responsible for maintaining an inventory of system components, including

hardware and software, that are in use for their OpenShift environment.

2.5 Ensure that security policies and operational procedures for managing vendor defaults and

other security parameters are documented, in use, and known to all affected parties.

The payment entity will be responsible for the documentation and dissemination of the security policies and

operational procedures pertaining to their OpenShift deployment and verifying that the policies and

procedure are in use and being followed.

REQUIREMENT 3

Protect stored cardholder data

This requirement pertains to methods used within the application software to ensure that data at rest

encryption (DARE) is used pervasively wherever PCI DSS CHD (primary account numbers / PAN and

sensitive authentication data / SAD) might be stored onto written, recorded, rotating disk or solid-state disk

media. Largely the responsibility of the developer, Red Hat CoreOS provides for means of full disk

encryption which can optionally use its’ FIPS 140 certified encryption libraries and built-in functionality to

access that data. Disk encryption is supported is either with TPM2 or a Tang server. Red Hat CoreOS disk

encryption is FIPS compliant if FIPS mode is enabled.

A subset of requirement 3 applies to Red Hat CoreOS and OpenShift implementations.

3.2 Do not store sensitive authentication data after authorization (even if encrypted). If sensitive

authentication data is received, render all data unrecoverable upon completion of the authorization

process.

Proper design of the application by the payment entity can accommodate this requirement as a processing

mandate, restricting in-memory process for this data and taking care not to write to file storage from within

the container or pod.

3.4 Render PAN unreadable anywhere it is stored (including on portable digital media, backup

media, and in logs) by using any of the following approaches:

Similar approaches to 3.2 for properly coding the handling of PAN when stored are mandated by this control.

This is the responsibility of the code developer and for bespoke applications using OCP this should become

a development standard. These requirements were not specifically reviewed in our ADG lab activities and

were notionally represented.

3.6 Fully document and implement all key-management processes and procedures for

cryptographic keys used for encryption of cardholder data, including the following: …

3.6.1 Generation of strong cryptographic keys

Payment card QSAs will look for support of this control family of requirements and the underlying support

for use of “strong cryptography” supported by Red Hat CoreOS FIPS 140 cryptographic libraries and the

cryptographic libraries available in the RHEL Universal Base Image when reviewing DARE schemes for the

PCI entity. PCI DSS reference material qualifies specific crypto-cipher suites and key strategies to satisfy

these requirements.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 35

REQUIREMENT 4

Encrypt transmission of cardholder data across open, public networks

There are multiple options for encrypting ingress traffic to applications, including passthrough encryption

and re-encrypt.

Application developers are responsible for encrypting service to service traffic. OpenShift includes options

to support developers, including the Service CA. And OpenShift Service Mesh is available to encrypt pod

to pod traffic within an OpenShift cluster.

When booted in FIPS mode, RHEL CoreOS supports FIPS 140 validated libraries available in RHEL UBI

as primitives to container developers, to provide TLS 1.2 cryptographic measures and supply data in motion

encryption (DIME) to satisfy this control requirement. As the requirement states, “Sensitive information

must be encrypted during transmission over networks that are easily accessed by malicious individuals.”

4.1 Use strong cryptography and security protocols to safeguard sensitive cardholder data during
transmission over open, public networks, including the following:
• Only trusted keys and certificates are accepted.
• The protocol in use only supports secure versions or configurations.
• The encryption strength is appropriate for the encryption methodology in use.

Secure coding practices and organizational procedures must be in force for the OCP environment to satisfy

this control family. Standards for minimum keys and certificate issuance need to be created and observed

during the development process with special attention to make TLS 1.2 the minimum security for HTTPS

and other uses of certificate-based crypto for the entity.

For built-in API and web services, containers must support the “strong encryption” mandate by selection of

appropriate cipher suites and implementation of client and server certificates. It is also a strong

recommendation that where practical, TLS is used for internal transactions between systems components

and ideally throughout the payment card application. OpenShift Service Mesh can be used to automatically

encrypt pod-to-pod traffic for in-scope services.

OpenShift includes the ability to configure cipher suites using the tlsSecurityProfile parameter. This object

is used by operators, including the Ingress, API Server and Authentication operators, to apply TLS settings.

REQUIREMENT 5

Protect all systems against malware and regularly update anti-virus software or programs

Security techniques that are commonly used by traditional IT infrastructures have limited functionality in

containerized infrastructures. The payment entity must consider the availability of optional security

solutions for vulnerability detection, malware detection, intrusion detection, intrusion prevention, and

network flow analysis. A key aspect to successful security of container environments is identifying and

understanding the opportunities or gateways for detection.

If applicable, containerized anti-virus software exists, it should be deployed to the Red Hat CoreOS hosts

at a minimum according to this requirement. However, given that the user space on Red Hat CoreOS is

read-only, there may be limited value to deploying anti-virus software. Alternatively, the OpenShift File

Integrity Operator can be deployed to monitor file system integrity on the host.

The optional File Integrity Operator can be deployed to continually run file integrity checks on the cluster

nodes. It deploys a daemon set that initializes and runs privileged advanced intrusion detection environment

(AIDE) containers on each node, providing a status object with a log of files that are modified during the

initial run of the daemon set pods.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 36

As applications are deployed from container images, the payment entity should regularly scan image

repositories for malware or malicious software. The payment entity may choose, as part of the systems

development lifecycle (SDLC), to also scan images prior to placement in the registry and prior to being

enabled for deployment to ensure that the images are free of malware or malicious software. Red Hat

certified images, monitored for newly discovered vulnerabilities and updated as necessary, are supported

by Red Hat and/or other third-party software owners. Red Hat advisories alert administrators to newly

discovered issues or vulnerabilities and direct the administrator to use updated images. OpenShift provides

a pluggable API to its CVE data to support multiple vulnerability scanners.

Red Hat Quay is an optional container registry that can be leveraged with built in vulnerability scanning

capability to scan stored applications and images for known vulnerabilities.

REQUIREMENT 6

Develop and maintain secure systems and applications

6.1 Establish a process to identify security vulnerabilities, using reputable outside sources for

security vulnerability information, and assign a risk ranking (for example, as “high”, “medium”, or

“low”) to newly discovered vulnerabilities.

The payment entity should establish a process to identify security vulnerabilities, using reputable sources

for security vulnerability information that includes resources that track vulnerabilities that commonly impact

container environments, Red Hat OpenShift, and Red Hat CoreOS. Red Hat is dedicated to addressing

vulnerabilities and making security patches and updates available to their customers. Updates to

OpenShift, including Red Hat CoreOS, are routinely made available for deployment to maintain the latest

version of OpenShift.

For images that the payment entity desires to use, there are tools that can be used to scan and track

contents of downloaded and deployed container images. It is important when using public container

registries to use trusted sources.

The process for consuming security updates for containers is important and different than that of traditional

application environments. It is recommended to use immutable containers which are containers that will

never be changed while running. This is important because imutable containers helps protect the container

from compromise as a result of code being injected or other such attacks. With traditional application

architectures, updates are applied directly to the application where binaries are replaced; whereas, with

immutable containers, there is a rebuild and redeploy process to update the application. The payment entity

should not patch running containers but should rebuild and re-deploy them.

Red Hat provides a trusted repository for images where Red Hat regularly fixes known vulnerabilities per

its errata policy in the platform components or layers. Red Hat certified images are compatible across the

Red Hat CoreOS platforms, from bare metal to cloud. Finally, Red Hat-certified images are supported by

Red Hat or Red Hat’s partners. While the list of known vulnerabilities is evolving as new vulnerabilities are

discovered all the time, the payment entity must track the contents of their deployed container images, as

well as newly downloaded images, over time. The payment entity can use Red Hat Security Advisories

(RHSAs) to alert them of any newly discovered issues in Red Hat certified container images and direct

them to the updated image ready for deployment.

Red Hat uses a health index for security risk with containers provided through the Red Hat Container

Catalog.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 37

6.2 Ensure that all system components and software are protected from known vulnerabilities by

installing applicable vendor-supplied security patches. Install critical security patches within one

month of release.

As Red Hat routinely manages the images that are provided in their trusted repository, the payment entity

will be able to address vulnerabilities in a timely manner.

6.4 Follow change control processes and procedures for all changes to system components. The

processes must include the following:

The payment entity should update their documented change control processes and procedures to include

procedures that are unique to the implementation of change in an OpenShift environment as opposed to

traditional environments. Likewise, these will include changes that the payment entity may desire to make

to the workloads that the payment entity deploys and orchestrates within the OpenShift environment.

As part of the change control processes and procedures, the payment entity must separate

development/test environments from production environments and enforce the separation with access

controls (6.4.1). OpenShift can be implemented in a way to allow for separation of development/test

environments from production environments including the use of RBAC, projects and network policy rules

to enforce separation. Access controls can be applied to projects where separate projects can be created

for each of development and test environments distinct from the production environments. In addition to

access controls to establish isolation and prevent unauthorized changes from being made to production,

OpenShift SDN can provide network isolation for these different namespaces as well. Finally, it is

recommended to sequester development and test environments to separate hosts.

Access controls for administration and management of OpenShift as well as on a project basis can be

established to support separation of duties; different levels of access can be granted to development and

test projects and users distinct from production projects and users (6.4.2).

The remainder of requirement 6 is pertinent to the payment entity’s development practices related to secure

development of in-house custom applications.

REQUIREMENT 7

Restrict access to cardholder data by business need to know

Combined with third-party identity and authentication providers (See requirement 8), OpenShift provides

the means to enable granular access control through RBAC. OpenShift provides authorization mechanisms

to control access at the cluster level, as well as at the project level.

7.1 Limit access to system components and cardholder data to only those individuals whose job

requires such access.

The payment entity will need to address policy for access controls that incorporate 7.1.1 through 7.1.4 as

it pertains to OpenShift. This includes including definition of access needs and privileged assignments for

each role for access to the OpenShift environment and components. It will be important for the security of

the OpenShift environment to restrict access to privileged user IDs to the least privilege necessary to

perform the job responsibilities that are assigned. Access should be assigned based on the personnel’s

job classification and function as a justification for access. Finally, granted access should include

documented approval for such access by authorized parties for all access, including listing of specific

privileges approved.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 38

7.2 Establish an access control system(s) for systems components that restrict access based on a

user’s need to know and is set to “deny all” unless specifically allowed. This access control

system(s) must include the following:

OpenShift can be configured to support the payment entity’s standards for access control based on

minimum access requirements. RBAC can be used to establish authorization with a granular level of control

for interaction with and/or administration of OpenShift and the underlying operating system, Red Hat

CoreOS. No initial access is granted, except for the access that is established upon initial setup.

It is recommended to use a strict identity and access control mechanism. Identity and initial authentication

are provided by a third-party solution, external to OpenShift. The OpenShift Control Plane includes a built-

in OAuth server. Users obtain OAuth tokens to authenticate themselves to the API. An administrator can

configure OAuth to authenticate against an identity provider. OpenShift has several available options for

integration with external identity and authentication providers such as LDAP, Active Directory, GitHub, or

Google, and others. The environment used LDAP with an external identity provider.

(7.2.1) Coverage for authentication and authorization includes support for all components of OpenShift from

the underlying OS up to the container itself. Most users will access OpenShift through normal mechanisms,

either the Web UI, the CLI or the API. The payment entity will be required to establish authentication and

authorization parameters for the workloads hosted by OpenShift.

The authentication layer identifies the user associated with requests to OpenShift’s API. The authorization

layer then uses information about the requesting user to determine if the request should be allowed. RBAC

objects (7.2.2) determine whether a user can perform a given action. This allows platform administrators to

use the cluster roles and bindings to control who has various access levels to OpenShift itself and all

projects. Authorization is managed using rules, roles, and bindings.

Rules are a set of permitted verbs (actions: get, list, create, update, delete, deletecollection, or watch) on a

set of objects (containers and images, pods and services, projects and users, builds and image streams,

deployments, routes, and templates). For example, whether someone or something can create pods.

Roles are a collection of rules. Users and groups can be associated with, or bound to, multiple roles at the

same time, allowing for granular control over authorization rights granted to a user.

Bindings are associations between users and/or groups with a role.

The relationship between cluster rules, local roles, cluster role bindings, local role bindings, users, groups,

and service accounts are illustrated in the following figure.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 39

Figure 13 - Authorization Relationships

Several factors are combined to make the decision when OpenShift evaluates authorization: Identity,

Action, and Bindings. The following steps are taken when OpenShift evaluates authorizations:

1. The identity and project-scoped action are used to find all user and group bindings.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

There are two levels of RBAC roles and bindings that control authorization: Cluster RBAC and Local RBAC.

Cluster RBAC are the roles and bindings that are applicable across all projects. Roles that exist cluster-

wide are considered cluster roles. Cluster role bindings can only reference cluster roles. Local RBAC are

roles and bindings that are scoped to a given project. Roles that exist only in a project are considered local

roles. Local role bindings can reference both cluster and local roles.

This allows for a dual-level hierarchy for evaluating authorization and allows for re-usability over multiple

projects through the cluster roles while allowing customization inside of individual projects through local

roles. The evaluation first evaluates cluster-wide “allow” rules, then local-bound “allow” rules, followed up

by the default deny-all rule.

(7.2.3) The selection of identity provider for authentication is configured post-installation and defaults to

deny all behavior if not specified.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 40

7.3 Ensure that security policies and operational procedures for restricting access to cardholder

data are documented, in use, and known to all affected parties.

It will be the responsibility of the payment entity to document security policies and operational procedures

for restricting access to CHD. This includes specific policies and procedures as it pertains to the access of

the OpenShift environment, where it is used in support of CHD. The payment entity will be responsible for

ensuring that the administrators and users of the OpenShift environment are aware of and adhere to their

policies and procedures.

REQUIREMENT 8

Identify and Authenticate access to system components

OpenShift should be configured to work with a third-party identity provider, external to OpenShift, to address

requirement 8 controls. Through the payment entity’s chosen identity and authentication provider, unique

identifiers can be setup for each user (8.1.1) prior to allowing the user to access components of the

OpenShift environment. OpenShift can integrate with third-party identity providers through several

mechanisms including LDAP. Control of identifier objects (8.1.2) should be performed with the chosen

identity provider. Once the identity and authenticator(s) have been verified, the OAuth server built into the

OpenShift Control Plane issues an OAuth access token to the user to allow for authentication to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to

determine the identity of the person making the request. The OAuth server determines what user that the

identity maps to, creates an access token for that user, and returns the token for use.

Revocation of access for terminated users would be performed with the identity provider. Users with

revoked access would not be able to access OpenShift. (8.1.3) Likewise, removal or disabling of inactive

user accounts within 90 days (8.1.4) would be handled with the identity provider. All user IDs, including

those handled by third parties to access, support, or maintain system components via remote access, would

be handled externally to OpenShift. The options for controlling remote access for third parties is the

responsibility of the payment entity (8.1.5).

Account lockout for failed attempts would be managed by the identity provider as all authentication attempts

that occur prior to granting access from OpenShift. Establishing a threshold for limiting repeated failed

attempts would be configured with the chosen identity provider (8.1.6). Likewise, the lockout duration for

the account and mechanisms to unlock the account for use would be established with the identity provider

(8.1.7).

Session timeouts (8.1.8) can be enabled with OpenShift to limit the amount of time that a session can be

active. It is, however, recommended that the payment entity control idle session timeouts at the user or

administrator endpoint, rather than at the OpenShift console.

The type of authenticators to be used (for example, password or passphrase, token device or smart card,

or biometrics) are also managed externally to OpenShift by the identity provider (8.2). The protection of the

authentication credentials such as rendering the passwords and passphrases unreadable during

transmission and the storage of credentials on system components is the responsibility of the third-party

identity provider (8.2.1). Likewise, modification of authentication credentials is handled by the third-party

identity provider (8.2.2). All access to modify parameters for authentication tokens or for generating keys

within OpenShift is managed with RBAC and requires prior authentication before the user is authorized to

act.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 41

Parameters for authenticators such as password length, maximum password age, minimum password age,

password history, and requirements to change the password on first use are also handled by the third-party

identity provider (8.2.3 – 8.2.6).

Where multi-factor authentication is required, this also occurs outside of OpenShift (8.3).

Payment entities are required to communicate policies and procedures pertaining to identity and

authentication (8.4). The payment entity is also required to not use group, shared, or generic IDs,

passwords, or other authentication methods (8.5). Access tokens that are issued by OpenShift upon

authentication should only be used by the person for whom it was issued.

Access tokens can be configured to have an expiration and require re-authentication with the identity

provider to issue a new access token. The OAuth server generates two kinds of tokens: access tokens and

authorize tokens. Access tokens are longer-lived tokens that grant access to the API. Authorize tokens

are short-lived tokens whose only use is to be exchanged for access tokens. Token options can be set to

establish an age limit for each type of token.

When using LDAP authentication for an OpenShift Container Platform cluster, one must create a custom

resource (CR) for the identity provider and connect to a previously configured ConfigMap object in the

openshift-config namespace, which contains the certificate authority bundle. Using a previously defined

LDAP secret, the cluster can be configured to validate user names and passwords against an LDAPv3

server, using simple bind authentication. If failover is required for the LDAP server, use the steps provided

by Red Hat documentation to extend the basis authentication method by configuring SSSD for LDAP

failover. During authentication, the LDAP directory is searched for an entry that matches the provided user

name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of

the entry plus the provided password.

The LDAP configuration can be configured to use TLS for connections to the server. Administrators can

create a whitelist for users for an LDAP integration using the lookup mapping method. Before a login from

LDAP would be allowed, a cluster administrator would need to create an identity and user object for each

LDAP user.

REQUIREMENT 9

Restrict physical access to cardholder data

The payment entity is responsible for the secure placement of the OpenShift environment within the

confines of a physical location whereby the payment entity can enable controls to restrict physical access

to OpenShift, its components, and the supported workloads.

REQUIREMENT 10

Track and monitor all access to network resources and cardholder data

OpenShift has the means to generate audit logs that can be used to track access and actions taken by

users and services within OpenShift. These logs can be sent to or consumed by a security information and

event monitoring (SIEM) solution external to OpenShift. Much of the requirements of requirement 10 will

be controlled external to OpenShift.

10.1 Implement audit trails to link all access to system components to each individual user.

All actions taken by users of OpenShift are logged and capable of being used to satisfy audit requirements.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 42

10.2 Implement automated audit trails for all system components to reconstruct the following

events:

10.2.1 All individual users accesses to cardholder data

All user and/or service account accesses to OpenShift components are logged. The payment entity would

be responsible for enabling logging for access to applications within workloads hosted in containers in

OpenShift.

10.2.2 All actions taken by any individual with root or administrative privileges

All actions taken by individual with root or administrative privileges to OpenShift and Red Hat CoreOS are

logged.

10.2.3 Access to all audit trails

Access to audit trails relative to OpenShift are made available at the OS level with administrator accounts.

Red Hat CoreOS can be configured to log access to the journal or log file. For better protection of audit

trails, including improved access controls, it is recommended to direct logs to an external log server or

Security Information Event Management (SIEM) solution.

10.2.4 Invalid logical access attempts

Invalid logical access attempts pertaining to incorrect input of credentials would be handled by the payment

entity’s chosen identity provider. Unauthorized attempts to access system components or run unauthorized

commands against OpenShift are logged.

10.2.5 Use of and changes to identification and authentication mechanisms – including but not

limited to creation of new accounts and elevation of privileges – and all changes, additions, or

deletions to accounts with root or administrative privileges.

Like 10.2.4, changes to identification and authentication mechanisms would be handled by the payment

entity’s chosen identity provider. Changes that are made to RBAC within OpenShift are logged. These

logged events may be an indication of attempts to modify defined roles to grant additional privileges.

10.2.6 Initialization, stopping, or pausing of audit logs.

Stopping the mechanisms for log creation in OpenShift requires stopping the OpenShift Control Plane itself,

which would have the effect of preventing any further access for any users to the API, CLI, or Web UI.

Auditing within OpenShift cannot be reconfigured or stopped without reconfiguring OpenShift. Any attempt

to reconfigure OpenShift will be logged.

10.2.7 Creation and deletion of system-level objects

Creation and deletion of system levels objects is logged by OpenShift (for OpenShift objects) and by Red

Hat CoreOS.

10.3 Record at least the following audit trail entries for all system components for each event:

The logs generated by OpenShift and Red Hat CoreOS include user identification (10.3.1), type of event

(10.3.2), date and time of the event (10.3.3), success or failure indication (10.3.4), origination of event

(10.3.5), and the identity or name of affected data, system component, or resource (10.3.6).

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 43

10.4 Use time-synchronization technology, synchronize all critical system clocks and times and

ensure that the following is implemented for acquiring, distributing, and storing time. Note: One

example of time synchronization technology is Network Time Protocol (NTP).

OpenShift uses time from the host OS. Red Hat CoreOS can be setup as an NTP client to receive time

from the payment entity’s chosen NTP server. Time synchronization should be setup on all hosts in the

cluster whether using NTP or another method. This allows the systems to have the correct and consistent

time, which is necessary for the proper functioning of OpenShift (10.4.1). Time data is protected (10.4.2)

as it is part of the underlying OS that is obfuscated from the OpenShift user interfaces.

It is recommended that the payment entity use industry accepted time sources as the source for time

synchronization (10.4.3). Typically, payment entities will opt to use a local time (NTP) server for

synchronization of internal resources. The local time server would be configured by the payment entity to

synchronize with a trusted external source using the NTP protocol.

10.5 Secure audit trails so that they cannot be altered.

It is recommended to use an external log aggregation solution or SIEM solution for securing audit trails.

While the logs reside on the Red Hat CoreOS server, access can be controlled using RBAC. An external

solution may be better equipped to secure audit trails in alignment with compliance requirements. RBAC

controls in Red Hat CoreOS can be used to limit the ability to review audit logs and journals. An external

solution may be able to provide improved granularity as well as search capability that would be of better

use to the payment entity to satisfy requirements (10.5.1). Limited access to the audit trails on OpenShift

hosts provides minimal protection from unauthorized modification. Use of an external log collector or SIEM

solution may provide improved protections against unauthorized modifications by adding additional features

such as file integrity monitoring, digital signing, or Write Once, Read Many (WORM) storage (10.5.2 –

10.5.5). Likewise, an external resource may be better equipped to manage and control retention (10.5.7).

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 44

REQUIREMENT 11

Regularly test security systems and processes

The payment entity will be responsible for testing their security systems and processes. This should include

security systems, constraint, and controls both configured within OpenShift and those systems that support

or integrate with OpenShift. The payment entity should include the OpenShift environment in their

scheduled vulnerability scans to identify any known vulnerabilities and address them in a timely manner.

The payment entity should be routinely scanning images and image repositories for vulnerabilities.

The payment entity should include the OpenShift environment as well as the workloads running in

OpenShift as targets for penetration testing to verify that security controls which prevent unauthorized

access or system modifications are working sufficiently and cannot be bypassed either through known

vulnerability or through back channels resulting from misconfigured or poorly configured hosts and/or

containers.

Penetration testing should include segmentation testing to verify the sufficiency of segmentation controls

enabled in OpenShift to control container network access and to isolate CDE systems containers from out-

of-scope systems and to minimize and monitor access of supporting connected-to and security-impacting

systems.

REQUIREMENT 12

Maintain a policy that addresses information security for all personnel

When integrating or adding new systems, payment entities should evaluate the policies and procedures to

ensure that coverage is sufficient to address the nuances of the system being implemented. It is also

important for personnel to understand the policies and procedures with respect to the new technology. This

helps to increase awareness of potential risk, validate proper implementation of technology according to

required compliance standards, and facilitate assignment and accountability for new roles and

responsibilities.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 45

CONCLUSION AND COALFIRE OPINION
Red Hat OpenShift 4.5 hosted on Red Hat CoreOS, as reviewed by Coalfire, can be effective in providing

support for the outlined objectives and requirements of PCI DSS v3.2.1. Through proper implementation

and integration into the organization’s overall technical infrastructure and information management

systems, OpenShift may be useable in a PCI DSS v3.2.1 controlled environment. Care should be given

for the implementation of OpenShift and the use of the platform for the deployment of containers in support

of micro-services architectures. The organization planning to use OpenShift should also consider available

guidance from PCI SSC on cloud computing, which includes specific guidance on securing containerized

workloads.

The OpenShift SDN provides the means to implement network segmentation for the isolation of workloads

in a single OpenShift container cluster and to control the communication between containers within the

cluster according to design. OpenShift Service Mesh can be deployed for additional security.

Coalfire’s conclusion is based on observations and analysis of the provided documentation, interviews with

Red Hat personnel, and hands-on engagement with and testing of a lab environment designed and

architected for hosting CDEs. The provided conclusions are based upon several underlying presumptions

and caveats, including adherence to vendor best practices and hardening of configuration as supported by

the system components. This solution should be implemented in alignment with the organization’s mission,

values, business objectives, general approach to security and security planning, and with respect to the

overall organizational security and compliance program.

A COMMENT REGARDING REGULATORY COMPLIANCE

Coalfire disclaims generic suitability of any product to cause a payment entity to use that product to achieve

regulatory compliance. PCI entities attain compliance through a Governance, Risk Management, and

Compliance (GRC) program, not via the use of a specific product. This is true for payment card entities

subject to PCI DSS, as well as for customers targeting compliance with other regulations.

LEGAL DISCLAIMER
Coalfire expressly disclaims all liability with respect to actions taken or not taken based on the contents of

this white paper and the supporting controls workbook and the opinions contained therein. The opinions

and findings within this evaluation are solely those of Coalfire and do not represent any assessment

findings, or opinions, from any other parties. The contents of this document are subject to change at any

time based on revisions to the applicable regulations and standards (e.g., Health Information Portability and

Accountability Act [HIPAA], PCI-DSS, et al.). Consequently, any forward-looking statements are not

predictions and are subject to change without notice. While Coalfire has endeavored to ensure that the

information contained in this document has been obtained from reliable sources, there may be regulatory,

compliance, or other reasons that prevent Coalfire from doing so. Consequently, Coalfire is not responsible

for any errors or omissions, or for the results obtained from the use of this information. Coalfire reserves

the right to revise any or all of this document to reflect an accurate representation of the content relative to

the current technology landscape. To maintain the contextual accuracy of this document, all references to

this document must explicitly reference the entirety of the document inclusive of the title and publication

date. Neither party will publish a press release referring to the other party or excerpting highlights from the

document without prior written approval of the other party. For questions regarding any legal or compliance

matters referenced herein, you should consult legal counsel, your security advisor, and/or the relevant

standard authority.

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 46

ADDITIONAL INFORMATION, RESOURCES, AND
REFERENCES
This section contains a description of the links, standards, guidelines, and reports used for the materials

used to identify and discuss the features, enhancements, and security capabilities of OpenShift 4.5.

RED HAT

The Red Hat OpenShift Container Platform documentation used to provide depth and context for this

document is available at the Welcome page. The left column of the page provides further details into

every capability for OpenShift. These details are available at the following link:

https://docs.openshift.com/container-platform/4.5/welcome/index.html.

PAYMENT CARD INDUSTRY SECURITY STANDARDS COUNCIL

A number of key documents are fundamental in their support for Payment Card Industry guidance and

supplemental guidance and are used by QSAs and payment card entity security team alike. Primary

guidance for SAQ and ROC assessment may be found in the Payment Card Industry (PCI) Data Security

Standard, Requirements and Security Assessment Procedures, Version 3.2.1, May 2018, located here:

https://www.pcisecuritystandards.org/document_library

Additional information in the form of information supplements with titles: Information Supplement: Guidance

for PCI DSS Scoping and Network Segmentation, May 2017, and Information Supplement: PCI DSS

Virtualization Guidelines, June 2011, is at: https://www.pcisecuritystandards.org/document_library and at

https://www.pcisecuritystandards.org/documents/Guidance-PCI-DSS-Scoping-and-

Segmentation_v1_1.pdf

The PCI SSC conducted a revision to their virtualization and containerization standards during a 2017-2018

Cloud Special Interest Group (Cloud SIG) development session which culminated in the publication of the

Information Supplement: PCI SSC Cloud Computing Guidelines, April 2018 which may be located here:

https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Cloud_Guidelines_v3.pdf

https://docs.openshift.com/container-platform/4.5/welcome/index.html
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/documents/Guidance-PCI-DSS-Scoping-and-Segmentation_v1_1.pdf
https://www.pcisecuritystandards.org/documents/Guidance-PCI-DSS-Scoping-and-Segmentation_v1_1.pdf
https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Cloud_Guidelines_v3.pdf

Red Hat OpenShift Container Platform Architecture Design Guide for PCI DSS v3.2.1 | White Paper 47

ABOUT THE AUTHORS AND CONTRIBUTORS

Chris Krueger | Revision Author | Principal II, Solutions Engineering, Coalfire Systems

As Principal, Mr. Krueger contributes as an author and thought leader on information security and

regulatory compliance topics for Coalfire’s clientele in new and emerging technical areas.

Jason Macallister | Original Author | Senior Consultant, Coalfire Systems, Inc.

Mr. Macallister consults on Information Security and regulatory compliance topics as they relate to
advanced infrastructure, emerging technology, and cloud solutions.

Fred King | PCI SME | Principal I, Payments, Coalfire Systems, Inc.

Mr. King is responsible for client service delivery with an emphasis on Security Architecture. Fred

brings three decades of technical and management experience. Fred has designed and delivered IT

security, networking, and virtualization architectures in both internal and professional services roles.

Fred is a leader, a trained and experienced technologist, a security architect, and a QSA in the

payment card industry.

Published Q1, 2021.

ABOUT COALFIRE
Coalfire is the trusted cybersecurity advisor that helps private and public sector organizations avert threats,

close gaps, and effectively manage risk. By providing independent and tailored advice, assessments,

technical testing, and cyber engineering services, we help clients develop scalable programs that improve

their security posture, achieve their business objectives, and fuel their continued success. Coalfire has been

a cybersecurity thought leader for over 20 years and has offices throughout the United States and Europe.

For more information, visit Coalfire.com.

Copyright © 2018-2021 Coalfire Systems, Inc. All Rights Reserved. WP_Red Hat OpenShift 4.5 ADG for PCI DSS 3.2.1 …

