
Student Workbook (ROLE)

SM 1.1 DO328

Building Resilient Microservices with Istio and Red

Hat OpenShift Service Mesh
Edition 2

DO328-SM1.1-en-2-20200910 Copyright ©2020 Red Hat, Inc.





Building Resilient
Microservices with
Istio and Red Hat
OpenShift Service
Mesh

DO328-SM1.1-en-2-20200910 Copyright ©2020 Red Hat, Inc.



SM 1.1 DO328
Building Resilient Microservices with Istio and Red Hat
OpenShift Service Mesh
Edition 2 20200910
Publication date 20200910

Authors: Jordi Sola Alaball, Pablo Solar Vilariño, Marek Czernek, Ravi Srinivasan,
Eduardo Ramirez Ronco, Jaime Ramirez Castillo

Editor: Nicole Muller

Copyright © 2020 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are

Copyright © 2020 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but

not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of

Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,

Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details

contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send

email to training@redhat.com or phone toll-free (USA) +1 (866) 626-2994 or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, Hibernate, Fedora, the Infinity logo, and RHCE are

trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or

other countries.

The OpenStack® word mark and the Square O Design, together or apart, are trademarks or registered trademarks

of OpenStack Foundation in the United States and other countries, and are used with the OpenStack Foundation's

permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the

OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: David Sacco, Sajith Sugathan, Zachary Gutterman, Richard Allred, Sam Ffrench



Document Conventions                                                                                                                                                                                                  vii

Introduction                                                                                                                                                                                                                                      ix

DO328 Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh . . . . . .  ix

Orientation to the Classroom Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x

Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

1. Introducing Red Hat OpenShift Service Mesh                                                                                                                                1

Guided Exercise: Creating a Lab Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Describing OpenShift Service Mesh Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Quiz: Introducing OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Describing the OpenShift Service Mesh Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Quiz: Describing the OpenShift Service Mesh Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Guided Exercise: Verifying OpenShift Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2. Installing Red Hat OpenShift Service Mesh                                                                                                                                 23

Installing Red Hat OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Guided Exercise: Install OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

3. Observing a Service Mesh                                                                                                                                                                                  35

Tracing Services with Jaeger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Guided Exercise: Tracing Services with Jaeger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Collecting Service Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

Guided Exercise: Collecting Service Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

Observing Service Interactions with Kiali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

Guided Exercise: Observing Service Interactions with Kiali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94

Lab: Observing an OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

4. Controlling Service Traffic                                                                                                                                                                              123

Managing Service Connections with Envoy and Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

Guided Exercise: Exposing a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

Routing Traffic Based on Request Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

Guided Exercise: Routing Traffic Based on Request Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Accessing External Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Guided Exercise: Accessing External Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154

Lab: Controlling Service Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

5. Releasing Applications with OpenShift Service Mesh                                                                                                169

Deploying an Application with Canary Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

Guided Exercise: Deploying an Application with Canary Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181

Deploying an Application with a Mirror Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194

Guided Exercise: Deploying an Application with a Mirror Launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198

Lab: Releasing Applications with OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

6. Testing Service Resilience with Chaos Testing                                                                                                                     219

Throwing HTTP Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

Guided Exercise: Throwing HTTP Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

Creating Delays in Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

Guided Exercise: Creating Service Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

Lab: Testing Service Resilience with Chaos Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238

7. Building Resilient Services                                                                                                                                                                              239

Describing Strategies for Resilient Services with OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . .  240

DO328-SM1.1-en-2-20200910 v



Quiz: Describing Strategies for Resilient Services with OpenShift Service Mesh . . . . . . . . . . . . . .  244

Configuring Time-outs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246

Guided Exercise: Configuring Time-outs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249

Configuring Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  254

Guided Exercise: Configuring Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258

Configuring a Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263

Guided Exercise: Configuring a Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

Lab: Building Resilient Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280

8. Securing an OpenShift Service Mesh                                                                                                                                                281

Describing the Role of Citadel in OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282

Quiz: Describing the Role of Citadel in OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287

Configuring Mutual TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291

Guided Exercise: Configuring Mutual TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299

Defining Service to Service Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304

Guided Exercise: Configuring Service to Service Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309

Lab: Securing an OpenShift Service Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323

9. Comprehensive Review                                                                                                                                                                                       325

Comprehensive Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326

Lab: Building Resilient Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328

A. Appendix                                                                                                                                                                                                                                353

Installing Red Hat OpenShift Service Mesh with the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  354

Creating a Quay Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360

Troubleshooting Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363

vi DO328-SM1.1-en-2-20200910



Document Conventions

References

"References" describe where to find external documentation relevant to a subject.

Note

"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

"Important" boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause

irritation and frustration.

Warning

"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

DO328-SM1.1-en-2-20200910 vii



viii DO328-SM1.1-en-2-20200910



Introduction

DO328 Building Resilient Microservices with Istio
and Red Hat OpenShift Service Mesh
The Red Hat OpenShift Service Mesh platform facilitates managing service
interaction, provides service tracing, and creates a visual representation
of communication pathways between microservices deployed on Red Hat
OpenShift Container Platform.

Building Resilient Microservices with Istio and Red Hat OpenShift Service
Mesh (DO328) is a hands-on, lab-based course that teaches students how
to install, configure, and manage Red Hat® OpenShift® Service Mesh. In
this course, students learn about service monitoring, service management,
distributed tracing, load balancing, and service resilience.

Course

Objectives

• Install, configure, and manage Red Hat
OpenShift Service Mesh.

• This course, together with Introduction to
Containers, Kubernetes, and Red Hat OpenShift
(DO180) and Red Hat OpenShift Developer I:
Containerizing Applications (DO288), prepares
the student to take the Red Hat Certified
Specialist in Building Resilient Microservices
exam (EX328).

Audience • System and Software Architects

• Software Developers

Prerequisites • The courses Introduction to Containers,
Kubernetes, and Red Hat OpenShift
(DO180) and Red Hat OpenShift Developer
I: Containerizing Applications (DO288),
or demonstrate equivalent experience
with containers and Kubernetes is strongly
recommended, but not required.

• The course Implementing Microservice
Architectures (DO283), or demonstrate
equivalent experience creating microservice
applications is strongly recommended, but not
required.

DO328-SM1.1-en-2-20200910 ix



Introduction

Orientation to the Classroom
Environment

Figure 0.1: Classroom environment

In this course, the main computer system used for hands-on learning activities is workstation.

The system called bastion must always be running. These two systems are in the

lab.example.com DNS domain.

All student computer systems have a standard user account, student, which has the password

student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

workstation.lab.example.com 172.25.250.9 Graphical workstation used by

students

bastion.lab.example.com 172.25.250.254 Router linking student's VMs to

classroom servers

classroom.lab.example.com 172.25.252.254 Server hosting the classroom

materials required by the course

utility.lab.example.com 172.25.250.253 Server providing supporting

services required by the OCP

cluster including DHCP and NFS

and routing to the OCP servers.

master01.ocp4.example.com 192.168.50.10 OpenShift control plane.

x DO328-SM1.1-en-2-20200910



Introduction

Machine name IP addresses Role

master02.ocp4.example.com 192.168.50.11 OpenShift control plane.

master03.ocp4.example.com 192.168.50.12 OpenShift control plane.

worker01.ocp4.example.com 192.168.50.13 OpenShift compute node.

worker02.ocp4.example.com 192.168.50.14 OpenShift compute node.

worker03.ocp4.example.com 192.168.50.15 OpenShift compute node.

The bastion system acts as a router between the network that connects the student machines

and the classroom network. If bastion is down, other student machines may not function

properly or may even hang during boot.

The utility system acts as a router between the network that connects the OpenShift cluster

machines and the student network. If utility is down, the OpenShift cluster will not function

properly or may even hang during boot.

Several systems in the classroom provide supporting services. Two servers,

content.example.com and materials.example.com, are sources for software and lab

materials used in hands-on activities. Information on how to use these servers is provided in the

instructions for those activities.

Students use the workstation machine to access a dedicated OpenShift cluster, for which they

have cluster administrator privileges.

Controlling Your Systems
You are assigned a remote computer in a Red Hat Online Learning classroom, which is accessed

through a web application hosted at http://rol.redhat.com/. Students should log in to this

site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state

of each virtual machine in the classroom is displayed on the page under the Lab Environment
tab.

Machine States

Virtual Machine

State

Description

active The virtual machine is running and available (or, when booting, soon

will be).

stopped The virtual machine is completely shut down.

building The initial creation of the virtual machine is being performed.

Depending on the state of a machine, a selection of the following actions is available.

DO328-SM1.1-en-2-20200910 xi



Introduction

Classroom/Machine Actions

Button or Action Description

CREATE Create the ROL classroom. Creates all of the virtual machines needed

for the classroom and starts them. Can take several minutes to

complete.

DELETE Delete the ROL classroom. Destroys all virtual machines in the

classroom. Caution: Any work generated on the disks is lost.

START Start all virtual machines in the classroom.

STOP Stop all virtual machines in the classroom.

OPEN CONSOLE Open a new tab in the browser and connect to the console of the

virtual machine. Students can log in directly to the virtual machine and

run commands. In most cases, you should log in to the workstation
virtual machine and use ssh to connect to the other virtual machines.

ACTION → Start Start (power on) the virtual machine.

ACTION →

Shutdown
Gracefully shut down the virtual machine, preserving the contents of

its disk.

ACTION → Power
Off

Forcefully shut down the virtual machine, preserving the contents of its

disk. This is equivalent to removing the power from a physical machine.

ACTION → Reset Forcefully shut down the virtual machine and reset the disk to its initial

state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION →

Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION → Reset

If you want to return the classroom environment to its original state at the start of the course, you

can click DELETE to remove the entire classroom environment. After the lab has been deleted,

you can click CREATE to provision a new set of classroom systems.

Warning

The DELETE operation cannot be undone. Any work you have completed in the

classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.

To help conserve allotted computer time, the ROL classroom has an associated countdown timer,

which shuts down the classroom environment when the timer expires.

To adjust the timer, click + to add one hour to the timer. Note that there is a maximum time of

twelve hours.

xii DO328-SM1.1-en-2-20200910



Introduction

Internationalization

Per-user Language Selection
Your users might prefer to use a different language for their desktop environment than the

system-wide default. They might also want to use a different keyboard layout or input method for

their account.

Language Settings

In the GNOME desktop environment, the user might be prompted to set their preferred language

and input method on first login. If not, then the easiest way for an individual user to adjust their

preferred language and input method settings is to use the Region & Language application.

You can start this application in two ways. You can run the command gnome-control-center
region from a terminal window, or on the top bar, from the system menu in the right corner,

select the settings button (which has a crossed screwdriver and wrench for an icon) from the

bottom left of the menu.

In the window that opens, select Region & Language. Click the Language box and select the

preferred language from the list that appears. This also updates the Formats setting to the

default for that language. The next time you log in, these changes will take full effect.

These settings affect the GNOME desktop environment and any applications such as gnome-
terminal that are started inside it. However, by default they do not apply to that account if

accessed through an ssh login from a remote system or a text-based login on a virtual console

(such as tty5).

Note

You can make your shell environment use the same LANG setting as your graphical

environment, even when you log in through a text-based virtual console or over

ssh. One way to do this is to place code similar to the following in your ~/.bashrc
file. This example code will set the language used on a text login to match the one

currently set for the user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountsService/users/${USER} \
  | sed 's/Language=//')
if [ "$i" != "" ]; then
    export LANG=$i
fi

Japanese, Korean, Chinese, and other languages with a non-Latin character set

might not display properly on text-based virtual consoles.

Individual commands can be made to use another language by setting the LANG variable on the

command line:

DO328-SM1.1-en-2-20200910 xiii



Introduction

[user@host ~]$ LANG=fr_FR.utf8 date
jeu. avril 25 17:55:01 CET 2019

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to determine the current value of LANG and other related environment

variables.

Input Method Settings

GNOME 3 in Red Hat Enterprise Linux 7 or later automatically uses the IBus input method

selection system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the

Region & Language application window, the Input Sources box shows what input methods are

currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.

An Add an Input Source window displays. Select your language, and then your preferred input

method or keyboard layout.

When more than one input method is configured, the user can switch between them quickly by

typing Super+Space (sometimes called Windows+Space). A status indicator will also appear in

the GNOME top bar, which has two functions: It indicates which input method is active, and acts

as a menu that can be used to switch between input methods or select advanced features of more

complex input methods.

Some of the methods are marked with gear icons, which indicate that those methods have

advanced configuration options and capabilities. For example, the Japanese Japanese (Kana
Kanji) input method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow
keys to select the correct characters to use.

US English speakers may also find this useful. For example, under English (United States) is the

keyboard layout English (international AltGr dead keys), which treats AltGr (or the right Alt)

on a PC 104/105-key keyboard as a "secondary shift" modifier key and dead key activation key for

typing additional characters. There are also Dvorak and other alternative layouts available.

Note

Any Unicode character can be entered in the GNOME desktop environment if

you know the character's Unicode code point. Type Ctrl+Shift+U, followed by

the code point. After Ctrl+Shift+U has been typed, an underlined u character

displays, indicating that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+03BB, and

can be entered by typing Ctrl+Shift+U, then 03BB, then Enter.

System-wide Default Language Settings
The system's default language is set to US English, using the UTF-8 encoding of Unicode as its

character set (en_US.utf8), but this can be changed during or after installation.

From the command line, the root user can change the system-wide locale settings with the

localectl command. If localectl is run with no arguments, it displays the current system-

wide locale settings.

xiv DO328-SM1.1-en-2-20200910



Introduction

To set the system-wide default language, run the command localectl set-locale
LANG=locale, where locale is the appropriate value for the LANG environment variable from the

"Language Codes Reference" table in this chapter. The change will take effect for users on their

next login, and is stored in /etc/locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language by clicking

the Login Screen button at the upper-right corner of the window. Changing the Language of

the graphical login screen will also adjust the system-wide default language setting stored in the /
etc/locale.conf configuration file.

Important

Text-based virtual consoles such as tty4 are more limited in the fonts they can

display than terminals in a virtual console running a graphical environment, or

pseudoterminals for ssh sessions. For example, Japanese, Korean, and Chinese

characters may not display as expected on a text-based virtual console. For

this reason, you should consider using English or another language with a Latin

character set for the system-wide default.

Likewise, text-based virtual consoles are more limited in the input methods they

support, and this is managed separately from the graphical desktop environment.

The available global input settings can be configured through localectl for both

text-based virtual consoles and the graphical environment. See the localectl(1)

and vconsole.conf(5) man pages for more information.

Language Packs
Special RPM packages called langpacks install language packages that add support for specific

languages. These langpacks use dependencies to automatically install additional RPM packages

containing localizations, dictionaries, and translations for other software packages on your system.

To list the langpacks that are installed and that may be installed, use yum list langpacks-*:

[root@host ~]# yum list langpacks-*
Updating Subscription Management repositories.
Updating Subscription Management repositories.
Installed Packages
langpacks-en.noarch      1.0-12.el8        @AppStream
Available Packages
langpacks-af.noarch      1.0-12.el8        rhel-8-for-x86_64-appstream-rpms
langpacks-am.noarch      1.0-12.el8        rhel-8-for-x86_64-appstream-rpms
langpacks-ar.noarch      1.0-12.el8        rhel-8-for-x86_64-appstream-rpms
langpacks-as.noarch      1.0-12.el8        rhel-8-for-x86_64-appstream-rpms
langpacks-ast.noarch     1.0-12.el8        rhel-8-for-x86_64-appstream-rpms
...output omitted...

To add language support, install the appropriate langpacks package. For example, the following

command adds support for French:

[root@host ~]# yum install langpacks-fr

DO328-SM1.1-en-2-20200910 xv



Introduction

Use yum repoquery --whatsupplements to determine what RPM packages may be installed

by a langpack:

[root@host ~]# yum repoquery --whatsupplements langpacks-fr
Updating Subscription Management repositories.
Updating Subscription Management repositories.
Last metadata expiration check: 0:01:33 ago on Wed 06 Feb 2019 10:47:24 AM CST.
glibc-langpack-fr-0:2.28-18.el8.x86_64
gnome-getting-started-docs-fr-0:3.28.2-1.el8.noarch
hunspell-fr-0:6.2-1.el8.noarch
hyphen-fr-0:3.0-1.el8.noarch
libreoffice-langpack-fr-1:6.0.6.1-9.el8.x86_64
man-pages-fr-0:3.70-16.el8.noarch
mythes-fr-0:2.3-10.el8.noarch

Important

Langpacks packages use RPM weak dependencies in order to install supplementary

packages only when the core package that needs it is also installed.

For example, when installing langpacks-fr as shown in the preceding examples, the

mythes-fr package will only be installed if the mythes thesaurus is also installed on

the system.

If mythes is subsequently installed on that system, the mythes-fr package will also

automatically be installed due to the weak dependency from the already installed

langpacks-fr package.

References

locale(7), localectl(1), locale.conf(5), vconsole.conf(5), unicode(7),

and utf-8(7) man pages

Conversions between the names of the graphical desktop environment's X11 layouts

and their names in localectl can be found in the file /usr/share/X11/xkb/
rules/base.lst.

Language Codes Reference

Note

This table might not reflect all langpacks available on your system. Use yum info
langpacks-SUFFIX to get more information about any particular langpacks

package.

Language Codes

Language Langpacks Suffix $LANG value

English (US) en en_US.utf8

xvi DO328-SM1.1-en-2-20200910



Introduction

Language Langpacks Suffix $LANG value

Assamese as as_IN.utf8

Bengali bn bn_IN.utf8

Chinese (Simplified) zh_CN zh_CN.utf8

Chinese (Traditional) zh_TW zh_TW.utf8

French fr fr_FR.utf8

German de de_DE.utf8

Gujarati gu gu_IN.utf8

Hindi hi hi_IN.utf8

Italian it it_IT.utf8

Japanese ja ja_JP.utf8

Kannada kn kn_IN.utf8

Korean ko ko_KR.utf8

Malayalam ml ml_IN.utf8

Marathi mr mr_IN.utf8

Odia or or_IN.utf8

Portuguese (Brazilian) pt_BR pt_BR.utf8

Punjabi pa pa_IN.utf8

Russian ru ru_RU.utf8

Spanish es es_ES.utf8

Tamil ta ta_IN.utf8

Telugu te te_IN.utf8

DO328-SM1.1-en-2-20200910 xvii



xviii DO328-SM1.1-en-2-20200910



Chapter 1

Introducing Red Hat OpenShift
Service Mesh

Goal Describe the basic concepts of microservice
architecture and Red Hat OpenShift Service Mesh.

Objectives • Describe the basic concepts behind a
distributed architecture and Red Hat OpenShift
Service Mesh.

• Describe the fundamental architecture of
OpenShift Service Mesh components.

Sections • Creating a Lab Environment (Guided Exercise)

• Describing OpenShift Service Mesh Concepts
(and Quiz)

• Describing the OpenShift Service Mesh
Architecture (and Quiz)

• Verifying OpenShift Credentials (Guided
Exercise)

DO328-SM1.1-en-2-20200910 1



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Guided Exercise

Creating a Lab Environment

In this exercise, you will start the provisioning process of a dedicated OpenShift cluster using

the Red Hat Online Learning Environment (ROL). You will also create a new account for

using the Quay.io public container image registry.

Outcomes
You should be able to provision a dedicated Red Hat OpenShift cluster that you will use for

all exercises in this course.

You will also create a new account for using the Quay.io container image registry.

Before You Begin
To perform this exercise, ensure you have access to the Red Hat Online Learning

Environment (ROL).

The following procedure describes how to provision an OpenShift cluster from the Red Hat Online

Learning platform. You must complete the following procedure before attempting any of the

course activities.

Note

The provisioning of the cluster takes approximately 10-15 minutes.

 1. Open a browser and navigate to the Red Hat Online Learning (ROL) platform at https://
rol.redhat.com. Log in with your credentials. If you do not have access to ROL, visit

Red Hat Learning Subscription [https://www.redhat.com/en/services/training/learning-

subscription].

 2. Access the Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh —

DO328 course and click ONLINE TRAINING.

 3. Click the Lab Environment tab, and then click CREATE to start provisioning the

OpenShift cluster.

Once the cluster is provisioned, you should see a list of virtual machines in the classroom.

The status of all the virtual machines should be active.

2 DO328-SM1.1-en-2-20200910

https://www.redhat.com/en/services/training/learning-subscription
https://www.redhat.com/en/services/training/learning-subscription
https://www.redhat.com/en/services/training/learning-subscription


Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Figure 1.1: Provisioning a cluster

From this page, you can also control the environment, such as deleting the cluster, and

stopping or restarting the cluster.

Warning

By default, The cluster is configured to automatically stop after one hour. Click

the green plus icon at the bottom to increase the duration. You can increase the

duration up to a maximum of 12 hours.

 4. While the OpenShift cluster is being provisioned, create a new account in Quay.io. If you

already have an account in Quay.io, then you can skip this step.

If you do not have an account in Quay.io, create a new account to store container images for

applications that you will build in this course.

Refer to the detailed steps in the appendix Creating a Quay Account.

Finish

This exercise has no command to finish it. Provisioning the cluster takes some time. Continue to

the next section in this chapter while you wait for the cluster to become ready.

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 3



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Describing OpenShift Service Mesh
Concepts

Objectives
After completing this section, you should be able to describe the basic concepts behind a

distributed architecture and Red Hat OpenShift Service Mesh.

Describing the Challenges of Microservice
Architectures
Microservice architectures are a method of dividing traditional, monolithic enterprise applications

into a set of small, modular services. Using a microservice approach to application development

means that each part of your application can scale more easily, is more maintainable, and is ideal

for deployment on a cloud platform. This approach has been successfull in recent years, including

at large companies such as Netflix and Amazon.

Despite introducing many benefits, microservices create several architectural challenges

that administrators and developers must understand in order to build a robust and resilient

microservices application.

Some of these challenges are related to the development of the microservices themselves.

Development challenges
An early issue developers run into is service discovery. Because services are often changing

their IP address, each service needs to be easily discoverable and referred to by a static name.

Another issue developers encounter is developing for elasticity, or the ability to scale up or

down in response to demand. To support elasticity, and leverage one of the most critical

benefits of a microservice architecture, developers need to design a system that is scalable as

well as have an orchestration solution that appropriately responds to demand.

Security challenges
Security is critical nowadays, so microservices need to implement authentication techniques

to validate and trust communication peers. Because microservice architectures imply a high

degree of communication, authentication becomes a critical feature. Microservices must

validate communication peers are authorized, and reject unauthorized requests.

Operation challenges
Microservices, like any other software, can fail. In microservice architectures, a failing

microservice or element may cascade the error, causing a massive impact on the whole

application. Microservices must be resilient to failures of peers or dependencies to avoid

service failures and SLA breaks.

As applications grow larger and more complex, monitoring them becomes far more

difficult. In contrast to a monolithic architecture, microservices are by nature distributed,

which can make consolidating information more of a challenge. Monitoring (measuring

microservices performance and usage), centralized logging (capturing and relating logs from

all microservices) and tracing (correlating requests to multiple microservices belonging to

the same user transaction) became desired features for any microservice architecture to be

maintained.

Microservice orchestration platforms such as Red Hat OpenShift provide some of those

capabilities, such as discovering services or elasticity. Some of the other features require more

4 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

specialized solutions. Recently, developers would implement these features such as service

resilience in code, leading them to copy the same code from service to service and creating poor

separation between service code and network management.

When applications consist of only a few microservices, replicating the same code is not a major

problem. When the number of microservices increases, however, maintenance and the ability to

make changes grows exponentially more difficult.

Describing a Service Mesh
Service mesh is a technology designed to address microservice architecture problems. This

technology abstracts developers from many of the microservice architectural problems. Service

mesh technology creates a centralized point to control features for many or all microservices in an

application.

Service mesh technology operates at the network communication level. That is, service mesh

components capture or intercept traffic to and from microservices, either modifying requests,

redirecting them, or creating new requests to other services. Service mesh technology does all of

this without requiring code-level changes.

DO328-SM1.1-en-2-20200910 5



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Figure 1.2: Desired features of microservice architectures

Red Hat OpenShift Service Mesh
Red Hat OpenShift Service Mesh implements the service mesh technology in Red Hat OpenShift

Container Platform. This implementation complements OpenShift Container Platform capabilities,

adding many of the desired features of microservice architectures.

OpenShift Service Mesh incorporates and extends several open source projects and orchestrates

them to provide an improved developer experience:

Istio and Maistra
Istio is the core implementation of the service mesh architecture for the Kubernetes platform.

Istio creates a control plane that centralizes service mesh capabilities and a data plane that

makes up the structure of the mesh. The data plane controls communications between

services by injecting sidecar containers that capture traffic between microservices.

Maistra is a project based on Istio that adapts features to the edge cases of deployment in

OpenShift Container Platform. Maistra also adds extended features to Istio, such as simplified

6 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

multitenancy, explicit sidecar injection, and the use of OpenShift routes instead of Kubernetes

ingress.

Jaeger and ElasticSearch
Jaeger is an open source traceability server that centralizes and displays traces associated

with a single request between multiple services. Maistra is responsible for sending the traces

to Jaeger and Jaeger is responsible for displaying traces. Microservices in the mesh are

responsible for generating request headers needed for other components to generate and

aggregate traces.

Jaeger relies on ElasticSearch for distributed storage and indexing for logging and tracing

data. ElasticSearch is an open source, distributed, JSON-based search and analytics engine.

Kiali and Prometheus
Kiali provides service mesh observability. Kiali discovers microservices in the service mesh

and their interactions and visually represents them. It also captures information about

communication and services, such as the protocols used, service versions, and failure

statistics.

Prometheus is used by OpenShift Service Mesh to store telemetry information from services.

Kiali depends on Prometheus to obtain metrics, health status, and mesh topology.

Grafana
Optionally, Grafana can be used to analyze service mesh metrics. Grafana provides mesh

administrators with advanced query and metrics analysis.

3scale
The 3scale Istio adapter is an optional component that integrates OpenShift Service Mesh

with Red Hat 3scale API Management solutions. The default OpenShift Service Mesh

installation does not include this component.

DO328-SM1.1-en-2-20200910 7



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

References

Istio

https://istio.io/

Maistra

https://maistra.io/

Jaeger

https://www.jaegertracing.io/

ElasticSearch

https://www.elastic.co/elasticsearch/

Kiali

https://kiali.io/

Prometheus

https://prometheus.io/

Grafana

https://grafana.com/

For updates and latest product notes, refer to the Service Mesh Release notes

section in the Service Mesh chapter at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

8 DO328-SM1.1-en-2-20200910

https://istio.io/
https://maistra.io/
https://www.jaegertracing.io/
https://www.elastic.co/elasticsearch/
https://kiali.io/
https://prometheus.io/
https://grafana.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index


Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Quiz

Introducing OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which two of the following features does Red Hat OpenShift Service Mesh add to

applications deployed on an OpenShift cluster? (Choose two.)

a. Scalability. Allows services to adapt the number of replicas to the load requirements.

b. Traceability. Allows services to capture traces of the requests between services.

c. Resiliency. Provides services with tools to tolerate failures in dependent services.

d. Idempotency. Deploying applications multiple times always obtains the same results.

 2. Which three of the following open source projects are used in Red Hat OpenShift

Service Mesh? (Choose three.)

a. Git

b. Kubernetes

c. Maistra

d. Kiali

e. PostgreSQL

f. Jaeger

 3. Which of the following architectural challenges of microservice architectures is

addressed by Red Hat OpenShift Service Mesh?

a. Authentication

b. API

c. Elasticity

d. Pipeline

 4. An application consisting of multiple microservices is in production. It is complicated

for architects to clarify which services communicate with others. Which two Red Hat

OpenShift Service Mesh components can you use to clarify those connections?

(Choose two.)

a. Kiali, because visualizing the service mesh clarifies service interactions.

b. Jaeger, because tracing queries shows what services are used.

c. Grafana, because it can display what nodes have a higher level of usage.

d. None of the above. OpenShift Service Mesh needs architects to manually trace all

connections.

DO328-SM1.1-en-2-20200910 9



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Solution

Introducing OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which two of the following features does Red Hat OpenShift Service Mesh add to

applications deployed on an OpenShift cluster? (Choose two.)

a. Scalability. Allows services to adapt the number of replicas to the load requirements.

b. Traceability. Allows services to capture traces of the requests between services.

c. Resiliency. Provides services with tools to tolerate failures in dependent services.

d. Idempotency. Deploying applications multiple times always obtains the same results.

 2. Which three of the following open source projects are used in Red Hat OpenShift

Service Mesh? (Choose three.)

a. Git

b. Kubernetes

c. Maistra

d. Kiali

e. PostgreSQL

f. Jaeger

 3. Which of the following architectural challenges of microservice architectures is

addressed by Red Hat OpenShift Service Mesh?

a. Authentication

b. API

c. Elasticity

d. Pipeline

 4. An application consisting of multiple microservices is in production. It is complicated

for architects to clarify which services communicate with others. Which two Red Hat

OpenShift Service Mesh components can you use to clarify those connections?

(Choose two.)

a. Kiali, because visualizing the service mesh clarifies service interactions.

b. Jaeger, because tracing queries shows what services are used.

c. Grafana, because it can display what nodes have a higher level of usage.

d. None of the above. OpenShift Service Mesh needs architects to manually trace all

connections.

10 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Describing the OpenShift Service Mesh
Architecture

Objectives
After completing this section, you should be able to describe the fundamental architecture of

OpenShift Service Mesh components.

Red Hat OpenShift Service Mesh Architecture
Red Hat OpenShift Service Mesh consists of two logical components, a control plane, and a data

plane. The following diagram shows the components in the data plane and the control plane:

Figure 1.3: Red Hat OpenShift Service Mesh Architecture

The data plane consists of a set of proxies, which are deployed alongside applications in an

OpenShift cluster. The proxies are deployed as sidecars, an auxiliary container running in the same

pod as the application, and providing some supplementary functionality.

The control plane manages and configures the proxies. It enforces access control and usage

policies and collects metrics from the proxies in the service mesh.

Data Plane Components

The Envoy proxy is the main component in the data plane. It handles all data flowing between the

services in a service mesh. The Envoy proxy also collects all metrics related to the services in the

mesh.

DO328-SM1.1-en-2-20200910 11



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Figure 1.4: Envoy Proxies

The control plane automatically injects an instance of the Envoy proxy as a sidecar to a service

whenever that service is deployed to the OpenShift cluster. All incoming (ingress) and outgoing

(egress) network traffic between services flows through the proxies. The service offloads

functionality such as access control, network routing and rate limiting, ingress and egress traffic

control, and more to the service mesh.

The data plane in a service mesh performs the following tasks:

• Service discovery: Tracks the services deployed in a mesh.

• Health checks: Track the state (healthy or unhealthy) of the services deployed in a mesh.

• Traffic shaping and routing: Control the flow of network data between services. Includes

tasks such as throttling the amount of traffic, routing based on content, circuit breaking,

controlling the amount of traffic that should be routed among multiple versions of a service,

load balancing and more.

• Security: Perform authentication and authorization, and secure communication using mutual

transport layer security (mTLS) between services in a mesh.

• Metrics and Telemetry: Gather metrics, logs, and distributed tracing information from services

in the mesh.

12 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Control Plane Components

The control plane manages the configuration and policies for the service mesh. The control plane

does not directly handle the network traffic in the mesh, but maintains configuration and policies

that are enforced by the data plane.

The control plane consists of the following components:

Pilot
Maintains the configuration data for the service mesh. Pilot provides service discovery for the

Envoy proxy sidecars, traffic management capabilities for intelligent routing (for example, A/B

tests), and resiliency (timeouts, retries, and circuit breakers).

Citadel
Issues and rotates TLS certificates. Citadel provides authentication for inter-service

communication, with built-in identity and credential management. You can enforce policies

based on service identity rather than relying on network details such as IP addresses and host

names.

Galley
Monitors the service mesh configuration and then validates, processes, and distributes the

configuration to the proxies.

References

For more information, refer to the Service Mesh Architecture chapter in the Service

Mesh guide at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-

architecture

Istio Architecture

https://archive.istio.io/v1.4/docs/ops/deployment/architecture

DO328-SM1.1-en-2-20200910 13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://archive.istio.io/v1.4/docs/ops/deployment/architecture


Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Quiz

Describing the OpenShift Service Mesh
Architecture

Choose the correct answers to the following questions:

 1. Which component of the control plane is responsible for security and certificate

management?

a. Pilot.

b. Galley.

c. Citadel.

d. None of the above.

 2. Which two of the following statements about the control plane are correct? (Choose

two.)

a. It injects an instance of the Envoy proxy as a sidecar to the application pod.

b. It handles all the incoming and outgoing traffic in a service mesh.

c. It runs as a sidecar alongside all applications in the service mesh.

d. It is responsible for monitoring the health of all services in a service mesh.

e. It is responsible for collecting logging data from all services in a service mesh.

f. It is responsible for maintaining the configuration of the service mesh.

 3. A large e-commerce application is deployed on a service mesh, and consists of three

services: an Apache web server to serve static assets such as images; a PHP/Nginx

based front-end service that handles the HTML web user interface; and a Node.js back-

end service to handle ordering, billing, and customer management.

All three services are packaged and deployed as containers; one container per service.

Assuming that the service mesh handles the traffic for all three services, how many

sidecar proxies are injected into the data plane for this application?

a. 1

b. 2

c. 3

d. 4

e. 6

14 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

 4. Which two of the following statements about the Pilot component in the control plane

are correct? (Choose two.)

a. Pilot handles all the incoming and outgoing traffic in a service mesh.

b. Pilot runs as a sidecar alongside all applications in the service mesh.

c. Pilot provides service discovery functionality in the service mesh.

d. Pilot provides circuit breaker functionality in a service mesh.

e. Pilot enforces access control and usage policies in a service mesh.

f. Pilot validates the service mesh configuration and distributes the configuration to the

proxies.

DO328-SM1.1-en-2-20200910 15



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Solution

Describing the OpenShift Service Mesh
Architecture

Choose the correct answers to the following questions:

 1. Which component of the control plane is responsible for security and certificate

management?

a. Pilot.

b. Galley.

c. Citadel.

d. None of the above.

 2. Which two of the following statements about the control plane are correct? (Choose

two.)

a. It injects an instance of the Envoy proxy as a sidecar to the application pod.

b. It handles all the incoming and outgoing traffic in a service mesh.

c. It runs as a sidecar alongside all applications in the service mesh.

d. It is responsible for monitoring the health of all services in a service mesh.

e. It is responsible for collecting logging data from all services in a service mesh.

f. It is responsible for maintaining the configuration of the service mesh.

 3. A large e-commerce application is deployed on a service mesh, and consists of three

services: an Apache web server to serve static assets such as images; a PHP/Nginx

based front-end service that handles the HTML web user interface; and a Node.js back-

end service to handle ordering, billing, and customer management.

All three services are packaged and deployed as containers; one container per service.

Assuming that the service mesh handles the traffic for all three services, how many

sidecar proxies are injected into the data plane for this application?

a. 1

b. 2

c. 3

d. 4

e. 6

16 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

 4. Which two of the following statements about the Pilot component in the control plane

are correct? (Choose two.)

a. Pilot handles all the incoming and outgoing traffic in a service mesh.

b. Pilot runs as a sidecar alongside all applications in the service mesh.

c. Pilot provides service discovery functionality in the service mesh.

d. Pilot provides circuit breaker functionality in a service mesh.

e. Pilot enforces access control and usage policies in a service mesh.

f. Pilot validates the service mesh configuration and distributes the configuration to the

proxies.

DO328-SM1.1-en-2-20200910 17



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Guided Exercise

Verifying OpenShift Credentials

In this exercise, you will configure the lab environment to access the dedicated OpenShift

cluster that Red Hat Online Learning (ROL) provides for each student.

Outcomes
You should be able to access your dedicated OpenShift cluster from your lab environment.

Before You Begin
To perform this exercise, ensure you have access to:

• The Red Hat Online Learning Environment (ROL).

• The access credentials of your dedicated cluster.

• A free user account in the Quay.io public container registry.

Important

The following activity requires that you provision a dedicated OpenShift

cluster in Guided Exercise: Creating a Lab Environment. Refer to this activity

to create a new OpenShift cluster.

You also need to create new Quay.io account before starting this activity.

Refer to the appendix Creating a Quay Account.

The lab-configure command saves the connection information of your

OpenShift cluster in a configuration file. If you made a mistake, or if you want

to change any values, rerun the command to modify the configuration.

Note

To avoid problems while pasting text into the workstation machine, open the

Firefox browser on workstation and navigate to https://rol.redhat.com. Copy

the necessary values from Firefox and paste them into the GNOME Terminal

window.

 1. Run the lab-configure command to configure your workstation environment to connect

to your OpenShift cluster, which you provisioned from ROL in an earlier exercise.

The lab-configure command provides interactive prompts. It provides a set of defaults

for all the prompts except the username for your Quay.io account. Accept these default

values and enter your Quay.io username when prompted.

1.1. Run the lab-configure command. The OpenShift API URL is automatically filled

in. Accept the default value by pressing the Enter key.

18 DO328-SM1.1-en-2-20200910

https://rol.redhat.com


Chapter 1 | Introducing Red Hat OpenShift Service Mesh

[student@workstation ~]$ lab-configure

This script configures the connection parameters to access the OpenShift cluster
 for your lab scripts

· Enter the OpenShift API URL: https://api.ocp4.example.com:6443

1.2. The script attempts to determine the correct wildcard domain for your cluster, as

displayed in the following output. If the domain is incorrect, make the necessary

changes.

· Enter the Wildcard Domain: apps.ocp4.example.com

1.3. The script attempts to determine the correct web console URL for your cluster,

as displayed in the following output. If the URL is incorrect, make the necessary

changes. Ensure you include https:// if it is not part of the web console URL

provided to you.

· Enter the Web Console URL: https://console-openshift-
console.apps.ocp4.example.com:6443

1.4. You will need a unprivileged developer user account for running the labs in the course.

Accept the default user account named developer.

· Enter the Developer User name: developer

1.5. Accept the default password for the developer user account (developer).

· Enter the Developer User Password: developer

1.6. You will also need a user with cluster administrator permissions to install the service

mesh. Accept the default administrator account named admin.

· Enter the Cluster Administrator User name: admin

1.7. Accept the default password for the administrator user account (redhat).

· Enter the Cluster Administrator User Password: redhat

1.8. Do not press Enter to accept the default value. Enter your Quay.io user account

name:

· Enter the Quay.io Account User Name: quayuser

 2. The lab-configure command displays all the values that you provided and does not wait

for you to confirm them. It then verifies that it can access your cluster.

2.1. Verify that you provided the correct values for your OpenShift cluster to the lab-
configure command.

DO328-SM1.1-en-2-20200910 19



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

You entered:
 · OpenShift API URL:                   https://api.ocp4.example.com:6443
 · Wildcard Domain:                     apps.ocp4.example.com
 . Web Console URL:                     https://console-openshift-
console.apps.ocp4.example.com:6443
 . Developer User Name:                 developer
 . Developer User Password:             developer
 . Cluster Administrator User Name:     admin
 · Cluster Administrator User Password: redhat
 . Quay.io Account User Name:           quayuser

2.2. Wait until the lab-configure command verifies that it can connect to your

OpenShift cluster and saves your configuration to the /usr/local/etc/
ocp4.config file.

Verifying your OpenShift API URL...

Verifying your OpenShift developer user credentials...

Verifying your OpenShift admin user credentials...

Verifying your Quay.io account user name...

Verifying your cluster configuration...

Saving your lab configuration file...

All fine, lab config saved. You can now proceed with your exercises.

2.3. If the lab-configure command finds any issues then it displays an error message

and exits. You must verify the information you entered and run the lab-configure
command again. The following listing shows an example of a verification error:

...output omitted...

Verifying your OpenShift API URL...

ERROR:
Cannot connect to an OpenShift 4 API using your URL.
Please verify your network connectivity and that the URL does not point to an
 OpenShift 3.x nor to a non-OpenShift Kubernetes API.
No changes made to your lab configuration.

Note

You may see this error when you run the lab-configure script immediately after

cluster provisioning. Wait for a few minutes for the cluster to be fully started and the

OpenShift API to be available, and re-run the lab-configure script.

20 DO328-SM1.1-en-2-20200910



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

If your configuration saved without errors, then you are ready to start any of the

exercises for this course. If there were any errors, then do not start any exercise until

you can execute the lab-configure command successfully.

Finish

This exercise has no command to finish it. You should now be set up to perform any exercise in this

course.

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 21



Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Summary

In this section, you learned:

• OpenShift Service Mesh addresses challenges in microservice architectures, like tracing,

authentication, elasticity, traceability or resiliency. A service mesh works at the network level,

that is, it intercepts and alters network communication between services to include the desired

features.

• Red Hat OpenShift Service Mesh uses many open source projects, such as Istio, Kiali, Jaeger,

ElasticSearch, and Grafana.

• Istio (the core of OpenShift Service Mesh technology) defines the control plane, for controlling

service mesh behavior, and the data plane, for enabling features at the service level.

• The data plane injects Envoy proxy sidecars to microservices to enable service mesh features.

Control plane components includes Pilot for service discovery, Citadel for authentication, and

Galley for configuration.

22 DO328-SM1.1-en-2-20200910



Chapter 2

Installing Red Hat OpenShift
Service Mesh

Goal Deploy Red Hat OpenShift Service Mesh on
OpenShift Container Platform.

Objectives Install Red Hat OpenShift Service Mesh on
Red Hat OpenShift Container Platform.

Sections Installing Red Hat OpenShift Service Mesh (and
Guided Exercise)

DO328-SM1.1-en-2-20200910 23



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Installing Red Hat OpenShift Service
Mesh

Objectives
After completing this section, you should be able to install Red Hat OpenShift Service Mesh on

Red Hat OpenShift Container Platform.

Describing Custom Resource Definitions
Red Hat OpenShift is a distribution of Kubernetes focused on the developer experience. Red Hat

OpenShift is easily adapted to various projects using available Kubernetes components.

A resource is a Kubernetes API endpoint that stores objects of the same kind.

A Custom Resource Definition (CRD) describes a custom resource used to extend the Kubernetes

API. This feature supports custom object definitions, using them as native Kubernetes objects.

Custom Resource Definitions are used to install software in Kubernetes and Red Hat OpenShift.

The following example shows a CRD definition:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: crontabs.stable.example.com 
spec:
  group: stable.example.com 
  version: v1
  scope: Namespaced 
  names:
    plural: crontabs 
    singular: crontab 
    kind: CronTab 
    shortNames: 
    - ct

A crontab is a list of commands to be executed at a specified time. The preceding example

implements the crontab concept using Custom Resource Definitions.

Custom Resource Definition name. Must be in the form plural.group.

Name to use in the REST API.

Defines the scope of the CRD.

Plural name of the CRD. Used in the REST API and to form the CRD name.

Singular name of the CRD. Used as an alias in the command-line interface (CLI) and for

display.

Type of objects managed by the CRD.

Short string alias to use in the CLI.

After a CRD is created, Kubernetes enables a new RESTful API endpoint to manage it. The

endpoint created for the preceded example is:

24 DO328-SM1.1-en-2-20200910



Chapter 2 | Installing Red Hat OpenShift Service Mesh

/apis/stable.example.com/v1/namespaces/*/crontabs/...

The API URL associated with the CRD supports creating and managing custom objects.

Defining Kubernetes Operators
A Kubernetes operator packages a Kubernetes application to automate installation, updates, and

management. Operators rely on Custom Resource Definitions to extend the Kubernetes API.

Operators run on a pod, and monitor the application to ensure it performs as expected. If the

application fails to properly execute, then the operator automatically acts to correct it.

There are two types of operators available to choose in Red Hat OpenShift.

Certified Operators
Operators verified on Red Hat OpenShift by Red Hat or its partners.

Community Operators
Operators not vetted or verified by Red Hat, so their stability is unknown.

Installing Red Hat OpenShift Service Mesh
OpenShift Service Mesh is installed using the Web Console, or CLI, and a Kubernetes operator.

The installation process requires first installing the required operators, then deploying the Control

Plane, and finally creating a Service Mesh Member Roll.

Installing the OpenShift Service Mesh Operator

OpenShift Service Mesh relies on the following operators:

Jaeger
Provides tracing features to monitor and troubleshoot your distributed application.

Elasticsearch
Stores traces and logs generated by Jaeger.

Kiali
Provides observability to the service mesh through a web user interface (UI).

You can find all the required operators and the Red Hat OpenShift Service Mesh operator in the

OperatorHub page.

DO328-SM1.1-en-2-20200910 25



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Figure 2.1: Result page in the OperatorHub for Red Hat OpenShift Service Mesh

The installation process of the operators requires first finding the operator in the OperatorHub

page, then reviewing and configuring installation parameters, and finally subscribing the operator

to an updates channel.

Note

Red Hat recommends to install certified operators.

Deploying the OpenShift Service Mesh Control Plane

The control plane manages the configuration and policies for the service mesh. The OpenShift

Service Mesh Operator installation makes the operator available in all namespaces, so you can

install the control plane in any project.

To deploy a control plane in a project with the web UI, first navigate to the Installed
Operators page, then to the Istio Service Mesh Control Plane page, and finally review

and configure deployment parameters.

Note

Red Hat recommends to deploy the control plane in a separate project.

Creating a Service Mesh Member Roll

The ServiceMeshMemberRoll custom resource defines the projects belonging to a control

plane. Any number of projects can be added to a ServiceMeshMemberRoll, however a project

can be added only to one control plane.

26 DO328-SM1.1-en-2-20200910



Chapter 2 | Installing Red Hat OpenShift Service Mesh

To create or edit a Service Mesh Member Roll, first navigate to the project where Red Hat

OpenShift Service Mesh is installed, then navigate to the Istio Service Mesh Member Roll
page, and finally review and configure installation parameters.

Figure 2.2: List of projects belonging to the control plane

Only projects listed in the ServiceMeshMemberRoll are managed by the Service Mesh.

Installing OpenShift Service Mesh using CLI
You can install OpenShift Service Mesh using CLI instead of the OpenShift Web Console. The

CLI installation method is useful for, for example, automated installation and management of

OpenShift Service Mesh.

For more information about installing OpenShift Service Mesh using CLI, refer to Installing Red Hat

OpenShift Service Mesh with the CLI.

Upgrading Red Hat OpenShift Service Mesh
If you selected the automatic update stream during installation, then OpenShift Service Mesh is

going to be updated automatically, so any extra steps are not required.

If you choose to update manually during installation, the Operator Lifecycle Manager (OLM)

controls the upgrade.

For more information, refer to the Operator Lifecycle Manager documentation at https://

access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/

operators/#olm-overview_olm-understanding-olm.

DO328-SM1.1-en-2-20200910 27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm


Chapter 2 | Installing Red Hat OpenShift Service Mesh

Removing Red Hat OpenShift Service Mesh
To remove OpenShift Service Mesh from an existing Red Hat OpenShift Container Platform

instance, complete the following tasks:

1. Remove the OpenShift Service Mesh control plane.

2. Remove the installed operators.

a. Red Hat OpenShift Service Mesh Operator

b. Jaeger Operator

c. Kiali Operator

d. Elasticsearch Operator

3. Clean up operator resources.

For more information, refer to the Removing Red Hat OpenShift Service Mesh section in the

OpenShift Container Platform Service Mesh documentation at https://access.redhat.com/

documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index.

 

References

For more information, refer to the Service Mesh Installation section in the OpenShift

Container Platform Service Mesh documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

Operators in Red Hat OpenShift

https://www.openshift.com/learn/topics/operators

Operator Hub

https://operatorhub.io/

28 DO328-SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://www.openshift.com/learn/topics/operators
https://operatorhub.io/


Chapter 2 | Installing Red Hat OpenShift Service Mesh

Guided Exercise

Install OpenShift Service Mesh

In this exercise, you will deploy Red Hat OpenShift Service Mesh on Red Hat OpenShift.

Outcomes
You should be able to deploy OpenShift Service Mesh on Red Hat OpenShift.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise:

[student@workstation ~]$ lab install-mesh start

 1. Log in as the admin user in the OpenShift web console.

1.1. Navigate to https://console-openshift-
console.apps.ocp4.example.com to access the OpenShift web console. If

certificate errors appear, then accept the self-signed certificates.

[student@workstation ~]$ firefox https://console-openshift-
console.apps.ocp4.example.com

1.2. Use the following credentials:

• Username: admin

• Password: redhat

Then, click Log in.

 2. Install the Elasticsearch operator.

2.1. In the Administrator panel, click Operators → OperatorHub.

2.2. Type Elasticsearch into the filter box. Click Elasticsearch Operator, and then

click Install.

DO328-SM1.1-en-2-20200910 29



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Figure 2.3: Elasticsearch operator

Note

All the required operators for this course are packaged in a custom OperatorHub.

For that reason, all the operators included in the custom OperatorHub display a

Custom tag.

2.3. In the Create Operator Subscription page, examine the default settings. Then,

click Subscribe.

 3. Install the Jaeger operator.

3.1. In the Administrator panel, click Operators → OperatorHub.

3.2. Type Jaeger into the filter box. Click Red Hat OpenShift Jaeger, and then click

Install.

3.3. The Create Operator Subscription page displays. Examine the default settings,

and select 1.17-stable as the Update Channel. Then, click Subscribe.

 4. Install the Kiali operator.

4.1. In the Administrator pane, click Operators → OperatorHub.

4.2. Type Kiali into the filter box. Click Kiali Operator, and then click Install.

4.3. The Create Operator Subscription page displays. Examine the default settings,

and then click Subscribe.

 5. Install the Red Hat OpenShift Service Mesh operator.

5.1. In the Administrator pane, click Operators → OperatorHub.

30 DO328-SM1.1-en-2-20200910



Chapter 2 | Installing Red Hat OpenShift Service Mesh

5.2. Type OpenShift Service Mesh into the filter box. Click Red Hat OpenShift
Service Mesh, and then click Install.

5.3. In the Create Operator Subscription page, examine the default settings and select

1.0 as the Update Channel. Then, click Subscribe.

Figure 2.4: OpenShift Service Mesh subscription options

5.4. In the Installed Operators page, wait until you see Succeeded in the Status
column of all the operators.

 6. Log in as the Developer user. Then, create the istio-system project.

6.1. In the OpenShift web console, click admin → Log out. Then, log in as the

developer user.

6.2. In the OpenShift web console, click Home → Projects, and then click Create
Project.

6.3. Type istio-system into the Name field, and then click Create.

 7. Deploy the OpenShift Service Mesh control plane.

7.1. On the Administrator pane, click Operators → Installed Operators.

7.2. Ensure that the project istio-system is selected in the Project list. Then, click

Red Hat OpenShift Service Mesh.

DO328-SM1.1-en-2-20200910 31



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Figure 2.5: Project selection in OperatorHub

Note

If Red Hat OpenShift Service Mesh Operator does not display, the operator

installation into the istio-system project is still in progress.

The operator displays after a few seconds.

7.3. Click the Istio Service Mesh Control Plane tab. Then, click Create
ServiceMeshControlPlane.

7.4. Examine the default options of the Service Mesh Control Plane installation. Then,

click Create.

7.5. Click the Istio Service Mesh Member Roll tab. Then, click Create
ServiceMeshMemberRoll.

7.6. Examine the default options of the ServiceMeshMemberRoll custom resource and

remove the sample members. Then, click Create.

32 DO328-SM1.1-en-2-20200910



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Figure 2.6: Project selection in OperatorHub

 8. Verify that the Service Mesh Control Plane installation was successful.

8.1. Click the Istio Service Mesh Control Plane tab.

8.2. Click basic-install to see the details of your Service Mesh Control Plane installation.

8.3. Scroll down to see the Conditions panel of the page.

8.4. Wait until the Ready row status changes to true.

8.5. As the student user on the workstation machine, use the lab command to verify

the successful installation:

[student@workstation ~]$ lab install-mesh grade

Note

To remove OpenShift Service Mesh from your OpenShift cluster, execute lab
uninstall-mesh start.

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab install-mesh finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 33



Chapter 2 | Installing Red Hat OpenShift Service Mesh

Summary

In this chapter, you learned:

• The role of the ServiceMeshMemberRoll and ServiceMeshControlPlane resources in

Red Hat OpenShift Service Mesh.

• Installing Red Hat OpenShift Service Mesh using the OpenShift web console.

• Installing Red Hat OpenShift Service Mesh using the OpenShift command-line client.

• Configure Red Hat OpenShift Service Mesh to manage projects with the

ServiceMeshMemberRoll resource.

34 DO328-SM1.1-en-2-20200910



Chapter 3

Observing a Service Mesh

Goal Trace and visualize an OpenShift Service Mesh
with Jaeger and Kiali.

Objectives • Configure distributed tracing to track service
traffic.

• Collect and inspect critical metrics with
Prometheus and Grafana.

• Monitor and visualize service interactions with
Kiali.

Sections • Tracing Services with Jaeger (and Guided
Exercise).

• Collecting Service Metrics (and Guided
Exercise).

• Observing Service Interactions with Kiali (and
Guided Exercise).

Lab Observing an OpenShift Service Mesh.

DO328-SM1.1-en-2-20200910 35



Chapter 3 | Observing a Service Mesh

Tracing Services with Jaeger

Objectives
After completing this section, you should be able to configure distributed tracing to track service

traffic.

Describing Distributed Tracing
Distributed Tracing is the process of tracking the performance of individual services in an

application by tracing the path of the service calls in the application. Each time a user takes action

in an application, a request is executed that might require many services to interact to produce a

response. The path of this request is called a distributed transaction.

36 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Figure 3.1: Distributed Tracing

In a microservices enabled architecture with a large number of individual microservices, a single

client request that achieves a certain business requirement might involve calling multiple individual

microservices in a particular sequence. An important aspect of maintaining and developing a

distributed system is troubleshooting performance issues. Because a single client call can interact

DO328-SM1.1-en-2-20200910 37



Chapter 3 | Observing a Service Mesh

with multiple services, analyzing the debugging logs of an individual service might not help

troubleshooting performance issues.

Distributed tracing allows developers to visualize call flows in a microservices application.

Understanding the sequence of calls (how many calls occur in a serial fashion versus how many

occur in parallel), and sources of latency is useful when maintaining a distributed system.

For example, if a request takes too long, causing performance issues, then identify the service or

services causing the slowdown and examine the network latency between service calls.

Distributed tracing is useful for monitoring, network profiling, and troubleshooting the interaction

between services in modern, cloud-native, microservices-based applications.

Traces and Spans in Distributed Tracing
In the context of distributed tracing, it is important to understand two terms:

Span
A Span represents a logical unit of work, which has a unique name, a start time, and the

duration of execution. To model the service call flow in a service mesh, spans are nested and

executed in a particular order.

Trace
A Trace is an execution path of services in the service mesh. A trace is comprised of one or

more spans.

Consider an application with the following microservices:

Figure 3.2: Request Call Path

In this example:

• Service A is the request entry point for the application.

38 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

• Because Service A is the entry point for the application, it is called the parent span. As shown

in Figure 3.2, Service A makes two service calls: one to Service B and one to Service E.

Thus, Service B and Service E are child spans of Service A.

• Service B in turn calls Service C and Service D before returning the response to

Service A. Service B is a parent span. Service C and Service D are child spans.

The following is a line graph representation of a single trace and its constituent spans:

Figure 3.3: Traces and Spans

Introducing Jaeger
Jaeger is a distributed tracing platform. Jaeger allows developers to configure their services to

enable gathering runtime statistics about their performance.

Jaeger is installed by default as part of Red Hat OpenShift Service Mesh.

Jaeger is made up of several components that work together to collect, store, and display tracing

data.

Jaeger Components

Jaeger Client
Jaeger clients are language specific implementations of the OpenTracing API. They are used

to configure applications for distributed tracing. The OpenTracing API defines standard APIs

for instrumentation and distributed tracing of microservices applications.

Jaeger Agent
The Jaeger agent is a network daemon that listens for span data sent over User Datagram

Protocol (UDP), which it batches and sends to the collector. The agent is meant to be placed

DO328-SM1.1-en-2-20200910 39



Chapter 3 | Observing a Service Mesh

on the same host as the application being traced. This is accomplished by the Envoy proxy

sidecar in container environments like OpenShift.

Jaeger Collector
The Collector receives runtime statistics from the agent and places them in an internal queue

for processing. This allows the collector to return a response immediately to the agent.

Storage
Collectors require a persistent storage back end. Jaeger has a pluggable mechanism

for storage. For Red Hat OpenShift Service Mesh, the only supported storage is

Elasticsearch, which is a distributed search and analytics engine for all types of data.

Query
Query is a service that retrieves runtime statistics from storage.

Jaeger Console
Jaeger provides a web based console that lets you visualize your distributed tracing data. The

Jaeger web console is tightly integrated with the OpenShift web console. Using the console,

you can trace the path of requests as they flow through the services in a mesh.

Trace Context Propagation

A system with a large number of microservices interact in numerous ways and cannot be planned

upfront, these services typically receive and send multiple requests concurrently. Trace context

propagation is a process which tracks unique requests throughout the call paths in the service

mesh.

A new span is generated for each logical service call in the request. This span contains the same

request id, a new span id, and the parent span id (which points to the span id of the parent

span). Spans are placed on a timeline, and visualized using graphical representations, based on

timestamps and durations.

Red Hat OpenShift Service Mesh uses a standard set of HTTP headers for trace context

propagation. The Envoy proxy sidecar tracks these headers and forwards them to Jaeger for

storage and analysis. A service needs to collect and propagate the following headers from the

incoming request to any outgoing requests:

• x-request-id

• x-b3-traceid

• x-b3-spanid

• x-b3-parentspanid

• x-b3-sampled

• x-b3-flags

• x-ot-span-context

Enabling Distributed Tracing in Quarkus Applications

Envoy proxies are configured by default to propagate tracing related headers for traffic flowing

into the service mesh. You must explicitly enable tracing in your applications to generate traces

and spans and to propagate context information.

Enabling tracing for Quarkus based applications is very simple. Quarkus supports tracing with

minimum source code changes.

40 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

For example, to enable tracing in applications based on the Quarkus framework, the following

steps are required:

• Include the quarkus-smallrye-opentracing dependency in the project Maven pom.xml
file. This dependency implements the OpenTracing API, an open standard based on Jaeger for

distributed tracing.

<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

• Enable tracing related properties in the Quarkus application.properties file. This file is

used to externalize configuration for Quarkus applications.

quarkus.jaeger.service-name=myservice 
quarkus.jaeger.sampler-type=const 
quarkus.jaeger.sampler-param=1 
quarkus.jaeger.endpoint=http://jaeger-collector.istio-system.svc:14268/api/
traces 
quarkus.jaeger.propagation=b3 
quarkus.jaeger.reporter-log-spans=true 

A unique service name to identify traces and spans sent to Jaeger. You will be able to

identify traces and spans using this name in the Jaeger web console.

Indicates the rate at which traces and spans should be collected from this application.

Options include; const (collect all samples), probabilistic (random sampling),

ratelimiting (collect samples at a configurable rate per second), and remote (control

sampling from a central Jaeger backend). Refer to https://www.jaegertracing.io/docs/1.17/

sampling/ for more details.

Indicates the percentage of requests for which spans should be collected. It should value

between 0 and 1. For const sampling type 0 indicates no sample collection, while a 1

indicates collecting all samples (100%). This value should not be set to 1 in production

environments with a large number of requests. This is usually set to 1 in development and

QA environments to debug and troubleshoot inter-service latency and performance issues.

The URL of the Jaeger collector. In Red Hat OpenShift Service Mesh, the Jaeger collector

URL is http://jaeger-collector.istio-system.svc:14268/api/traces.

Indicates Jaeger to propagate all x-b3-* related headers. This is required to construct the

parent-child relationships in the call graph. Failure to set this will not show the parent-child

relationships between spans in the Jaeger web console.

Log span information for all incoming and outgoing traffic from the application.

• The first two steps are enough to enable tracing for all classes and methods in the application.

However, for more complex applications you can control which classes and methods must be

enabled for tracing.

Annotate classes with @Traced annotation to enable tracing for the entire class. You can also

add this annotation at a method level to enable tracing for specific methods and exclude the

rest.

DO328-SM1.1-en-2-20200910 41

https://www.jaegertracing.io/docs/1.17/sampling/
https://www.jaegertracing.io/docs/1.17/sampling/


Chapter 3 | Observing a Service Mesh

Note

The above steps are enough to enable distributed tracing for Quarkus applications.

All incoming and outgoing traffic is traced and the context propagation of relevant

headers is taken care of automatically.

To customize the tracing (for example, add more contextual information to traces

and spans using tags and other metadata), you can use the OpenTracing API. Refer

to the OpenTracing documentation at https://opentracing.io/guides/java/ for more

details.

Enabling Distributed Tracing in Node.js Applications

To enable distributed tracing for Node.js based applications, you should use the jaeger-client
and opentracing NPM packages.

You must add code to your application to start traces and spans. You must manually control the

context propagation by manipulating the HTTP headers of incoming and outgoing traffic in an

application. Parent child relationships are explicitly controlled by the developer.

To enable distributed tracing for Node.js applications, do the following:

• Install the jaeger-client and opentracing NPM packages.

[user@demo ~]$ npm install --save \
> jaeger-client opentracing

• Import the Jaeger client library.

const initJaegerTracer = require("jaeger-client").initTracer;

• Configure and initialize the Jaeger tracer

const config = {
  serviceName: myservice,
  sampler: {
    type: "const",
    param: 1,
  },
  reporter: {
    collectorEndpoint: 'http://jaeger-collector.istio-system.svc:14268/api/
traces',
    logSpans: true
  },
};
const options = { } ;
const tracer = initJaegerTracer(config, options);

42 DO328-SM1.1-en-2-20200910

https://opentracing.io/guides/java/


Chapter 3 | Observing a Service Mesh

Note

The configuration options are similar to the ones outlined in the previous section

about configuring Quarkus applications using the application.properties file.

Refer to the call out list in the previous section for details about the configuration

parameters.

• Start a new span, for example at the start of a function. Pass in a suitable string identifier as

argument. The Jaeger web console displays spans and will show the corresponding identifier for

each span.

const span = tracer.startSpan("mymethod");

You can add contextual information to this span using the setTag() method. You can pass

any relevant object as an argument, which will help you troubleshoot issues as the request flows

across services in the mesh. You can add multiple tags to a span.

span.setTag("mymethod", "some-message");

• Once the function finishes executing, invoke the span.finish() function to end the span.

span.finish();

Context Propagation and Child Spans

When you create a new span using the startSpan() method, it creates a new root span by

default. A request can call multiple services in a certain order. You must link these different calls

using parent child relationships so that the Jaeger web console can display the appropriate service

call graph, and help you trace the call flow.

To declare a span as a child of another span, add the childOf property with a value of the parent

span to the startSpan() method.

const childSpan = tracer.startSpan("another-method", { childOf: span });

For any non-trivial Node.js application, with code organized in modules spread across multiple

files, a side effect of the above code is the need to keep passing the span object around. This is

required to keep building the call flow and maintain parent child relationships between spans.

A better approach is to create a context object and encapsulate the span inside it. You can then

pass the context object around, and use it to store other application related data as well.

const ctx = { span };
ctx = {
  span: tracer.startSpan("mymethod", { childOf: ctx.span }),
};

Note that context propagation as outlined previously will work only between method calls running

in the same Node.js runtime process.

DO328-SM1.1-en-2-20200910 43



Chapter 3 | Observing a Service Mesh

Passing contextual information between completely isolated microservices connected by a

network brings more challenges. The OpenTracing API provides some helper methods to solve this

problem.

You can inject the contextual information using HTTP headers to outgoing traffic, and then extract

contextual information from requests coming into the application. The following code illustrates

this:

const { Tags, FORMAT_HTTP_HEADERS } = require('opentracing');
...code omitted...

const method = 'GET';
const headers = {};
const url = "some-remote-URL"

span.setTag(Tags.HTTP_URL, url);
span.setTag(Tags.HTTP_METHOD, method);
span.setTag(Tags.SPAN_KIND, Tags.SPAN_KIND_RPC_CLIENT);

tracer.inject(span, FORMAT_HTTP_HEADERS, headers);

You can then invoke other remote services, for example, using the NPM request-promise
module and pass on the HTTP headers.

request({url, method, headers})
            .then( data => {
                span.finish();
                return data;
            }, e => {
                span.finish();
                throw e;
            });

For incoming traffic, you can extract the contextual information using the tracer.extract()
method as per the following.

const { Tags, FORMAT_HTTP_HEADERS } = require('opentracing');
...code omitted...

const parentSpanContext = tracer.extract(FORMAT_HTTP_HEADERS, req.headers);
const span = tracer.startSpan('another-method', {
        childOf: parentSpanContext,
        tags: {[Tags.SPAN_KIND]: Tags.SPAN_KIND_RPC_SERVER}
    });

With this approach, trace, span and context information is maintained across service calls in a

service mesh.

44 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Note

You can also configure Jaeger using environment variables. Support for

configuration through environment variables differs based on the client

implementation. See https://www.jaegertracing.io/docs/1.17/client-features/ for

more details.

You can declare these environment variables in Dockerfiles, but it is recommended

to use configuration maps or secrets to inject these variables to comply with the 12-

factor methodology.

Viewing Traces and Spans Using the Jaeger Web Console

The Jaeger web console is installed by default with Red Hat OpenShift Service Mesh and is tightly

integrated with the OpenShift web console. To view details about traces and spans in the Jaeger

console, do the following:

1. In the OpenShift web console, navigate to Networking → Routes and search for the jaeger
route, which is the URL listed in the Location column.

2. Log in using the same user name and password that is used to access the OpenShift web

console. You should see the Jaeger web console home page.

3. In the left pane of the Jaeger console, from the Service menu, select your application and

click Find Traces at the bottom of the pane. A list of traces gathered for the application are

displayed.

Figure 3.4: List of Traces

4. Click one of the traces in the list to open a detailed view of that trace.

DO328-SM1.1-en-2-20200910 45

https://www.jaegertracing.io/docs/1.17/client-features/


Chapter 3 | Observing a Service Mesh

Figure 3.5: Trace Details

 

References

For more information, refer to the Understanding Jaeger section in the Red Hat

Service Mesh Guide at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger

Istio Distributed Tracing

https://archive.istio.io/v1.4/docs/tasks/observability/distributed-tracing/

46 DO328-SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger
https://archive.istio.io/v1.4/docs/tasks/observability/distributed-tracing/


Chapter 3 | Observing a Service Mesh

Guided Exercise

Tracing Services with Jaeger

In this exercise, you will deploy two microservices on OpenShift Service Mesh, and trace the

service communication using Jaeger.

• servicea: written in JavaScript using the Node.js runtime.

• serviceb: written in Java using the Quarkus framework.

Traffic enters the service mesh through servicea. servicea calls serviceb and returns a

response.

You will do the following in this exercise:

1. Enable distributed tracing in both microservices using Jaeger.

2. Build container images locally for both microservices using podman.

3. Push the built container images to the Quay.io public container registry.

4. Deploy both microservices to the service mesh, and trace the service calls between the

two microservices.

Outcomes
You should be able to deploy applications to OpenShift Service Mesh, and trace the path of

the service calls for requests entering the service mesh.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

• An account with the Quay.io container registry, and podman installed locally on your

workstation.

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise:

[student@workstation ~]$ lab observe-jaeger start

 1. Clone the source code for the microservices from GitHub. Inspect the source code for both

microservices.

Use a text editor like VSCodium, which supports syntax highlighting for editing JavaScript

and Java source files.

1.1. Open a new terminal window on your workstation. From the home directory, clone the

source code for the microservices from GitHub.

DO328-SM1.1-en-2-20200910 47



Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ git clone https://github.com/RedHatTraining/DO328-apps
...output omitted...
Cloning into 'DO328-apps'...
...output omitted...

1.2. Copy the contents of the /home/student/DO328-apps/tracing-ge folder from

your local Git repository to the /home/student/DO328/labs/observe-jaeger
folder.

[student@workstation ~]$ cp -Rv ~/DO328-apps/tracing-ge/* \
> ~/DO328/labs/observe-jaeger/

You should now see two folders called servicea and serviceb in the /home/
student/DO328/labs/observe-jaeger/ folder.

You should also see shell scripts and service mesh related YAML files in the same

folder. These were created by the lab start script.

1.3. Review the source code for servicea in the /home/student/DO328/labs/
observe-jaeger/servicea/index.js file.

This microservice exposes a single HTTP GET endpoint, which calls serviceb and

returns a response to the client.

...output omitted...
server.get("/", async (request) => {
    const { rootSpan } = request;
    const msg = await serviceb.callServiceB(rootSpan);

    return 'Hello from ServiceA!.\nResponse from ServiceB => ' + msg + '\n';
});
...output omitted...

1.4. Review the source code for serviceb in the /home/student/DO328/labs/
observe-jaeger/serviceb/src/main/java/com/redhat/training/
serviceb/ServiceB.java file.

This microservice contains a single HTTP GET endpoint that returns a string.

...output omitted...
String message = "Hello from ServiceB!";

@GET
@Produces(MediaType.TEXT_PLAIN)
public String sayHello() {
  return message;
}
...output omitted...

 2. Enable tracing for servicea using the Jaeger and OpenTracing libraries.

2.1. Navigate to the /home/student/DO328/labs/observe-jaeger/servicea
folder on the command line terminal. All references to file paths in this step are

relative to this folder.

48 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ cd ~/DO328/labs/observe-jaeger/servicea

2.2. Inspect the package.json file, which declares all the NPM packages required for

running this microservice.

Install the packages declared in package.json, followed by installing the

opentracing and jaeger-client dependencies.

[student@workstation servicea]$ npm install
[student@workstation servicea]$ npm install --save \
> jaeger-client@3.17.2 opentracing@0.14.4
...output omitted...
+ opentracing@0.14.4
+ jaeger-client@3.17.2
...output omitted...

2.3. Edit the index.js file.

Add the default value for the TRACE_COLLECTOR_URL variable. This should be the

URL of the Jaeger collector that is running in the service mesh.

const TRACE_COLLECTOR_URL = ...output omitted... || "http://jaeger-
collector.istio-system.svc:14268/api/traces";

Note how the collector URL is used to initialize the tracer.

const tracer = Tracer.create("servicea", TRACE_COLLECTOR_URL, logger);

The service name servicea is also passed to the Tracer.create() method,

which indicates the starting point of the trace.

2.4. Edit the Tracer.js file, which configures the tracer properties for this microservice.

Add the parameters for the config and reporter properties in the create
function as follows:

  const config = {
    serviceName: serviceName,
    sampler: {
      type: "const",
      param: 1,
    },
    reporter: {
      logSpans: true,
      collectorEndpoint
    }
  };

You can also copy the code from the solution file /home/student/DO328/
solutions/observe-jaeger/servicea/Tracer.js.

Note the use of HTTP headers to propagate the trace context using the

tracer.registerInjector() and tracer.registerExtractor() methods.

DO328-SM1.1-en-2-20200910 49



Chapter 3 | Observing a Service Mesh

tracer.registerInjector(FORMAT_HTTP_HEADERS, codec);
tracer.registerExtractor(FORMAT_HTTP_HEADERS, codec);

2.5. Edit the HttpServer.js file. Note the callback methods, traceRequest and

traceResponse registered as hooks to the server. These methods are called after

every HTTP request to the microservice, and before sending the response to the

client respectively.

Edit the traceRequest method and add code to create a new root span with a

unique string id. Add Opentracing tags to the span to identify the original URL of the

request and the HTTP method (GET, POST, PUT, DELETE and more).

const span = tracer.startSpan(`${method}:servicea`);
span.setTag(Opentracing.Tags.HTTP_URL, originalUrl);
span.setTag(Opentracing.Tags.HTTP_METHOD, method);

You can also copy the code from the solution file /home/student/DO328/
solutions/observe-jaeger/servicea/HttpServer.js.

2.6. Briefly review the Services/ServiceB.js file. Do not make any changes to

this file. The get() method is invoked on every request to the root URL of the

microservice ("/").

The implementation is inherited from the parent RestClient class. Edit the

Services/RestClient.js file.

Create a new span for the get() method, which is a child span of the root span. Add

Tags to indicate which endpoint is being called, as well as the caller URL, the HTTP

method, and the type of span.

const span = this.tracer.startSpan(spanName, { childOf: rootSpan.context() });
span.setTag(Tags.PEER_HOSTNAME, this.baseURL);
span.setTag(Tags.HTTP_URL, url);
span.setTag(Tags.HTTP_METHOD, "GET");
span.setTag(Tags.SPAN_KIND, Tags.SPAN_KIND_RPC_CLIENT);

Inject the span data as HTTP headers to propagate the span context. Add the

following code to the _buildAxiosRequestConfig() method.

const headers = {};
this.tracer.inject(span, FORMAT_HTTP_HEADERS, headers);
return { headers };

You can also copy the code from the solution file /home/student/DO328/
solutions/observe-jaeger/servicea/Services/RestClient.js.

2.7. Save your changes. To ensure that there are no syntax errors, run npm start and

ensure that the microservice starts without any errors.

If there are errors, then compare your changes with the solution files in the /home/
student/DO328/solutions/observe-jaeger/servicea folder.

50 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

[student@workstation servicea]$ npm start

> servicea@1.0.0 start ...output omitted...
> node index.js

...output omitted...: "Initializing Jaeger Tracer ...output omitted...

...output omitted...: "Server listening at http://0.0.0.0:8080"}

Press Ctrl+C to stop the server.

 3. Enable tracing for serviceb using the quarkus-smallrye-opentracing library.

3.1. Change to the /home/student/DO328/labs/observe-jaeger/serviceb
folder. All references to file paths in this step are relative to this folder.

[student@workstation ~]$ cd ~/DO328/labs/observe-jaeger/serviceb

3.2. Inspect the maven pom.xml file, which declares the dependencies for this

microservice.

Include the quarkus-smallrye-opentracing dependency for enabling tracing.

<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

You can also copy the code from the solution file /home/student/DO328/
solutions/observe-jaeger/serviceb/pom.xml.

3.3. Briefly review the code in the src/main/java/com/redhat/training/
serviceb/ServiceB.java file. Do not make any changes to this file.

Tracing is automatically enabled by adding the quarkus-smallrye-opentracing
maven dependency, and then enabling some jaeger related environment variables in

the Quarkus application.properties file.

3.4. Edit the src/main/resources/application.properties file and add the

jaeger related properties.

quarkus.jaeger.service-name=serviceb
quarkus.jaeger.sampler-type=const
quarkus.jaeger.sampler-param=1
quarkus.log.console.format=%d{HH:mm:ss} %-5p traceId=%X{traceId}, spanId=
%X{spanId}, sampled=%X{sampled} [%c{2.}] (%t) %s%e%n
quarkus.jaeger.endpoint=http://jaeger-collector.istio-system.svc:14268/api/traces
quarkus.jaeger.propagation=b3
quarkus.jaeger.reporter-log-spans=true

You can also copy the code from the solution file /home/student/DO328/
solutions/observe-jaeger/serviceb/src/main/resources/
application.properties.

3.5. Save your changes. To ensure that there are no syntax errors, run mvn clean
package and ensure that a fat JAR is created in the target folder.

DO328-SM1.1-en-2-20200910 51



Chapter 3 | Observing a Service Mesh

[student@workstation serviceb]$ mvn clean package
...output omitted...
[INFO] Building serviceb 1.0.0
...output omitted...
...output omitted... Building fat jar: observe-jaeger/serviceb/target/
serviceb-1.0.0-runner.jar
[INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus augmentation completed in
 2440ms
...output omitted...
[INFO] BUILD SUCCESS
...output omitted...

3.6. Start the microservice and verify that there are no errors.

[student@workstation serviceb]$ java -jar target/serviceb-1.0.0-runner.jar
...output omitted... (powered by Quarkus 1.3.2.Final) started in 0.747s.
Listening on: http://0.0.0.0:8080
...output omitted...

Verify that there are no errors. If there are errors, then compare your changes with

the solution files in the /home/student/DO328/solutions/observe-jaeger/
serviceb folder. Press Ctrl+C to stop the server.

 4. Build container images for both microservices using podman.

4.1. Load your classroom environment configuration.

Run the following command to load the environment variables:

[student@workstation serviceb]$ source /usr/local/etc/ocp4.config

4.2. Review the Dockerfile for servicea. Use Red Hat Universal Base Images (UBI)

as the base for building your container image. Do not make any changes to the

Dockerfile.

4.3. Build the container image for servicea using podman.

[student@workstation serviceb]$ cd ~/DO328/labs/observe-jaeger/servicea
[student@workstation servicea]$ podman build -t \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-servicea:1.0 .
STEP 1: FROM registry.access.redhat.com/ubi8/nodejs-12
...output omitted...
STEP 13: COMMIT quay.io/youruser/ossm-tracing-servicea:1.0

4.4. Similarly, build the container for serviceb after reviewing the Dockerfile.

[student@workstation servicea]$ cd ~/DO328/labs/observe-jaeger/serviceb
[student@workstation serviceb]$ podman build -t \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-serviceb:1.0 .
STEP 1: FROM registry.access.redhat.com/ubi8:8.1
...output omitted...
STEP 15: COMMIT quay.io/youruser/ossm-tracing-serviceb:1.0

52 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

4.5. Verify that the container images for servicea and serviceb are built successfully.

[student@workstation serverb]$ podman images
REPOSITORY                                   TAG ...output omitted...
quay.io/youruser/ossm-tracing-serviceb       1.0 ...output omitted...
quay.io/youruser/ossm-tracing-servicea       1.0 ...output omitted...
...output omitted...

 5. Create new public image repositories in Quay.io to store the newly built container images.

Push the container images to Quay.io.

5.1. Create two new public container image repositories called ossm-tracing-
servicea, and ossm-tracing-serviceb in Quay.io. Refer to the instructions in

Creating a Quay Account for creating public container image repositories.

Warning

If you skip this step and push the container images without creating public

repositories, then the podman push commands create private container image

repositories by default.

5.2. Login to your Quay.io account using podman.

[student@workstation serverb]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io

You will be prompted for your Quay.io password.

5.3. Push the container image for servicea to Quay.io.

[student@workstation serverb]$ podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-servicea:1.0
...output omitted...
Writing manifest to image destination
Storing signatures

5.4. Push the container image for serviceb to Quay.io.

[student@workstation serverb]$ podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-serviceb:1.0
...output omitted...
Writing manifest to image destination
Storing signatures

 6. Create the tracing project and and then add it to the ServiceMeshMemberRoll
resource.

6.1. Log in to OpenShift as the developer user.

[student@workstation serverb]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

DO328-SM1.1-en-2-20200910 53



Chapter 3 | Observing a Service Mesh

6.2. Create the tracing project.

[student@workstation serverb]$ oc new-project tracing
Now using project "tracing" on server
"https://api.cluster.domain.example.com:6443".
...output omitted...

6.3. Add the tracing project to the list of members in the ServiceMeshMemberRoll
resource. Edit the default ServiceMeshMemberRoll resource in the OpenShift web

console and add the tracing project to the member list.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
...output omitted...
spec:
  members:
  - tracing
...output omitted...

You can also run the add-project-to-smmr.sh script in the /home/student/
DO328/labs/observe-jaeger folder to add the metrics project to the list of

members in the ServiceMeshMemberRoll resource.

[student@workstation serverb]$ cd /home/student/DO328/labs/observe-jaeger
[student@workstation observe-jaeger]$ oc patch servicemeshmemberroll/default \
> -n istio-system --type=merge \
> -p '{"spec": {"members": ["tracing"]}}'
servicemeshmemberroll.maistra.io/default patched

Note

You can also use the oc edit smmr default -n istio-system command

and add the tracing project to the member list.

 7. Deploy the microservices to OpenShift service mesh.

7.1. Edit the *-deploy.yaml files in the /home/student/DO328/labs/observe-
jaeger folder, which describes the necessary resources to deploy both applications.

The deployment files have the sidecar.istio.io/inject: "true" annotation

included to inject the Envoy proxy after deployment.

7.2. Edit the /home/student/DO328/labs/observe-jaeger/servicea-
deploy.yaml file. Edit the spec.template.spec.containers.image attribute

and add the Quay.io URL of the newly built container image.

54 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

...output omitted...
spec:
  containers:
  - name: servicea
    image: quay.io/youruser/ossm-tracing-servicea:1.0
    imagePullPolicy: IfNotPresent
...output omitted...

7.3. Edit the /home/student/DO328/labs/observe-jaeger/serviceb-
deploy.yaml file. Add the Quay.io URL of the container image for serverb.

...output omitted...
spec:
  containers:
  - name: serviceb
    image: quay.io/youruser/ossm-tracing-serviceb:1.0
    imagePullPolicy: IfNotPresent
...output omitted...

7.4. Run the oc create command to deploy the applications.

[student@workstation observe-jaeger]$ oc create -f servicea-deploy.yaml
deployment.apps/servicea created
service/servicea created
[student@workstation observe-jaeger]$ oc create -f serviceb-deploy.yaml
deployment.apps/serviceb created
service/serviceb created

7.5. Run the oc get pods command and verify that both microservices are deployed

and in Running state.

[student@workstation observe-jaeger]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
servicea-6c9fffcc58-v699r   2/2     Running   0          10m
serviceb-78489f94bf-z4vdh   2/2     Running   0          10m

7.6. Inspect the /home/student/DO328/labs/observe-jaeger/gateway.yaml
file, which describes the ingress gateway for traffic entering the mesh.

Use the oc create command to create the ingress gateway.

[student@workstation observe-jaeger]$ oc create -f gateway.yaml
gateway.networking.istio.io/observe-jaeger-gateway created

7.7. Create a VirtualService to redirect the ingress traffic to servicea, which acts as

an entry point into the mesh.

Examine the virtual-service.yaml file, which routes the ingress traffic to

servicea.

Use the oc create command to create the virtual service.

DO328-SM1.1-en-2-20200910 55



Chapter 3 | Observing a Service Mesh

[student@workstation observe-jaeger]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/observe-jaeger-vs created

 8. Test the microservices.

8.1. Run the oc get route command to get the URL of the Istio gateway.

You can also cut and paste the full command from the get-ingress-gateway-
url.sh file.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation observe-jaeger]$ export  \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -o template --template '{{ "http://" }}{{ .spec.host }}')

8.2. Execute the curl command in combination with the GATEWAY_URL variable to

access the application.

[student@workstation observe-jaeger]$ curl ${GATEWAY_URL}/trace
Hello from ServiceA!.
Response from ServiceB => Hello from ServiceB!

 9. Visualize traces generated by the microservices using the Jaeger web console.

9.1. Run the oc get route command to gather the Jaeger web console URL. You can

also copy the commands from the get-jaeger-url.sh file.

[student@workstation observe-jaeger]$ export  \
> JAEGER_URL=$(oc get route jaeger -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

9.2. Use Firefox web browser to access the Jaeger web console.

[student@workstation observe-jaeger]$ firefox ${JAEGER_URL} &

9.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the

RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom

configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the

same file.

If you are accessing the Jaeger web console for the first time, then you will be

prompted with a page asking you to authorize service account access to your

account. Click Allow selected permissions to bring up the Jaeger web console.

56 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

9.4. Execute the curl command against the URL ${GATEWAY_URL}/trace multiple

times to generate some load and allow the microservices to send traces and span

information to Jaeger.

9.5. In the Jaeger web console, refresh the page and then select the servicea in the left

panel. Click Find Traces to retrieve the traces.

DO328-SM1.1-en-2-20200910 57



Chapter 3 | Observing a Service Mesh

9.6. You should see a number of traces displayed, corresponding to the number of

requests that you made to the service mesh.

Click any one trace and observe the spans reported by both microservices. Note how

the spans from serviceb are shown as child spans of servicea.

You can click each of the spans and note the runtime values, which have been

propagated through HTTP headers as the traffic flows from servicea to serviceb.

Expand Tags for the servicea.tracing span to see contextual span information,

which was propagated to services.

58 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Note

You will see extra *.tracing spans in the Jaeger console. These are propagated

by the Envoy proxy as it intercepts traffic bound for the services in the mesh.

 10. Return to the home directory.

[student@workstation observe-jaeger]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-jaeger finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 59



Chapter 3 | Observing a Service Mesh

Collecting Service Metrics

Objectives
After completing this section, you should be able to collect and inspect critical metrics with

Prometheus and Grafana.

Metrics and Service Level Objectives
In any system that has a large number of services, it is important to understand the different types

of metrics to gather, and then decide on a process to measure and evaluate their performance.

Each service, or a set of services with common business functionality can define their own set of

metrics that should be gathered, measured and analyzed.

A common practice is to define a set of service levels that act as a sort of contract, or agreement

between a service provider and a service consumer. Service levels can be broadly classified into

three categories:

Service Level Indicators (SLI)
An SLI is a carefully defined quantitative measure of some aspect of the level of service that

is provided. For example, a common SLI is the response time, that is, the time taken by a

service to provide a response. Other examples of SLI include error rate (percentage of

responses that were invalid), and availablity (percentage of time that the service was in a

correctly functional state).

Service Level Agreements (SLA)
An SLA is an explicit or implicit contract with your users which includes consequences of

meeting (or missing) the service level objectives (SLO) for a service. Selecting and publishing

an SLA to users sets expectations about how a service will perform. For example, a credit card

payment service for an e-commerce website will have an SLA that declares that "All payment

requests will be processed in less than 5 seconds."

Service Level Objectives (SLO)
An SLO is a threshold value, or range of values that is measured by an SLI. For example, an

E-commerce website can have an SLO that tries to render a product catalog page in 3 to 5

seconds. Another scenario could be for handling a large number of users, for example "The

payment service should be capable of handling 30,000 to 35,000 users concurrently on

weekends."

Selecting Metrics to Measure

You should carefully select a set of metrics for a service that you want to include in your SLI.

Selecting too many metrics wastes monitoring cycles and clutters up your dashboards, while

choosing too few, or the wrong metrics will impede your analysis and reduce the effectiveness of

your response to issues in the field.

Examples of types of systems, and the metrics that are relevant for measuring their performance

are as follows:

60 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

• End user facing systems/HTTP web APIs: Good candidates for SLIs are system

uptime (availability), response time (latency), and number of requests served per second

(throughput).

• Big Data/Machine Learning: SLIs such as data throughput (how many items were

processed) and end-to-end latency (how much time to process all the data) are the preferred

starting points for measurement.

• Database/Storage Systems: These kinds of systems are concerned with latency (how

quickly were items written to disk), availability, and durability (no data corruption).

These are good starting points and not a definitive list of indicators. You must analyze your service

and determine what metrics to gather, ideally a small set of core metrics are preferred over

monitoring a large number of items. Use an iterative approach to add new metrics and learn from

incidents in production.

Service Mesh Metrics (Telemetry)
Red Hat OpenShift Service Mesh gathers detailed metrics (telemetry) for all services within a

service mesh. These metrics allow developers to observe, troubleshoot, and optimize the behavior

of their applications under load. Developers are able to understand how the services communicate

and interact with each other, as well as with the service mesh control plane.

A default installation of Red Hat OpenShift Service Mesh gathers a number service metrics related

to error rates, rate of traffic, HTTP status codes of the response, and more. The service mesh also

gathers detailed metrics for its control plane. A default set of monitoring dashboards using these

metrics is automatically created and provided to developers.

Metrics from Envoy Proxies

The Envoy proxies provide a rich set of metrics about traffic passing through the proxy, both

incoming (ingress) and outgoing (egress). The proxies also provide detailed statistics about the

functioning of the proxy itself (health status and configuration).

You can customize the set of Envoy proxy metrics that will be collected for a given service mesh.

By default, only a small subset of the Envoy proxy metrics are collected. This avoids overloading

the system and reduces the CPU overhead associated with metrics collection.

The References section has a number of links that detail the metrics that are available for

monitoring the Envoy proxies.

Metrics from Application Services

Red Hat OpenShift Service Mesh provides a set of application service metrics for observing the

performance and state of incoming and outgoing service traffic.

A default installation of Red Hat OpenShift Service Mesh gathers the following service metrics:

• Request Count : The total number of requests sent to a service.

• Request Duration : The time taken for the service to provide a response.

• Request Size : The size of the body in the HTTP request.

• Response Size : The size of the body in the HTTP response.

The References section has a number of links that detail the full list of metrics that are available for

monitoring the application services.

DO328-SM1.1-en-2-20200910 61



Chapter 3 | Observing a Service Mesh

Metrics from the Service Mesh Control Plane

Each of the service mesh components (Pilot, Citadel, and Galley) also provide a set of metrics

about their health, configuration, and performance.

The References section has a number of links that detail the full list of metrics that are available for

monitoring the components of the service mesh control plane.

Introducing Prometheus and Grafana
Prometheus is an open-source systems monitoring and alerting toolkit which includes a time-

series database for storing metrics. It provides a powerful web based user interface to query and

analyze performance trends from the data it collects.

Red Hat OpenShift Service Mesh provides a default Prometheus server instance which gathers

metrics data from the Envoy proxies, the services in the service mesh, and the components in the

control plane.

Grafana is an open-source graphical visualization tool used for creating operational dashboards for

software systems.

Red Hat OpenShift Service Mesh provides a default Grafana instance with ready made

dashboards for viewing data from the Envoy proxies, the services in the service mesh, and the

components in the control plane. The Grafana instance is tightly integrated with the default

Prometheus instance in the service mesh installation and uses the data stored in Prometheus to

render the graphs in the dashboard.

Collecting Custom Application Metrics
A default Red Hat OpenShift Service Mesh instance automatically collects several useful

metrics for your application. These metrics are useful to get a high-level understanding of the

performance of the service mesh and the applications deployed on it.

However, you might sometimes need to gather custom application specific metrics and display

them in a Grafana dashboard. For example, in an E-commerce application, you might wish to

track how many items of a specific category are sold over a weekend or special holiday sale.

Another example is a financial services application that tracks the number of successful and failed

transactions of a specific type.

You must include the Prometheus client libraries in your application, and then create these custom

metrics. Each metric is categorized into a specific Prometheus metric type. The client libraries

will collect all the custom metrics and then send it to Prometheus for storage. The data stored in

Prometheus can be visualized using custom Grafana dashboards.

Prometheus Metric Types

Prometheus supports four different types of metrics:

Counter
A counter is a cumulative metric that represents a single variable whose value can only

increase, or be reset to zero on restart. For example, you can use a counter to represent the

number of errors, requests served and tasks completed.

62 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Gauge
A gauge is a metric that represents a single numerical value, which can be incremented or

decremented. For example, you can use a gauge to represent the number of processes, or the

number of concurrent users.

Histogram
A histogram samples values and counts them in configurable buckets. It also provides a sum of

all values. Histograms track the number and the sum of the values , allowing you to calculate

the average of the values.

For example, you can categorize response times in buckets (range of values) of 200

milliseconds with an upper limit of 1000 milliseconds. Prometheus collects the values and

categorizes the values in each of the buckets.

Summary
Similar to a histogram, a summary samples values. However a summary also calculates

configurable values over a sliding time window.

Histograms buckets are categorized on the Prometheus server, while summaries are

calculated on the client side (that is, the service exposing the metrics).

Note

For a more detailed explanation about the histogram and summary metric type,

refer to https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-

types/.

Creating Custom Metrics for Quarkus Applications

You can enable custom metrics for your Quarkus application by adding the quarkus-smallrye-
metrics extension.

The following are the steps to enable custom metrics for Quarkus applications:

1. Include the quarkus-smallrye-metrics dependency in your application Maven pom.xml
file for enabling metrics collection.

<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

2. Import the required metrics classes in your application from the

org.eclipse.microprofile.metrics.* package. This package has all the standard

Prometheus metric types that you can use to instrument your custom metrics.

3. Add relevant metrics for your application.

Counters can be created by adding the @Counted annotation to methods as follows:

@Counted(name = "card_transactions", description = "count of credit card
 transactions")
public void processCreditCardTransaction() {
...output omitted...

DO328-SM1.1-en-2-20200910 63

https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-types/
https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-types/


Chapter 3 | Observing a Service Mesh

Gauges can be created by adding the @Gauge annotation to methods:

@Gauge(name = "concurrent_users", description = "count of active users")
public void listActiveUsers() {
...output omitted...

You can add different types of metrics to your application. For the complete list of options,

refer to the Microprofile Metrics standard API reference at https://github.com/eclipse/

microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc.

4. By default, Quarkus makes the metrics available at the /metrics endpoint. This endpoint

combines your custom metrics along with other standard metrics for the application, such as

garbage collection information, heap size, and other system level metrics

Quarkus makes only the custom metrics available at the /metrics/application endpoint.

To see only the system level metrics, access the /metrics/base endpoint.

Creating Custom Metrics for Node.js Applications

You can add custom metrics to your Node.js application by importing the prom-client package.

The steps to add custom metrics to your Node.js applications are:

1. Install the prom-client package.

[user@demo product]$ npm install --save prom-client

2. Import the prometheus-client package and initialize it. Add a unique prefix to easily

identify the standard Node.js runtime metrics for this application. This is to help narrow down

the search in the Prometheus web console.

var prometheus = require('prom-client');
const prefix = 'myapp_';
prometheus.collectDefaultMetrics({ prefix });

Note

You can comment out the prometheus.collectDefaultMetrics() method if

you do not want Node.js runtime system metrics, such as memory usage, garbage

collection, CPU usage, and more.

3. Add code to create new Prometheus metric types for your application. Use a suitable prefix

(usually application name), and description of the custom metric to easily identify this custom

metric in the Prometheus web console.

Create a new counter as follows:

const transactions = new prometheus.Counter({
    name: 'myapp:card_transactions',
    help: 'count of credit card transactions'
});

You can then increment the counter (for example at the start of a function):

64 DO328-SM1.1-en-2-20200910

https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc
https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc


Chapter 3 | Observing a Service Mesh

transactions.inc();

Similarly, to add a gauge:

const concurrent_users = new prometheus.Gauge({
      name: 'myapp:concurrent_users',
      help: 'No of concurrent users'
});

Set the value of the gauge:

concurrent_users.set(some_value);

4. Add code to create a new HTTP GET endpoint called /metrics which will be used by

Prometheus to collect metrics for this microservice. This endpoint will then return the metrics

by calling the register object in the Prometheus client library as follows:

app.get('/metrics', function (req, res) {
    res.set('Content-Type', prometheus.register.contentType);
    res.send(prometheus.register.metrics());
})

Prometheus client libraries exist for other programming languages. Refer to the Prometheus

documentation for more details.

Enabling Prometheus Metrics Scraping

A default installation of Red Hat OpenShift Service Mesh does not collect metrics from

applications unless it is explicitly enabled in the application deployment resource file.

To enable Prometheus to scrape (collect) metrics from your application, add the following

annotations to the spec.template.metadata.annotations section in the deployment YAML

resource file:

...output omitted...
labels:
  app: myapp
annotations:
  sidecar.istio.io/inject: "true"
  prometheus.io/scrape: "true"
  prometheus.io/port: "8080"
  prometheus.io/scheme: "http"
...output omitted...

Make sure that your prometheus.io/port value matches the port number where the /
metrics endpoint is running.

Querying Service Mesh Metrics using Prometheus
To view metrics collected from the service mesh using the Prometheus web console, do the

following:

DO328-SM1.1-en-2-20200910 65



Chapter 3 | Observing a Service Mesh

1. In the OpenShift web console, navigate to Networking → Routes and search for the

prometheus route, which is the URL listed in the Location column.

2. Log in using the same user name and password that you used to access the OpenShift web

console. You should see the Prometheus web console home page.

3. In the expression editor, type istio and observe the list of metrics that are available (the

UI provides auto-completion and prompts you for a list of available metrics). You can query

custom metrics by typing the metric name that you declared in your application source code

when instrumenting the service for metrics. Once you have selected a metric, click Execute
to display the metrics collected.

4. Select insert metric at Cursor, and observe the full list of available metrics available

for querying.

Istio service metrics can be queried using the istio_* entries.

Envoy proxy metrics can be queried using the envoy_* entries.

Control plane metrics can be queried using the pilot_*, citadel_*, and galley_*
entries.

Visualizing Service Mesh Metrics using Grafana
To view the metrics dashboard for a service mesh using the Grafana web console, do the following:

1. In the OpenShift web console, navigate to Networking → Routes and search for the

grafana route, which is the URL listed in the Location column.

2. Log in using the same user name and password that you used to access the OpenShift web

console. You should see the Grafana web console home page.

3. Select Home in the top left corner and then expand the istio folder to see a list of available

dashboards.

Figure 3.12: List of Grafana Dashboards

4. Click Istio Service Dashboard to view details about your application services.

66 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Figure 3.13: Application Service Dashboard

5. Click Istio Mesh Dashboard to view the state of the overall service mesh.

Figure 3.14: Overall Service Mesh Dashboard

Creating Custom Grafana Dashboards

You can create your own custom Grafana dashboards and visualize custom metrics from your

application. To create a custom dashboard, do the following:

1. Click the plus (+) icon in the left navigation panel in Grafana, and click Dashboard to create a

new dashboard.

2. A dashboard consists of one or more panels. A panel can contain one or more metrics of

different graph types (Line Graph, Metered Gauge, Bar Graph, Table, Heatmap, and more).

Click Add Query.

3. You can search for metrics in the query expression editor (Grafana will provide you with auto-

completion options) and select an option.

DO328-SM1.1-en-2-20200910 67



Chapter 3 | Observing a Service Mesh

Figure 3.15: Grafana add query

You can click Add Query to add more metrics to the panel.

4. Click the graph icon in the left navigation panel to select different types of visual

representation for the metrics. Click Visualization to select a graph type.

Figure 3.16: Grafana select graph type

Click the gear icon in the left navigation panel to open the General page, and provide a

suitable name for the panel in the Title field.

5. Click the left arrow icon in the top left corner (next to New dashboard) to go back to the

dashboard page. You should see the panels you added to the dashboard with the selected

graph types.

6. Click Save dashboard (floppy disk icon) in the top navigation panel to save the dashboard.

Provide a suitable name for your dashboard and click Save.

68 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

 

References

Service Level Objectives

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Prometheus

https://prometheus.io

Grafana

https://grafana.com/

Service Mesh Metrics for Envoy proxy, services and Control Plane

https://archive.istio.io/v1.4/docs/concepts/observability/#metrics

Querying Service Mesh Metrics using Prometheus

https://maistra.io/docs/monitoring_and_tracing/prometheus/

Visualizing Service Mesh Metrics using Grafana

https://maistra.io/docs/monitoring_and_tracing/grafana/

Prometheus client library for Node.js

https://www.npmjs.com/package/prom-client

Prometheus client library for Node.js

https://www.npmjs.com/package/prom-client

Using OpenTracing in Quarkus

https://quarkus.io/guides/opentracing

Types of Prometheus metrics

https://tomgregory.com/the-four-types-of-prometheus-metrics/

DO328-SM1.1-en-2-20200910 69

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://prometheus.io
https://grafana.com/
https://archive.istio.io/v1.4/docs/concepts/observability/#metrics
https://maistra.io/docs/monitoring_and_tracing/prometheus/
https://maistra.io/docs/monitoring_and_tracing/grafana/
https://www.npmjs.com/package/prom-client
https://www.npmjs.com/package/prom-client
https://quarkus.io/guides/opentracing
https://tomgregory.com/the-four-types-of-prometheus-metrics/


Chapter 3 | Observing a Service Mesh

Guided Exercise

Collecting Service Metrics

In this exercise, you will deploy two microservices on OpenShift Service Mesh, and collect

and inspect critical metrics with Prometheus and Grafana.

You will deploy two microservices in this exercise for a fictional online shopping store:

• product: written in JavaScript using the Node.js runtime. This service renders product

details available for sale in the store.

• order: written in Java using the Quarkus framework. This service handles orders placed

by customers.

You will do the following in this exercise:

1. Enable standard and custom metrics collection in both microservices. Metrics data is

sent to the Prometheus instance running in the service mesh.

2. Build container images locally for both microservices using podman.

3. Push the built container images to the Quay.io public container registry.

4. Deploy both microservices to the service mesh, and view metrics data using the

Prometheus and Grafana web console.

Outcomes
You should be able to deploy applications to OpenShift Service Mesh, and view custom

metrics data using Prometheus and Grafana.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

• An account with the Quay.io container registry, and podman installed locally on your

workstation.

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise:

[student@workstation ~]$ lab observe-metrics start

 1. If you have not cloned the source code from the DO328-apps GitHub repository in a

previous exercise, do so now using the git clone command. Inspect the source code for

both microservices in the metrics-ge folder.

70 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Use a text editor like VSCodium that supports syntax highlighting for editing JavaScript

and Java source files.

1.1. Open a new terminal window on your workstation. From the home directory, clone the

source code for the microservices from GitHub.

[student@workstation ~]$ git clone https://github.com/RedHatTraining/DO328-apps
...output omitted...
Cloning into 'DO328-apps'...
...output omitted...

1.2. Copy the contents of the /home/student/DO328-apps/metrics-ge folder from

your local Git repository to the /home/student/DO328/labs/observe-metrics
folder.

[student@workstation ~]$ cp -Rv ~/DO328-apps/metrics-ge/* \
> ~/DO328/labs/observe-metrics/

You should now see two folders called order and product in the /home/student/
DO328/labs/observe-metrics/ folder.

You should also see shell scripts and service mesh related YAML files in the same

folder. These were created by the lab start script.

1.3. Review the source code for the product microservice in the /home/student/
DO328/labs/observe-metrics/product/server.js file.

This microservice exposes an HTTP GET endpoint called /spl50 that renders a 50%

discount offer page to customers. For the sake of simplicity, this just renders a simple

string that enables us to test invoking the endpoint.

1.4. Review the source code for the order in the /home/student/DO328/labs/
observe-metrics/order/src/main/java/com/redhat/training/order/
OrderService.java file.

This microservice has two HTTP GET endpoints. The /order endpoint handles

orders that are placed after a customer views the special offer page (rendered by

the product microservice). A randomly generated order id is sent to the client as

response.

The /rating endpoint simulates customers submitting feedback about the order

process. For the sake of simplicity, the rating is generated randomly (a number

between 1 and 5).

Note

Code for communication between the product and order service is not

implemented to keep the code simple. The focus for this exercise is to learn how to

generate custom metrics for the microservices.

 2. Add code to the product microservice to enable the collection of custom metrics.

You have been asked to collect the following metrics for this microservice:

1. Response time to render the response for the /spl50 endpoint. Consistently low

response times for a large majority of customers is very important for the store. The

operations team wants to track the average response time over a set period of time.

DO328-SM1.1-en-2-20200910 71



Chapter 3 | Observing a Service Mesh

2. Page view count for the /spl50 endpoint. The sales team would like to see data about

the number of people who viewed the offer page, and then went on to place the order.

2.1. Navigate to the /home/student/DO328/labs/observe-metrics/product
folder on the command line terminal. All references to file paths in this step are

relative to this folder.

[student@workstation ~]$ cd ~/DO328/labs/observe-metrics/product

2.2. Inspect the package.json file which declares all the NPM packages required for

running this microservice.

Install the NPM prom-client dependency which provides the Prometheus client

library.

[student@workstation product]$ npm install --save \
> prom-client@12.0.0
...output omitted...
+ prom-client@12.0.0
...output omitted...

2.3. Edit the server.js file. The complete source code changes for this file can be

copied from the /home/student/DO328/solutions/observe-metrics/
product/server.js file.

Import the prometheus-client package and initialize it. Add a unique prefix

called product_svc to easily identify the standard Node.js runtime metrics for this

application in the Prometheus web console.

...output omitted...
const express = require('express');
var prometheus = require('prom-client');
const prefix = 'product_svc_';
prometheus.collectDefaultMetrics({ prefix });

2.4. Add code to create a new Prometheus gauge type for tracking response time. Note

the use of the service name as a prefix to easily identify this custom metric in the

Prometheus web console.

...output omitted...
app.listen(8080, function () {
    console.log('product-svc started on port 8080');
})

const responseTime = new prometheus.Gauge({
    name: 'product_svc:spl50_response_time',
    help: 'Time take in seconds to render the 50% special offer page'
});
...output omitted...

2.5. Add code to create a new Prometheus counter type for tracking the page view count.

72 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

...output omitted...
  app.listen(8080, function () {
      console.log('product-svc started on port 8080');
  })

  const responseTime = new prometheus.Gauge({
      name: 'product_svc:spl50_response_time',
      help: 'Time take in seconds to render the 50% special offer page'
  });

  const page_views = new prometheus.Counter({
    name: 'product_svc:spl50_page_view_count',
    help: 'No of page views for the 50% special offer page'
  });
  ...output omitted...

2.6. Edit the code for the /spl50 route handler.

Start the timer which measures the response time as soon as the function begins to

execute. Increment the page view counter.

...output omitted...
app.get('/spl50', async function (req, res) {
    responseTime.setToCurrentTime();
    const end = responseTime.startTimer();
    page_views.inc();
...output omitted...

2.7. Before sending the response to the client, end the timer which you started at the

beginning of the function (after the sleep() call).

...output omitted...
await sleep(Math.floor(Math.random() * 200) + 1);
end();
res.send(view_msg);
...output omitted...

2.8. Add code to create a new /metrics endpoint which will be used by Prometheus to

collect metrics for this microservice.

...output omitted...
app.get('/metrics', function (req, res) {
    res.set('Content-Type', prometheus.register.contentType);
    res.send(prometheus.register.metrics());
})

2.9. Save your changes. To ensure that there are no syntax errors, run the code using the

Node.js runtime, and ensure that the microservice starts without any errors.

If there are errors, then compare your changes with the solution files in the /home/
student/DO328/solutions/observe-metrics/product folder.

DO328-SM1.1-en-2-20200910 73



Chapter 3 | Observing a Service Mesh

[student@workstation product]$ npm install
...output omitted...
[student@workstation product]$ node server.js
product-svc started on port 8080

Press Ctrl+C to stop the server.

 3. Add code to the order microservice to enable the collection of custom metrics.

You have been asked to collect the following metrics for this microservice:

1. Response time to process an order.

2. Count of orders placed after viewing the special offer page. The sales team would like

to see data about the number of people who placed an order.

3. The rate at which orders can be processed. The operations team would like to

understand the average rate of orders that can be processed for certain time intervals.

This data will be used for planning the scalability and capacity estimation for the

system.

4. Satisfaction rating. The sales team would like to collect the satisfaction rating data

provided by customers after they place an order.

3.1. Change to the /home/student/DO328/labs/observe-metrics/order folder.

All references to file paths in this step are relative to this folder.

[student@workstation product]$ cd ~/DO328/labs/observe-metrics/order

3.2. Inspect the maven pom.xml file which declares the dependencies for this

microservice.

Include the quarkus-smallrye-metrics dependency for enabling metrics

collection. Add this dependency below the quarkus-smallrye-health
dependency.

You can also copy the code from the solution file at /home/student/DO328/
solutions/observe-metrics/order/pom.xml.

...output omitted...
<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>
...output omitted...

3.3. Edit the src/main/java/com/redhat/training/order/
OrderService.java file. The complete source code changes for this file can be

copied from the /home/student/DO328/solutions/observe-metrics/
order/src/main/java/com/redhat/training/order/OrderService.java
file.

Edit the annotations for the processOrder() method. Add a counter that tracks

the number of orders placed.

74 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

...output omitted...
@GET
@Path("/order")
@Counted(name = "order_svc:spl50_orders_placed",
  description = "count of spl50 orders placed")
...output omitted...
public String processOrder() {
...output omitted...

3.4. Add a timer to track the response time for processing an order.

...output omitted...
@Counted(name = "order_svc:spl50_orders_placed", description = "count of spl50
 orders placed")
@SimplyTimed(name = "order_svc:spl50_order_process_time",
           description = "A measure of how long it takes to process an order",
           unit = MetricUnits.MILLISECONDS)
...output omitted...

3.5. Add a Metered metric to track the rate of order processing.

...output omitted...
@Metered(name = "order_svc:orders_processed_rate",
         unit = MetricUnits.MINUTES,
         description = "Rate at which orders are placed",
        absolute = true)
...output omitted...

The final processOrder() function should look like the following:

...output omitted...
@GET
@Path("/order")
@Counted(name = "order_svc:spl50_orders_placed",
 description = "count of spl50 orders placed")
@SimplyTimed(name = "order_svc:spl50_order_process_time",
 description = "A measure of how long it takes to process an order",
 unit = MetricUnits.MILLISECONDS)
@Metered(name = "order_svc:orders_processed_rate",
   unit = MetricUnits.MINUTES,
   description = "Rate at which orders are placed",
   absolute = true)
@Produces(MediaType.TEXT_PLAIN)
public String processOrder() {
...output omitted...

3.6. Add a gauge type metric to the generateRandomRating() method to capture the

rating for the order.

DO328-SM1.1-en-2-20200910 75



Chapter 3 | Observing a Service Mesh

...output omitted...
  @Gauge(name = "order_svc:spl50_order_process_rating",
  unit = MetricUnits.NONE,
  description = "Overall customer rating for the order process")
  private Integer generateRandomRating() {
...output omitted...

3.7. Save your changes. To ensure that there are no syntax errors, run mvn clean
package and ensure that a fat JAR is created in the target folder.

[student@workstation order]$ mvn clean package
...output omitted...
[INFO] Building order 1.0.0
...output omitted...
...output omitted... Building fat jar: observe-metrics/order/target/order-1.0.0-
runner.jar
[INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus augmentation completed in
 2440ms
...output omitted...
[INFO] BUILD SUCCESS
...output omitted...

3.8. Start the microservice and verify that there are no errors.

[student@workstation order]$ java -jar target/order-1.0.0-runner.jar
...output omitted... (powered by Quarkus 1.3.2.Final) started in 0.747s.
Listening on: http://0.0.0.0:8080
...output omitted...

Verify that there are no errors. If there are errors, compare your changes with the

solution files in /home/student/DO328/solutions/observe-metrics/order
folder. Press Ctrl+C to stop the server.

 4. Build container images for both microservices using podman.

4.1. Load your classroom environment configuration.

Run the following command to load the environment variables:

[student@workstation order]$ source /usr/local/etc/ocp4.config

4.2. Briefly review the Dockerfile for the product microservice. You will use Red Hat

Universal Base Images (UBI) as the base for building your container image. Build the

container image using podman.

[student@workstation order]$ cd ~/DO328/labs/observe-metrics/product
[student@workstation product]$ podman build -t \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-product:1.0 .
STEP 1: FROM registry.access.redhat.com/ubi8/nodejs-12:latest
...output omitted...
STEP 13: COMMIT quay.io/youruser/ossm-metrics-product:1.0

76 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

4.3. Build the container for the order microservice after reviewing the Dockerfile.

[student@workstation product]$ cd ~/DO328/labs/observe-metrics/order
[student@workstation order]$ podman build -t \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-order:1.0 .
STEP 1: registry.access.redhat.com/ubi8:8.1
...output omitted...
STEP 15: COMMIT quay.io/youruser/ossm-metrics-order:1.0

4.4. Verify that the container images for product and order are built successfully.

[student@workstation order]$ podman images
REPOSITORY                                TAG ...output omitted...
quay.io/youruser/ossm-metrics-product     1.0 ...output omitted...
quay.io/youruser/ossm-metrics-order       1.0 ...output omitted...
...output omitted...

 5. Create new public image repositories in Quay.io to store the newly built container images.

Push the container images to Quay.io.

5.1. Create two new public container image repositories called ossm-metrics-
product, and ossm-metrics-order in Quay.io. Refer to the instructions in

Creating a Quay Account for creating public container image repositories.

Warning

If you skip this step and push the container images without creating public

repositories, then the podman push commands will create private container image

repositories by default.

5.2. Login to your Quay.io account using podman.

[student@workstation order]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io

You will be prompted for your Quay.io password.

5.3. Push the container image for the product microservice to Quay.io.

[student@workstation order]$ podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-product:1.0
...output omitted...
Writing manifest to image destination
Storing signatures

5.4. Push the container image for the order microservice to Quay.io.

[student@workstation order]$ podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-order:1.0
...output omitted...
Writing manifest to image destination
Storing signatures

DO328-SM1.1-en-2-20200910 77



Chapter 3 | Observing a Service Mesh

 6. Create the metrics project and then add it to the ServiceMeshMemberRoll resource.

6.1. Log in to OpenShift as the developer user.

[student@workstation order]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

6.2. Create the metrics project.

[student@workstation order]$ oc new-project metrics
Now using project "metrics" on server
"https://api.cluster.domain.example.com:6443".
...output omitted...

6.3. Add the metrics project to the list of members in the ServiceMeshMemberRoll
resource.

You can also run the add-project-to-smmr.sh script in the /home/student/
DO328/labs/observe-metrics folder to add the metrics project to the list of

members in the ServiceMeshMemberRoll resource.

[student@workstation order]$ cd /home/student/DO328/labs/observe-metrics
[student@workstation observe-metrics]$ oc patch servicemeshmemberroll/default \
> -n istio-system --type=merge \
> -p '{"spec": {"members": ["metrics"]}}'
servicemeshmemberroll.maistra.io/default patched

 7. Deploy the microservices to OpenShift service mesh.

7.1. Edit the *-deploy.yaml files in the /home/student/DO328/labs/observe-
metrics folder which describes the necessary resources to deploy both applications.

The deployment files have the sidecar.istio.io/inject: "true" annotation

included to inject the Envoy proxy after deployment.

7.2. Edit the /home/student/DO328/labs/observe-metrics/product-
deploy.yaml file. Edit the spec.template.spec.containers.image attribute

and add the Quay.io URL of the container image you created in a previous step.

...output omitted...
spec:
  containers:
  - name: product
    image: quay.io/youruser/ossm-metrics-product:1.0
    imagePullPolicy: IfNotPresent
...output omitted...

Add annotations to allow the Prometheus instance to collect metrics from this

microservice. Add the following annotations below the sidecar.istio.io/
inject: "true" annotation.

78 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

...output omitted...
labels:
  app: product
  version: v1
annotations:
  sidecar.istio.io/inject: "true"
  prometheus.io/scrape: "true"
  prometheus.io/port: "8080"
  prometheus.io/scheme: "http"
...output omitted...

7.3. Edit the /home/student/DO328/labs/observe-metrics/order-
deploy.yaml file. Add the Quay.io URL of the container image for order.

...output omitted...
spec:
  containers:
  - name: order
    image: quay.io/youruser/ossm-metrics-order:1.0
    imagePullPolicy: IfNotPresent
...output omitted...

Add annotations to allow the Prometheus instance to collect metrics from this

microservice. Add the following annotations below the sidecar.istio.io/
inject: "true" annotation.

...output omitted...
labels:
  app: order
  version: v1
annotations:
  sidecar.istio.io/inject: "true"
  prometheus.io/scrape: "true"
  prometheus.io/port: "8080"
  prometheus.io/scheme: "http"
...output omitted...

7.4. Run the oc create command to deploy the applications.

[student@workstation observe-metrics]$ oc create -f product-deploy.yaml
deployment.apps/product created
service/product created
[student@workstation observe-metrics]$ oc create -f order-deploy.yaml
deployment.apps/order created
service/order created

7.5. Run the oc get pods command and verify that both microservices are deployed

and in Running state.

DO328-SM1.1-en-2-20200910 79



Chapter 3 | Observing a Service Mesh

[student@workstation observe-metrics]$ oc get pods
NAME                       READY   STATUS    RESTARTS   AGE
order-6c89b48d88-b5tqk     2/2     Running   2          1h
product-69dd4f647f-jxwmp   2/2     Running   2          1h

7.6. Inspect the /home/student/DO328/labs/observe-metrics/gateway.yaml
file which describes the ingress gateway for traffic entering the mesh.

From the command line terminal, use the oc create command to create the ingress

gateway.

[student@workstation observe-metrics]$ oc create -f gateway.yaml
gateway.networking.istio.io/observe-metrics-gateway created

7.7. Create a VirtualService to redirect the ingress traffic to the product or order
service based on the URL.

Examine the virtual-service.yaml file which routes the ingress traffic to both

services,

Use the oc create command to create the virtual service.

[student@workstation observe-metrics]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/observe-metrics-vs created

 8. Test the microservices.

8.1. Run the oc get route command to get the URL of the Istio gateway.

You can also cut and paste the full command from the get-ingress-gateway-
url.sh file.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation observe-metrics]$ export  \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -o template --template '{{ "http://" }}{{ .spec.host }}')

8.2. Execute the curl command in combination with the GATEWAY_URL variable to

access the application.

View the 50% special offer page.

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/spl50
50% off on purchase of 100 or more items!
Hurry! Limited stocks...

8.3. Place an order using the order service.

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/order
Thank you for your order! Your order id is 4789

The order id is randomly generated and may be different in your case.

8.4. Invoke the /rating endpoint for the order service.

80 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/rating
You rated the order process 3 stars. Thank you for your feedback!

The rating score is randomly generated and may be different in your case.

 9. Query metrics generated by the microservices using the Prometheus web console.

9.1. Run the oc get route command to gather the Prometheus web console URL. You

can also copy the commands from the get-prometheus-url.sh file.

[student@workstation observe-metrics]$ export  \
> PROM_URL=$(oc get route prometheus -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

9.2. USe the Firefox web browser to access the Prometheus web console.

[student@workstation observe-metrics]$ firefox ${PROM_URL} &

9.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the

RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom

configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the

same file.

If you are prompted with a page asking you to authorize service account access to

your account. Click Allow selected permissions to bring up the Prometheus web

console.

9.4. Click Status → Targets to confirm that metrics are being collected from the order
and product services.

DO328-SM1.1-en-2-20200910 81



Chapter 3 | Observing a Service Mesh

You should see the entry for both services in the kubernetes-pods section. You can

identify the services by their labels in the Labels column.

82 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Note

If you cannot see your services in the Targets page, then ensure that you added

prometheus.io/* annotations to the deployment YAML files for the services.

9.5. Click Graph in the top navigation bar in the Prometheus web console. Click the

Graph tab. An expression editor is available at the top of the page for queries using

the PromQL query language.

9.6. Start by typing product_svc:spl50 to see the metrics gathered for the product
service. Recall that you had provided this string as a prefix for all metrics created for

the product service. The expression editor should provide autocompleted options

based on the metrics it has gathered.

Select product_svc:spl50_page_view_count in the expression editor, and click

Execute. You should see a graph for the page view count metric.

Next, select product_svc:spl50_response_time in the expression editor, and

click Execute. You should see a graph for the response time metric.

9.7. Start by typing application_order_svc in the expression editor to view the

metrics for the order service. You should be presented with a list of custom, and

other standard metrics that were collected from the service.

DO328-SM1.1-en-2-20200910 83



Chapter 3 | Observing a Service Mesh

Select a metric in the expression editor, and click Execute to see a graph for the

corresponding metric.

Note

If you do not see any metric data, then use the curl command from previous steps

to invoke the /spl50, /order, and /rating endpoints a few times. You may have

to wait for a few seconds until Prometheus scrapes the metrics from the service and

displays the data in the graph.

 10. Visualize default metrics for the service mesh using the Grafana web console.

10.1. Run the oc get route command to gather the Grafana web console URL. You can

also copy the commands from the get-grafana-url.sh file.

[student@workstation observe-metrics]$ export  \
> GRAFANA_URL=$(oc get route grafana -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

10.2. Use the Firefox web browser to access the Grafana web console.

[student@workstation observe-metrics]$ firefox ${GRAFANA_URL} &

10.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the

RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom

configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the

same file.

If you are prompted with a page asking you to authorize service account access to

your account, then you must click Allow selected permissions to bring up the

Grafana web console.

10.4. Grafana is already configured to use Prometheus as a data source. The envoy proxy

sidecars are configured to automatically send metrics to Prometheus. This data is

84 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

used to populate a set of pre-created dashboards related to various aspects of the

service mesh.

Click Home in the top left corner of the Grafana web console. The service mesh

dashboards are grouped together under the istio folder. Expand the istio folder,

and select the Istio Mesh Dashboard to view high-level statistics about the overall

service mesh.

Note

If you do not see any metric data, then use the curl command from previous steps

to invoke endpoints from the product, and order services a few times. You might

have to wait for a few seconds until Prometheus scrapes the metrics from the

service and displays the data in the graph. Adjust the refresh interval (refresh icon in

the top right corner) to a higher value like 5m.

10.5. Click Istio Workload Dashboard to view details about the product and order
services. You are provided with options to filter data by namespace and workload.

Select the metrics namespace, and then select product or order to view the

statistics for the corresponding service.

Optional: Briefly select and view other provided dashboards under the istio folder.

 11. Create a custom dashboard for the shopping store. Populate it with the custom metrics

gathered from the product and order services.

11.1. Click the plus (+) icon in the left navigation menu of Grafana web console to open the

Create menu. Select Dashboard to create a new dashboard.

DO328-SM1.1-en-2-20200910 85



Chapter 3 | Observing a Service Mesh

You will see a panel added to the dashboard called New Panel.

11.2. Click Add Query in the New Panel panel.

In the query expression editor named A (next to the Metrics label), type

product_svc:spl50_page_view_count. Click the graph icon in the left menu (to

the left of the Query window) to select how you want to visualize the metric.

11.3. In the Visualization panel, expand the Visualization selection, and select Gauge.

86 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

11.4. Click General (gear icon below Visualize icon in the left menu).

Enter Product Page View Count as the Title.

Click the left arrow icon (top left corner to the left of New dashboard) to go back to

the dashboard page. You will add a panel with a metric from the order service to this

dashboard in the next step. Your dashboard should now show the page view count

metric from the product service.

11.5. Click Add panel (graph icon with yellow plus in top right) to add another panel for

displaying metrics from the order service.

Click Add Query in the New Panel, and type orders_placed. Prometheus will

auto-complete a long metric name ending with orders_placed_total. Select the

option.

Click Visualization in the left menu, and select the Graph option.

Click General in the left panel, and change the Title field to Total Orders
Placed. Click the left arrow icon in the top left corner to go back to the New
dashboard page.

11.6. Your new dashboard should now show one metric each from both services. You can

add more panels and add custom metrics from your services using the same steps

outlined previously.

Click the Save dashboard icon to save your new dashboard. Enter Shopping
Store Metrics in the Save As dialog.

DO328-SM1.1-en-2-20200910 87



Chapter 3 | Observing a Service Mesh

Your final Grafana dashboard should look like the following.

 12. Return to the home directory.

[student@workstation observe-metrics]$ cd ~
[student@workstation ~]$ 

88 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-metrics finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 89



Chapter 3 | Observing a Service Mesh

Observing Service Interactions with Kiali

Objectives
After completing this section, you should be able to monitor and visualize service interactions with

Kiali.

Introducing Kiali
Kiali is a web based console for viewing the topology of a service mesh. In a microservices

architecture, a large number of discrete services will be interacting with each other in various

complex ways to achieve business goals. Kiali helps you to understand the structure of your service

mesh and how traffic flows between services in the mesh. Kiali also provides intuitive dashboards

with dynamic animation to understand the end-to-end flow of requests as it traverses the service

mesh.

Kiali provides an interactive graphical view of the services in your service mesh in real time. It

provides visibility into features like circuit breakers, request rates, latency, and traffic flows. Kiali

also provides the ability to validate your service mesh configuration. You can configure gateways,

destination rules, virtual services, mesh policies and visually verify the impact of these changes

using Kiali.

A default installation of Red Hat OpenShift Service Mesh includes a fully configured ready to use

instance of Kiali.

Viewing Service Mesh Interactions with Kiali
The Kiali console has different views that provide insights into service mesh components from

various perspectives, such as applications, services, versions, configuration health status, and

more. The following are the steps to use Kiali:

1. In the OpenShift web console, navigate to Networking → Routes and search for the kiali
route, which is the URL listed in the Location column.

2. Log in using the same user name and password that you used to access the OpenShift

web console. You should see the Kiali web console home page, which shows the OpenShift

projects that are managed by the service mesh, and the count and overall health status of the

services in them.

3. Click a project to see the list of services and their overall health status.

90 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Figure 3.29: Service Health Status in a Project

4. Click Graph in the left menu to see a dynamic, real-time, animated representation of your

service mesh. In the Graph page, you can view the topology of your service mesh in terms of

services, workloads, and versions.

Select App graph (below the Namespace) to view the topology in terms of the services and

the application containers to which traffic is being sent. This view aggregates all versions of an

application into a single node on the graph. This view does not show the different versions of

an application container that are deployed to the mesh.

Figure 3.30: App Graph View

5. Select Service graph to view the topology in terms of only the services in the mesh.

This view shows a node for each service in your mesh, but excludes all applications and their

versions from the graph.

DO328-SM1.1-en-2-20200910 91



Chapter 3 | Observing a Service Mesh

Figure 3.31: Service Graph View

6. Select Versioned app graph to view the topology in terms of the services and the

different versions of application containers to which traffic is being sent. This view shows a

node in the graph for each version of an application, but all versions of a particular application

are grouped together. Using this view, you can easily identify the amount of traffic that is

being sent to specific versions of your application. This is useful to verify dark launches, A/B

testing and deployments involving multiple versions of applications.

Figure 3.32: Versioned App Graph View

7. Select Workload graph to view a simplified view of the service mesh topology without any

grouping.

92 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Figure 3.33: Workload Graph View

Note

Click the blue question mark icon next to the Graph page title to understand the

function of the various drop-down boxes,buttons and options available in the Graph
page. You can also click the Legend button at the bottom of the Graph page to get

details about the various colored icons in the graphs.

 

References

For more information about Kiali, refer to the Kiali chapter in the Red Hat OpenShift

Service Mesh Guide at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali

Kiali

https://kiali.io/

Visualizing your Service Mesh

https://archive.istio.io/v1.4/docs/tasks/observability/kiali/

DO328-SM1.1-en-2-20200910 93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali
https://kiali.io/
https://archive.istio.io/v1.4/docs/tasks/observability/kiali/


Chapter 3 | Observing a Service Mesh

Guided Exercise

Observing Service Interactions with Kiali

In this exercise, you will deploy an application consisting of four microservices and visualize

the service interaction and traffic flow using Kiali.

The application consists of four microservices:

• The first three microservices are czech, english and spanish, which are simple

microservices that greet the user in Czech, English and Spanish respectively.

• greet-api: An API gateway, which acts as the entry point for the application. The API

gateway calls the individual language services in different ways depending on the request.

Outcomes
You can visualize traffic flow and inter-service communication using Kiali.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

On the workstation machine, use the lab command to prepare your system for this

exercise.

[student@workstation ~]$ lab observe-kiali start

The lab command deploys the czech, english, spanish, and greet-api services

into your Red Hat OpenShift cluster. The source code is in the Git repository at https://

github.com/RedHatTraining/DO328-apps in the kiali-ge folder.

You can examine the full deployment file in the ~/DO328/labs/observe-kiali/app-
deployment.yaml file. In the app-deployment.yaml file, note that a gateway and a

virtual service is created which exposes the following endpoints:

• /greet: The API gateway calls each of the individual language services in alphabetical

order:

czech -> english -> spanish.

• /chained: The API gateway calls only the english service. The english service in turn

calls another service to form a chain as follows:

english -> spanish -> czech.

 1. Log in to OpenShift and verify that the four microservices are deployed.

94 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 3 | Observing a Service Mesh

1.1. Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Set the current project to observe-kiali:

[student@workstation ~]$ oc project observe-kiali
Now using project "observe-kiali" on server ...output omitted...

1.4. Verify that there are four pods in Running state:

[student@workstation ~]$ oc get pods
AME                          READY   STATUS    RESTARTS   AGE
czech-84c5754796-cpqfq        2/2     Running   0          49s
english-v1-684884c897-qk7j2   2/2     Running   0          49s
greet-api-7fb89fdc45-f7gs6    2/2     Running   0          49s
spanish-f8848fc89-c9slw       2/2     Running   0          49s

 2. Log in to Kiali and verify that the four microservices are in a healthy state.

2.1. Run the oc get route command to gather the Kiali web console URL. You can also

copy the commands from the get-kiali-url.sh file in the /home/student/
DO328/labs/observe-kiali folder..

[student@workstation ~]$ export  \
> KIALI_URL=$(oc get route kiali -n istio-system \
> -o template --template '{{ "http://" }}{{ .spec.host }}')

2.2. Access the Kiali web console using the firefox browser on your workstation.

Warning

The lab start script updates the ServiceMeshMemberRoll resource of the service

mesh control plane. This will cause the Kiali pod to be redeployed after some time.

Check the status of the Kiali pod by running oc get pods -n istio-system,

and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the

Kiali console, verify the Kiali pod status and log in again.

[student@workstation observe-metrics]$ firefox ${KIALI_URL} &

DO328-SM1.1-en-2-20200910 95



Chapter 3 | Observing a Service Mesh

2.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the

RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom

configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the

same file.

If you are prompted with a page asking you to authorize service account access to

your account, then click Allow selected permissions to bring up the Overview
page of the Kiali web console.

2.4. Click the green tick icon in the observe-kiali namespace to view the Applications
page.

Verify that all four microservices are healthy.

 3. Invoke the /greet end point, and visualize the traffic flow in Kiali.

96 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

3.1. Set up Kiali for traffic visualization.

Click Graph in the left navigation panel. Because there is no traffic being sent to the

microservices, the Graph page will be empty.

Click Display, and select the Traffic Animation option to enable Kiali to show you

an animated version of the traffic flow as requests come in to the service mesh.

Click No edge labels, and select the Requests percentage option to enable Kiali to

show you the percentage of requests sent to different versions of a microservice.

DO328-SM1.1-en-2-20200910 97



Chapter 3 | Observing a Service Mesh

3.2. Run the oc get route command to get the URL of the istio gateway.

You can also cut and paste the full command from the get-ingress-gateway-
url.sh file in the /home/student/DO328/labs/observe-kiali folder.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation ~]$ export  \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -o template --template '{{ "http://" }}{{ .spec.host }}')

3.3. Use the curl command to keep sending continuous requests to the /greet
endpoint. This command will not return to the prompt, and will continue to run unless

you explicitly stop it with Ctrl+C.

You can also run the invoke-greet.sh script in the /home/student/DO328/
labs/observe-kiali folder

[student@workstation observe-metrics]$ while true;do curl ${GATEWAY_URL}/greet; \
> sleep 3;done
Ahoj světe! | Hello World! | Hola Mundo!
Ahoj světe! | Hello World! | Hola Mundo!
...output omitted...

3.4. Switch to the Kiali Graph page, and observe the traffic animation. You might have to

wait for a few seconds while Kiali captures data from the Envoy proxies and renders

the animation.

By default, Kiali displays a graph with the services and their versions (Versioned app
graph).

Click Versioned app graph and select the Service graph option to display a more

compact graph with only the services in the application.

98 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Note how the greet-api calls the individual services. You should see the percentage

of responses being equally split between the three language services at this point.

A side panel to the right of the graph shows more details about the overall service

mesh. You can click the services in the graph, and the side panel will show details of

DO328-SM1.1-en-2-20200910 99



Chapter 3 | Observing a Service Mesh

the selected service. Clicking anywhere other than the displayed services switches

back to the overall service mesh view.

You can click the Hide or Show button on the side panel to hide or show the side

panel respectively.

3.5. Press Ctrl+C to stop the curl command in the command line terminal window where

you were invoking the /greet endpoint.

 4. Invoke the /chained end point, and visualize the traffic flow in Kiali.

4.1. Use the curl command to keep sending continuous requests to the /chained
endpoint. Observe that the language services are now called in a different order.

You can also run the invoke-chained.sh script in the /home/student/DO328/
labs/observe-kiali folder

[student@workstation observe-metrics]$ while true; \
> do curl ${GATEWAY_URL}/chained; \
> sleep 3;done
Hello World! -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!
...output omitted...

100 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

4.2. Switch to the Kiali Graph page, and observe the traffic animation. You might have to

wait for a few seconds while Kiali captures data from the Envoy proxies and renders

the animation.

Note how the greet-api only calls the english service, which calls the other

languages in a chain.

Do not interrupt the command line terminal where you are sending traffic to the /
chained endpoint. Leave it running. You will need this for subsequent steps in this

exercise.

 5. Deploy version 2 of the english microservice and view the updated traffic flow in Kiali.

5.1. From a new command line terminal, run the oc create command to deploy version

2 of the english microservice. This new version prints a more informal greeting. The

deployment resource is provided in the english-v2-deploy.yaml file in the /
home/student/DO328/labs/observe-kiali folder.

[student@workstation ~]$ cd ~/DO328/labs/observe-kiali
[student@workstation observe-kiali]$ oc create -f english-v2-deploy.yaml
deployment.apps/english-v2 created

5.2. Run the oc get pods command and verify that version 2 of the english
microservice is deployed and in Running state.

[student@workstation observe-jaeger]$ oc get pods
NAME                          READY   STATUS    RESTARTS   AGE
czech-84c5754796-cpqfq        2/2     Running   0          10m
english-v1-684884c897-qk7j2   2/2     Running   0          10m
english-v2-f696b69db-s285s    2/2     Running   0          27s
greet-api-7fb89fdc45-f7gs6    2/2     Running   0          10m
spanish-f8848fc89-c9slw       2/2     Running   0          10m

5.3. Switch to the command line terminal window running the curl command. After a while,

you should see the output change to:

Hello World! -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!
...output omitted...
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!

DO328-SM1.1-en-2-20200910 101



Chapter 3 | Observing a Service Mesh

Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!
...output omitted...

Traffic for the english service is split equally (load balanced) between both

versions.

5.4. Switch to the Kiali Graph page, and observe the traffic animation. You might have to

wait for a few seconds while Kiali captures data from the Envoy proxies and renders

the animation.

Click Service graph and select Versioned app graph. This will change the graph to

display versions of services.

Note

Your graph might not look exactly like the above. Graph nodes from previous

scenarios might still be visible, but grayed out in the graph.

Note how Kiali shows the request percentage split equally between version 1 and

version 2 of the english microservice.

 6. Redirect all traffic bound for the english microservice to version 2 of the service. View the

updated traffic flow in Kiali.

6.1. From a new command line terminal, run the oc create command to deploy version

2 of the english microservice. This new version prints a more informal greeting. The

deployment resource is provided in the english-v2-all.yaml file in the /home/
student/DO328/labs/observe-kiali folder.

Note

Do not worry about the details in the YAML resource file. You will learn more about

traffic shaping and load balancing in subsequent chapters.

[student@workstation observe-kiali]$ oc create -f english-v2-all.yaml
destinationrule.networking.istio.io/english created
virtualservice.networking.istio.io/english-v2-all created

6.2. Switch to the command line terminal window running the curl command. After a while,

you should see the output change to:

102 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Hello World! -> Hola Mundo! -> Ahoj světe!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Hello World! -> Hola Mundo! -> Ahoj světe!
...output omitted...
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj světe!
...output omitted...

All traffic for the english service is sent to version 2.

6.3. Switch to the Kiali Graph page, and observe the traffic animation. You might have to

wait for a few seconds while Kiali captures data from the Envoy proxies and renders

the animation.

Note how Kiali shows 100% of traffic being sent to version 2 of the english
microservice.

6.4. Press Ctrl+C to stop the curl command in the command line terminal window where

you were invoking the /chained endpoint.

 7. Return to the home directory.

[student@workstation observe-kiali]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-kiali finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 103



Chapter 3 | Observing a Service Mesh

Lab

Observing an OpenShift Service Mesh

Performance Checklist
In this lab, you will troubleshoot performance issues with an application using distributed

tracing, and enable metrics collection for the application.

Outcomes
You should be able to:

• Identify and fix performance issues with an application deployed on Red Hat OpenShift

Service Mesh.

• Enable distributed tracing for a Quarkus based microservice and visualize the traces using

Jaeger.

• Enable custom application metrics for a Quarkus based microservice and create a custom

dashboard for visualizing the collected metrics.

• Visualize communication between services in the application using Kiali.

Before You Begin
To perform this lab, ensure you have:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift client (oc), OpenJDK 1.8, and podman installed on workstation.

You will be using an application that simulates an online currency exchange for this lab. The

application has four microservices:

• currencies: Written in Python using the Flask framework. It provides a REST API,

which returns a list of all currencies supported by the exchange.

• history: Written in JavaScript using the Node.js runtime. It provides a REST API, which

returns historical data of exchange rates between currencies.

• frontend: Written using HTML, JavaScript, and CSS using the React.js library. It

provides a web user interface for users of the currency exchange application.

• exchange: Written in Java using the Quarkus framework. It acts as an API gateway and

communicates with the currencies and history microservices. It acts as a single point

of communication for the frontend microservice.

The source code for the four microservices are available in the exchange-traced folder in

the GitHub repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this

exercise.

[student@workstation ~]$ lab observe-mesh start

104 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps


Chapter 3 | Observing a Service Mesh

The lab observe-mesh start command will create a new project called observe-mesh
owned by the developer (the value of the $RHT_OCP4_DEV_USER environment variable in

your /usr/local/etc/ocp4.config file) user. It will deploy an initial version of the four

microservices in this project.

You can examine the template that deploys the microservices in the ~/DO328/labs/
observe-mesh/exchange-app-template.yaml file.

1. Log in to OpenShift as the developer user, and inspect the deployed applications. Verify that

the four microservices are deployed and running.

Do not forget to load the environment variables from the /usr/local/etc/ocp4.config
file in your command line terminal.

2. Identify the gateway URL for the service mesh. The currency exchange application is

available at the URL /frontend relative to the gateway URL.

Explore the currency exchange application by clicking on the Historical Data, and

Exchange menu options in the left navigation panel.

You can ignore the News menu option because it requires communicating with an external

service, which is not deployed in this lab.

Note that fetching the historical data of currency rates in the Historical Data page is very

slow. It takes more than 5 seconds to fetch the data.

3. Visualize the service mesh communication using the Kiali web console. View the traces and

spans generated by the currency exchange application using the Jaeger web console.

Identify the microservice that is causing the slow response time in the Historical Data page.

From the traces and spans in the Jaeger console, you can identify the function name that is

causing the slowdown.

Although distributed tracing was enabled for the services that you originally deployed,

the source code of the problematic microservice that is available in this lab does not

include tracing instrumentation. Therefore, to keep distributed tracing active after fixing

the slowdown problem, you will add tracing instrumentation when you make changes to

the source code of the problematic microservice. You will clone the source code of this

microservice from GitHub and add tracing code in a subsequent step of the lab.

Warning

The lab start script updates the ServiceMeshMemberRoll resource of the service

mesh control plane. This will cause the Kiali pod to be redeployed after some time.

Check the status of the Kiali pod by running oc get pods -n istio-system,

and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the

Kiali console, verify the Kiali pod status and log in again.

4. Clone the source code for the traced currency exchange application from the GitHub

repository at https://github.com/RedHatTraining/DO328-apps. The application code is

located in the exchange-traced directory. Correct the source code of the microservice

you identified in the previous step to eliminate the performance issue.

Use a text editor like VSCodium, which supports syntax highlighting for editing source files.

DO328-SM1.1-en-2-20200910 105

https://github.com/RedHatTraining/DO328-apps


Chapter 3 | Observing a Service Mesh

5. Enable distributed tracing for the problematic microservice.

The distributed tracing properties for the problematic microservice must be configured as

follows:

• The service name for identifying traces and spans in Jaeger must be named exchange.

• Enable Jaeger to collect all sample traces from all requests to the service.

• The URL of the Jaeger collector is http://jaeger-collector.istio-
system.svc:14268/api/traces.

• Enable propagation of all x-b3-* HTTP headers, and log span information for all incoming

and outgoing requests to and from this service.

6. You have been instructed by the operations team to add custom metrics to the problematic

microservice, which will keep track of its performance in future deployments.

Add the following custom metrics to the problematic microservice:

• A timer that tracks how long (in milliseconds) the getHistoricalData()
function takes to execute. Provide a unique name for this metric called

exchange_svc:history_fetch_time.

• The rate of requests (per minute) served by the getHistoricalData() function. This

will provide information for capacity planning in the future. Provide a unique name for this

metric called exchange_svc:history_fetch_rate.

7. Rebuild the container image for the problematic microservice. Fully complete Dockerfiles are

provided to you for all four microservices in their respective folders.

Create a new container image repository in Quay.io called ossm-microservice-traced.

Replace microservice with the name of the problematic microservice.

Push the newly built container image with a tag named 1.0 to the ossm-microservice-
traced image repository.

8. Edit the deployment resource for the exchange service.

Replace the container image for the problematic microservice with your newly built container

image.

Enable metrics collection for the problematic microservice by adding the correct annotations.

9. Test the application with the updated exchange microservice. Verify that the performance

issues identified earlier are no longer present in the Historical Data page.

10. Create a custom dashboard in Grafana for the custom application metrics you added in a

previous step.

11. Return to the home directory.

[student@workstation exchange]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab observe-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab observe-mesh grade

106 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 107



Chapter 3 | Observing a Service Mesh

Solution

Observing an OpenShift Service Mesh

Performance Checklist
In this lab, you will troubleshoot performance issues with an application using distributed

tracing, and enable metrics collection for the application.

Outcomes
You should be able to:

• Identify and fix performance issues with an application deployed on Red Hat OpenShift

Service Mesh.

• Enable distributed tracing for a Quarkus based microservice and visualize the traces using

Jaeger.

• Enable custom application metrics for a Quarkus based microservice and create a custom

dashboard for visualizing the collected metrics.

• Visualize communication between services in the application using Kiali.

Before You Begin
To perform this lab, ensure you have:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift client (oc), OpenJDK 1.8, and podman installed on workstation.

You will be using an application that simulates an online currency exchange for this lab. The

application has four microservices:

• currencies: Written in Python using the Flask framework. It provides a REST API,

which returns a list of all currencies supported by the exchange.

• history: Written in JavaScript using the Node.js runtime. It provides a REST API, which

returns historical data of exchange rates between currencies.

• frontend: Written using HTML, JavaScript, and CSS using the React.js library. It

provides a web user interface for users of the currency exchange application.

• exchange: Written in Java using the Quarkus framework. It acts as an API gateway and

communicates with the currencies and history microservices. It acts as a single point

of communication for the frontend microservice.

The source code for the four microservices are available in the exchange-traced folder in

the GitHub repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this

exercise.

108 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps


Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ lab observe-mesh start

The lab observe-mesh start command will create a new project called observe-mesh
owned by the developer (the value of the $RHT_OCP4_DEV_USER environment variable in

your /usr/local/etc/ocp4.config file) user. It will deploy an initial version of the four

microservices in this project.

You can examine the template that deploys the microservices in the ~/DO328/labs/
observe-mesh/exchange-app-template.yaml file.

1. Log in to OpenShift as the developer user, and inspect the deployed applications. Verify that

the four microservices are deployed and running.

Do not forget to load the environment variables from the /usr/local/etc/ocp4.config
file in your command line terminal.

1.1. Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Set the current project to observe-mesh:

[student@workstation ~]$ oc project observe-mesh
Now using project "observe-mesh" on server ...output omitted...

1.4. Verify that there are four pods in Running state:

[student@workstation ~]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-cc8566cdd-fc4qx    2/2     Running   0          13m
exchange-8cf576667-9z7h5    2/2     Running   0          13m
frontend-7846899665-8bpwr   2/2     Running   0          13m
history-db65bfb86-rwmdr     2/2     Running   0          13m

2. Identify the gateway URL for the service mesh. The currency exchange application is

available at the URL /frontend relative to the gateway URL.

Explore the currency exchange application by clicking on the Historical Data, and

Exchange menu options in the left navigation panel.

You can ignore the News menu option because it requires communicating with an external

service, which is not deployed in this lab.

Note that fetching the historical data of currency rates in the Historical Data page is very

slow. It takes more than 5 seconds to fetch the data.

DO328-SM1.1-en-2-20200910 109



Chapter 3 | Observing a Service Mesh

2.1. Run the oc get route command to gather the service mesh gateway URL.

[student@workstation ~]$ export  \
> GW_URL=$(oc get route istio-ingressgateway -n istio-system \
> -o template --template '{{ "http://" }}{{ .spec.host }}')

2.2. Access the currency exchange application using the firefox browser on your

workstation.

[student@workstation ~]$ firefox ${GW_URL}/frontend &

2.3. Click Historical Data in the left navigation panel. Select a source and target currency

and click Submit to see historical exchange data.

Note the slow response after you click Submit to fetch historical data.

2.4. Click Exchange in the left navigation panel. Enter an amount, select the source and

target currency and click Submit.

3. Visualize the service mesh communication using the Kiali web console. View the traces and

spans generated by the currency exchange application using the Jaeger web console.

Identify the microservice that is causing the slow response time in the Historical Data page.

From the traces and spans in the Jaeger console, you can identify the function name that is

causing the slowdown.

Although distributed tracing was enabled for the services that you originally deployed,

the source code of the problematic microservice that is available in this lab does not

include tracing instrumentation. Therefore, to keep distributed tracing active after fixing

the slowdown problem, you will add tracing instrumentation when you make changes to

the source code of the problematic microservice. You will clone the source code of this

microservice from GitHub and add tracing code in a subsequent step of the lab.

110 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Warning

The lab start script updates the ServiceMeshMemberRoll resource of the service

mesh control plane. This will cause the Kiali pod to be redeployed after some time.

Check the status of the Kiali pod by running oc get pods -n istio-system,

and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the

Kiali console, verify the Kiali pod status and log in again.

3.1. Run the oc get route command to gather the Kiali web console URL.

[student@workstation ~]$ export  \
> KIALI_URL=$(oc get route kiali -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

3.2. Access the Kiali web console using the firefox browser on your workstation. Log in

using your OpenShift developer user account.

[student@workstation ~]$ firefox ${KIALI_URL} &

3.3. Click Graph in the left navigation panel, and select the observe-mesh namespace

to view the service mesh graph. Your graph could look different than the one shown

below.

DO328-SM1.1-en-2-20200910 111



Chapter 3 | Observing a Service Mesh

Note

You will not see the currency microservice sending traces to the jaeger-
collector because, the currency service is written in Python and does not yet

support sending traces to jaeger over TCP. Instead the microservice sends trace

information using UDP datagrams to the jaeger-agent service, which forwards it

to the jaeger backend. Kiali cannot capture this UDP traffic to render the graphs.

You will see traces from the currency microservice in the Jaeger web console and

verify this in the next step.

3.4. Run the oc get route command to gather the Jaeger web console URL.

[student@workstation ~]$ export  \
> JAEGER_URL=$(oc get route jaeger -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

3.5. Use the Firefox browser to access the Jaeger web console and log in using your

OpenShift developer user account.

[student@workstation ~]$ firefox ${JAEGER_URL} &

3.6. In the Jaeger web console, select the istio-ingressgateway service in the search

panel on the left of the page. Click Find Traces. You will see a list of traces for the

currency exchange application.

3.7. Click any trace that is greater than 5 seconds. These traces are generated by the

functionality in the Historical Data page of the currency exchange application.

Note the hierarchy of service calls for this trace. The front end calls the exchange
service, which then calls the history service to fetch historical data.

112 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

3.8. To identify the method causing the bottleneck, click the span corresponding to the

exchange service. This span has the longest execution time (> 5 seconds on average).

There seems to be an issue in the getHistoricalData function of the

com.redhat.restclient.ExchangeResource class in the exchange service. The

class name and function is displayed as the title of the span (the text following POST:).

4. Clone the source code for the traced currency exchange application from the GitHub

repository at https://github.com/RedHatTraining/DO328-apps. The application code is

located in the exchange-traced directory. Correct the source code of the microservice

you identified in the previous step to eliminate the performance issue.

Use a text editor like VSCodium, which supports syntax highlighting for editing source files.

4.1. If you have not cloned the source code from the DO328-apps GitHub repository in a

previous exercise, then do so now using the git clone command.

[student@workstation ~]$ git clone https://github.com/RedHatTraining/DO328-apps
...output omitted...
Cloning into 'DO328-apps'...
...output omitted...

4.2. Copy the contents of the /home/student/DO328-apps/exchange-traced folder

from your local Git repository to the /home/student/DO328/labs/observe-mesh
folder.

[student@workstation ~]$ cp -Rv ~/DO328-apps/exchange-traced \
> ~/DO328/labs/observe-mesh/

DO328-SM1.1-en-2-20200910 113

https://github.com/RedHatTraining/DO328-apps


Chapter 3 | Observing a Service Mesh

4.3. Fix the issue in the source code for the exchange microservice. Edit the /home/
student/DO328/labs/observe-mesh/exchange-traced/exchange/src/
main/java/com/redhat/restclient/ExchangeResource.java file.

Note the hard coded Thread.sleep(5000) try-catch block in the

getHistoricalData() method. This was added to simulate slow processing (for

example, due to an inefficient algorithm, a slow database query, or high latency due to

invoking external services).

Remove the try-catch block that was causing the slowdown.

5. Enable distributed tracing for the problematic microservice.

The distributed tracing properties for the problematic microservice must be configured as

follows:

• The service name for identifying traces and spans in Jaeger must be named exchange.

• Enable Jaeger to collect all sample traces from all requests to the service.

• The URL of the Jaeger collector is http://jaeger-collector.istio-
system.svc:14268/api/traces.

• Enable propagation of all x-b3-* HTTP headers, and log span information for all incoming

and outgoing requests to and from this service.

5.1. Enable distributed tracing for the exchange microservice.

Edit the /home/student/DO328/labs/observe-mesh/exchange-traced/
exchange/pom.xml file and add the quarkus-smallrye-opentracing
dependency.

<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

5.2. Edit the /home/student/DO328/labs/observe-mesh/exchange-traced/
exchange/src/main/resources/application.properties file and add the

Jaeger related properties.

quarkus.jaeger.service-name=exchange
quarkus.jaeger.sampler-type=const
quarkus.jaeger.sampler-param=1
quarkus.jaeger.endpoint=http://jaeger-collector.istio-system.svc:14268/api/traces
quarkus.jaeger.propagation=b3
quarkus.jaeger.reporter-log-spans=true

6. You have been instructed by the operations team to add custom metrics to the problematic

microservice, which will keep track of its performance in future deployments.

Add the following custom metrics to the problematic microservice:

• A timer that tracks how long (in milliseconds) the getHistoricalData()
function takes to execute. Provide a unique name for this metric called

exchange_svc:history_fetch_time.

114 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

• The rate of requests (per minute) served by the getHistoricalData() function. This

will provide information for capacity planning in the future. Provide a unique name for this

metric called exchange_svc:history_fetch_rate.

6.1. Edit the /home/student/DO328/labs/observe-mesh/exchange-traced/
exchange/pom.xml file and add the quarkus-smallrye-metrics dependency.

<dependency>
  <groupId>io.quarkus</groupId>
  <artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

6.2. Edit the source code for the getHistoricalData() function in the /home/
student/DO328/labs/observe-mesh/exchange-traced/exchange/src/
main/java/com/redhat/restclient/ExchangeResource.java file.

Import the required metrics classes from the OpenTracing API. Add the following

import statements at the top of the file.

...output omitted...
import org.eclipse.microprofile.metrics.MetricUnits;
import org.eclipse.microprofile.metrics.annotation.SimplyTimed;
import org.eclipse.microprofile.metrics.annotation.Metered;
...output omitted...

Add the following annotations to the getHistoricalData() function (below the 

@Path("/historicalData") line) to enable custom metrics.

@SimplyTimed(name = "exchange_svc:history_fetch_time",
           description = "A measure of how long it takes to fetch history data",
           unit = MetricUnits.MILLISECONDS)
@Metered(name = "exchange_svc:history_fetch_rate",
           unit = MetricUnits.MINUTES,
           description = "Rate at which historical data is fetched (minutes)",
           absolute = true)

7. Rebuild the container image for the problematic microservice. Fully complete Dockerfiles are

provided to you for all four microservices in their respective folders.

Create a new container image repository in Quay.io called ossm-microservice-traced.

Replace microservice with the name of the problematic microservice.

Push the newly built container image with a tag named 1.0 to the ossm-microservice-
traced image repository.

7.1. Create a new public container image repository called ossm-exchange-traced
in Quay.io. To create a public container image repository, refer to instructions in the

Appendix: Creating a Quay Account.

Warning

If you skip this step and push the container images without creating public

repositories, the podman push commands will create private container image

repositories by default.

DO328-SM1.1-en-2-20200910 115



Chapter 3 | Observing a Service Mesh

7.2. To ensure that there are no syntax errors, run mvn clean package and ensure that a

fat JAR is created in the target folder.

[student@workstation ~]$ cd \
> ~/DO328/labs/observe-mesh/exchange-traced/exchange
[student@workstation exchange]$ mvn clean package
...output omitted...
[INFO] BUILD SUCCESS
...output omitted...

7.3. Review the Dockerfile for the exchange microservice. You will use Red Hat

Universal Base Images (UBI) as the base for building your container image. Do not

make any changes to it.

Build the container image using podman.

[student@workstation exchange]$ podman build -t \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-exchange-traced:1.0 .
STEP 1: FROM registry.access.redhat.com/ubi8:8.1
...output omitted...
STEP 15: COMMIT quay.io/youruser/ossm-exchange-traced:1.0

7.4. Log in to your Quay.io account using podman.

[student@workstation exchange]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io

You will be prompted for your Quay.io password.

7.5. Push the updated container image for the exchange microservice to Quay.io.

[student@workstation exchange]$ podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/ossm-exchange-traced:1.0
...output omitted...
Writing manifest to image destination
Storing signatures

8. Edit the deployment resource for the exchange service.

Replace the container image for the problematic microservice with your newly built container

image.

Enable metrics collection for the problematic microservice by adding the correct annotations.

8.1. Edit the deployment resource for the exchange microservice.

[student@workstation exchange]$ oc edit deployment exchange

Edit the spec.template.spec.containers.image attribute for the exchange
deployment, and add the Quay.io URL of the container image for the exchange
deployment.

...output omitted...
spec:
      containers:
      - env:

116 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

        - name: NEWS_ENDPOINT
          value: http://feed-news.apps-crc.testing
        image: quay.io/youruser/ossm-exchange-traced:1.0
        imagePullPolicy: Always
        name: exchange
...output omitted...

8.2. Add annotations to allow the Prometheus instance to collect metrics from

the exchange microservice. Add the following annotations below the

sidecar.istio.io/inject: "true" annotation for the exchange microservice.

...output omitted...
template:
  metadata
    annotations:
    sidecar.istio.io/inject: "true"
    prometheus.io/scrape: "true"
    prometheus.io/port: "8080"
    prometheus.io/scheme: "http"
...output omitted...

Save your changes. OpenShift will detect the changed deployment, and delete the old

pod. It will create a new pod for the exchange microservice.

8.3. Verify that the four microservices are ready and running using the oc get pods
command.

[student@workstation exchange]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-699d4dd98d-rzlvx   2/2     Running   0          42s
exchange-5454495f78-47457   2/2     Running   0          41s
frontend-5b78fc6bb5-ztdvq   2/2     Running   0          43s
history-8c875469d-csfsv     2/2     Running   0          42s

9. Test the application with the updated exchange microservice. Verify that the performance

issues identified earlier are no longer present in the Historical Data page.

9.1. Access the currency exchange application at the URL GW_URL/frontend. Click

Historical Data, and verify that the response time is much improved (the spinner icon

after you click Submit should disappear quickly).

9.2. You will see span information from the exchange microservice. Access the Jaeger

console and verify that there is no longer a 5 second pause in the span details for the

historical data page.

10. Create a custom dashboard in Grafana for the custom application metrics you added in a

previous step.

10.1. Run the oc get route command to gather the Grafana web console URL.

[student@workstation exchange]$ export  \
> GRAFANA_URL=$(oc get route grafana -n istio-system \
> -o template --template '{{ "https://" }}{{ .spec.host }}')

DO328-SM1.1-en-2-20200910 117



Chapter 3 | Observing a Service Mesh

10.2. Use the Firefox web browser to access the Grafana web console. Log in using your

developer user account.

[student@workstation exchange]$ firefox ${GRAFANA_URL} &

10.3. Click the plus (+) icon in the left navigation menu of Grafana web console to open the

Create menu. Select Dashboard to create a new dashboard.

10.4. Click Add Query in the New Panel panel.

In the query expression editor named A (next to the Metrics label), type

history_fetch_time and select the first auto completed option (ends with

elapsed). Click the graph icon in the left menu (to the left of the Query window) to

select how you want to visualize the metric.

In the Visualization panel, expand the Visualization selection, and select Graph.

10.5. Click General (gear icon below Visualize icon in the left menu).

Enter Historical Data Fetch Time as the Title.

Click the left arrow icon (top left corner to the left of New dashboard) to go back to

the dashboard page.

10.6. Click Add panel (graph icon with yellow plus in top right) to add another panel.

Click Add Query in the New Panel, and type history_fetch_rate. Prometheus

will auto-complete and provide you with 5 options. Select the option ending with

fetch_rate_total.

Click Visualization in the left menu, and select the Gauge option.

Click General in the left panel, and change the Title field to Historical Data
Fetch Rate. Click the left arrow icon in the top left corner to go back to the New
dashboard page.

10.7. Your new dashboard should now show both metrics from the exchange service.

Click the Save dashboard icon to save your new dashboard. Enter Exchange
Metrics in the Save As dialog.

Your final Grafana dashboard should look like the following.

118 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

11. Return to the home directory.

[student@workstation exchange]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab observe-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab observe-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-mesh finish

DO328-SM1.1-en-2-20200910 119



Chapter 3 | Observing a Service Mesh

This concludes the lab.

120 DO328-SM1.1-en-2-20200910



Chapter 3 | Observing a Service Mesh

Summary

In this chapter, you learned:

• Distributed tracing helps you identify performance issues in microservices based applications.

You need to instrument your applications with Jaeger and OpenTracing libraries to enable

distributed tracing.

• You can use Prometheus libraries to instrument your applications for generating custom

application metrics. You can use Grafana to generate custom dashboards for your application

metrics.

• Kiali can be used to visualize the communication between services in your service mesh.

DO328-SM1.1-en-2-20200910 121



122 DO328-SM1.1-en-2-20200910



Chapter 4

Controlling Service Traffic

Goal Manage and route traffic with Red Hat OpenShift
Service Mesh

Objectives • Manage and route traffic with Red Hat
OpenShift Service Mesh.

• Route traffic to services in a mesh, based on
request headers.

• Control egress traffic to access external
services.

Sections • Managing Service Connections with Envoy and
Pilot (and Guided Exercise)

• Routing Traffic Based on Request Headers (and
Guided Exercise)

• Accessing External Services (and Guided
Exercise)

Lab Controlling Service Traffic

DO328-SM1.1-en-2-20200910 123



Chapter 4 | Controlling Service Traffic

Managing Service Connections with
Envoy and Pilot

Objectives
After completing this section, you should be able to manage and route traffic with Red Hat

OpenShift Service Mesh.

Explaining Traffic Management
Traffic management, in the context of cloud-native microservices, is the process of monitoring and

controlling the external and internal network communications of an application.

As cloud-native applications evolve and grow, the number of microservices increases, which makes

it more difficult to manage and observe the network connections in these kinds of applications. In

addition to an increasing number of services to manage, the reliability of microservice applications

is dependent on a reliable network.. For these reasons, developers need a way to improve

reliability, security, and observability of the network connections.

OpenShift Service Mesh abstracts network communications, allowing you to manage them using

Kubernetes custom resources. With OpenShift Service Mesh, you control the flow of traffic and

API calls of your applications.

Projects that are not using Service Mesh usually use libraries embedded in the source code of the

application.

Describing the Sidecar Pattern
Cloud applications usually require functionalities outside of the application domain, such as

monitoring, logging, and authentication.

The sidecar pattern is an architectural pattern where a main process (the main application)

segregates non-business related functionalities to an auxiliary process (the sidecar).

124 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

Figure 4.1: The sidecar pattern

Applying the sidecar pattern minimizes coupling between the application and the underlying

infrastructure and reduces the complexity of the main application.

OpenShift Service Mesh and the Istio project are good examples of implementing the sidecar

pattern at a network level.

The Sidecar Pattern and OpenShift Service Mesh

On Service Mesh enabled services, an Envoy proxy instance is injected into the application pod

using the sidecar pattern. After the Envoy sidecar is injected, it takes control of all of the network

communications for the pod.

OpenShift Service Mesh does not automatically inject the sidecar into every pod. You must

explicitly specify the pods that you want Service Mesh to manage by adding annotations to the

deployment configuration. This manual approach ensures that the automatic sidecar injection

does not interfere with other Red Hat OpenShift features.

DO328-SM1.1-en-2-20200910 125



Chapter 4 | Controlling Service Traffic

Note

The default configuration in the upstream Istio version uses automatic sidecar

injection at a namespace level.

Injecting the Envoy Sidecar Automatically

To automatically inject the Envoy sidecar into a service, you must specify the

sidecar.istio.io/inject annotation with the value set to "true" in the Deployment
resource.

Example of automatic sidecar injection:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: history
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: history
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: history
          image: quay.io/redhattraining/ossm-history:1.0
          ports:
            - containerPort: 8080

Distinguishing Ingress and Egress Traffic
In the context of a Service Mesh, we can distinguish two types of network traffic:

Ingress
Incoming traffic from sources external to the cluster, as well as calls originating from other

services within the cluster.

Egress
Outgoing traffic to sources outside the cluster, as well as calls to services within the cluster.

The default installation of OpenShift Service Mesh provides an instance of istio-
ingressgateway and an instance of istio-egressgateway to manage the ingress and egress

traffic in a Service Mesh. Both gateways can be customized to suit the needs of your applications.

Understanding the Gateway Custom Resource
A gateway is a custom resource that operates as a load balancer at the edge of the Service Mesh,

managing ingress or egress connections. Gateway configurations are applied to Envoy proxies

running at the edge of the Service Mesh.

126 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

In a default installation of OpenShift Service Mesh, a gateway instance called istio-
ingressgateway manages ingress connections and a gateway instance called istio-
egressgateway manages egress connections.

Figure 4.2: Ingress and egress gateways

The Open Systems Interconnection (OSI) model is a conceptual model that splits networking

systems into seven abstraction layers. It provides a standard to describe how applications

communicate over the network.

A gateway follows the OSI model, letting you configure Layer 4, Layer 5, and Layer 6 load

balancing properties, and also delegates application-layer traffic routing (Layer 7) to virtual

DO328-SM1.1-en-2-20200910 127



Chapter 4 | Controlling Service Traffic

services. This way of splitting the configuration between different and specialized components

gives you more control and flexibility over the communications of your application.

Example of ingress gateway:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: exchange-gw
spec:
  selector:
    istio: ingressgateway
  servers:
    - port:
      number: 80
      name: http
      protocol: HTTP
    hosts:
      - "exchange.example.com"

The preceding setup configures the ingressgateway to expose the combination of virtual

hostname/DNS exchange.example.com protocol HTTP and port 80. This means that all HTTP

traffic for that hostname/DNS is allowed to enter the mesh.

Describing the VirtualService Custom Resource
A virtual service is a Kubernetes custom resource, which allows you to configure how the requests

to services in the Service Mesh are routed.

A virtual service is composed of a list of routing rules that are evaluated in order, from top to

bottom. Each routing rule consists of a traffic destination and zero or more match conditions that,

if met, direct traffic to the destination defined by the rule.

Pilot translates the VirtualService custom resources to Envoy configuration, thereby

propagating it to the data plane. In the absence of virtual services, Envoy distributes traffic

between all service instances using a round-robin algorithm.

Example of a virtual service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: exchange-vs 
spec:
  hosts: 
  - exchange
  http: 
  - match: 
    - headers:
        end-user:
          exact: test
    route:
    - destination:
        host: reviews
        subset: v2

128 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

  - route: 
    - destination:
        host: exchange
        subset: v1

Virtual service name.

List of destinations to which these routing rules apply.

List of routing rules to apply to HTTP/1.1, HTTP2, and gRPC traffic.

Rule with a match condition.

Default no condition rule. All traffic will be routed to the specified destination if no previous

conditions are met.

The preceding example redirects all requests containing the header end-user and the value

test from the exchange service to the subset v2. In any other case, the match condition is not

fired so the traffic is redirected to the default destination.

Combining Gateways and Virtual Services
To make gateways and virtual services work together, you must bind them using the gateways
field for the virtual service. As a result, the traffic managed by the gateways listed in the gateways

field is checked against the routing rules defined in the virtual service.

Example of virtual service bound to a gateway:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: exchange-vs
spec:
  hosts:
  - exchange
  gateways:
  - exchange-gw
  http:
  - match:
    - headers:
        end-user:
          exact: test
    route:
    - destination:
        host: reviews
        subset: v2
  - route:
    - destination:
        host: exchange
        subset: v1

In the preceding example the exchange-gw gateway is bound to the exchange-vs virtual

service.

Ingress flow with OpenShift Service Mesh
In a default OpenShift Service Mesh installation, an OpenShift route is assigned to the Istio

ingress gateway (istio-ingressgateway), which is the resource in charge of managing the

DO328-SM1.1-en-2-20200910 129



Chapter 4 | Controlling Service Traffic

routing inside the mesh. All ingress traffic originating from outside the service mesh flows through

this gateway into the service mesh.

Figure 4.3: Ingress request flow in Red Hat OpenShift Service Mesh

The ingress request flow is as follows:

1. A external request enters the cluster.

2. A router instance checks the routing rules implemented by the ingress controller. If a match is

found, the request is sent to the ingress gateway service pod (istio-ingressgateway).

130 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

3. The ingress gateway service pod evaluates the request against the Gateway configurations

to check if the request matches with any configuration. If a match is found, the request is

allowed to enter the mesh.

4. The ingress gateway service pod evaluates the VirtualService rules to find the

application service pod in charge of processing the request.

5. If a VirtualService rule is matched, the ingress gateway service pod sends the request to

the designated pod to process the request.

 

References

Traffic management with Istio

https://archive.istio.io/v1.4/docs/concepts/traffic-management/

Automatic sidecar injection in Istio

https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/

#automatic-sidecar-injection

For more information, refer to the Ingress Operator in OpenShift Container Platform

section in the OpenShift Container Platform Service Mesh documentation at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

Decyphering the OSI model of networking

https://www.redhat.com/sysadmin/osi-model-bean-dip

References

For more information, refer to the Red Hat OpenShift Service Mesh's sidecar

injection section in the OpenShift Container Platform Service Mesh documentation

at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

DO328-SM1.1-en-2-20200910 131

https://archive.istio.io/v1.4/docs/concepts/traffic-management/
https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/#automatic-sidecar-injection
https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/#automatic-sidecar-injection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://www.redhat.com/sysadmin/osi-model-bean-dip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index


Chapter 4 | Controlling Service Traffic

Guided Exercise

Exposing a Service

In this exercise, you will deploy and expose an application in Red Hat OpenShift Service

Mesh.

Outcomes
You should be able to deploy applications to OpenShift Service Mesh and allow clients

outside the service mesh to invoke them.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise:

[student@workstation ~]$ lab traffic-deploy start

 1. Log in to the OpenShift cluster.

1.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

 2. Create the hello project and and then add it to the ServiceMeshMemberRoll resource.

2.1. The required YAML files and scripts for this guided exercise are located in /home/
student/DO328/labs/traffic-deploy. Change to that directory using the cd
command.

[student@workstation ~]$ cd /home/student/DO328/labs/traffic-deploy
[student@workstation traffic-deploy]$ 

132 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

2.2. Create the hello project.

[student@workstation traffic-deploy]$ oc new-project hello
Now using project "hello" on server
"https://api.cluster.domain.example.com:6443".
...output omitted...

2.3. Add the hello project to the list of members in the ServiceMeshMemberRoll
resource. The ServiceMeshMemberRoll is available in the istio-system project.

Use the add-project-to-smmr.sh script to add the hello project to the list of

members in the ServiceMeshMemberRoll resource.

[student@workstation traffic-deploy]$ sh add-project-to-smmr.sh
servicemeshmemberroll.maistra.io/default patched

 3. Deploy a simple Vert.X application. This application exposes a single GET endpoint that

returns “Hello World!” for every request.

The source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps/ in the maven-simplest directory.

3.1. Examine the application.yaml file, which describes the necessary resources to

deploy the application. The deployment resource contains the sidecar.istio.io/
inject: "true" annotation to inject the Envoy proxy.

Run the oc create -f application.yaml command to deploy the application.

[student@workstation traffic-deploy]$ oc create -f application.yaml
deployment.apps/hello created
service/hello created

The create command creates a deployment and a service for the application (both

named hello). At this point the Vert.X application is only accessible from inside the

mesh.

 4. Create an ingress gateway to allow ingress traffic to the mesh.

4.1. Examine the gateway.yaml file, which describes the traffic allowed to enter the

mesh.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: hello-gateway
spec:
  selector:
    istio: ingressgateway
  servers:
    - port:
        number: 80
        name: http
        protocol: HTTP
      hosts:
        - "*"

DO328-SM1.1-en-2-20200910 133



Chapter 4 | Controlling Service Traffic

Name assigned to the gateway configuration.

Indicates to which proxy gateway implementations the rules apply. In this case, it

is the ingress gateway Envoy proxy.

Port and protocol where the gateway is listening for incoming connections.

Hosts exposed by this gateway; the "*" means that this field is not used to filter

the incoming traffic.

Use the oc create command to create the ingress gateway configuration.

[student@workstation traffic-deploy]$ oc create -f gateway.yaml
gateway.networking.istio.io/hello-gateway created

 5. Create a VirtualService to redirect the ingress traffic to the Vert.x application.

5.1. Examine the virtual-service.yaml file, which links the ingress traffic with the

deployed Vert.X application.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: hello-vs
spec:
  hosts:
  - "*"
  gateways:
  - hello-gateway
  http:
  - route:
    - destination:
        host: hello
        port:
          number: 8080

Name assigned to the virtual service configuration.

List of gateways that should apply the routes. This virtual service is applied to

the traffic configured by the hello-gateway gateway.

List of route rules for HTTP traffic.

Default route, as no match conditions are defined. This route redirects all traffic

to the specified destination.

Destination rule which sends the traffic to the hello service.

Destination rule which sends the traffic to the port 8080 of the hello service.

Use the oc create command to create a virtual service.

[student@workstation traffic-deploy]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/hello-vs created

 6. Test the application.

6.1. Examine the get-ingress-gateway-url.sh script, which uses the oc command

to gather the Istio ingress gateway URL.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

134 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[student@workstation traffic-deploy]$ export  \
> GATEWAY_URL=$(sh get-ingress-gateway-url.sh)

6.2. Execute the curl command in combination with the GATEWAY_URL variable to

confirm the access to the application from the terminal.

[student@workstation traffic-deploy]$ curl ${GATEWAY_URL}
Hello World!

 7. Visualize the ingress traffic with Kiali

7.1. Examine the get-kiali-url.sh script, which uses the oc command to gather the

Kiali URL.

Export the Kiali URL to an environment variable called KIALI_URL.

[student@workstation traffic-deploy]$ export KIALI_URL=$(sh get-kiali-url.sh)

7.2. Open the KIALI_URL URL in a browser to access Kiali.

[student@workstation traffic-deploy]$ firefox ${KIALI_URL}

7.3. Log in as the developer user.

7.4. Click Graph in the sidebar to visualize the traffic.

Figure 4.4: Kiali dashboard

7.5. From the Graph page, select the hello namespace.

DO328-SM1.1-en-2-20200910 135



Chapter 4 | Controlling Service Traffic

Figure 4.5: Graph representation of the hello application

7.6. Click the Display → Traffic Animation option to add motion to the graphics.

Figure 4.6: Adding animation to the Kiali graphics

7.7. Run the curl ${GATEWAY_URL} command multiple times in the background.

[student@workstation traffic-deploy]$ while true; \
> do curl -o /dev/null -s ${GATEWAY_URL}; \
> sleep 2; done

136 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

7.8. Observe the Kiali console to see how the traffic flows into the application. You might

have to wait for a few seconds before you can see the changes on the Graph page in

Kiali

Figure 4.7: Traffic flow

7.9. Press Ctrl+C in the terminal to stop the curl command.

> sleep 2; done
^C
[student@workstation traffic-deploy]$ 

 8. Return to the home directory.

[student@workstation traffic-deploy]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-deploy finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 137



Chapter 4 | Controlling Service Traffic

Routing Traffic Based on Request
Headers

Objectives
After completing this section, you should be able to route traffic to services in a mesh, based on

request headers.

Describing Destination Rules
Destination rules are custom resources that define policies that apply to the traffic of a service.

Using those traffic policies, you can configure the load balancing behavior to distribute traffic

between the instances of a service.

Virtual services route traffic to a specific destination, and destination rules operate in the traffic

routed to that destination.

The policies defined in destination rules are applied after the routing rules in the virtual services

are evaluated. With destination rules you can define load balancing, connection limits, and outlier

detection policies.

Load Balancing Traffic

With destination rules, you can specify the strategy used to distribute traffic between the

instances of a service.

Round-robin
Requests are sent to each service instance in turn.

Random
Requests are sent to the service instances randomly.

Weighted
Request are sent to the service instances according to a specific weight (percentage).

Least request
Requests are sent to the least busy service instances.

Note

When no balancing option is specified, OpenShift Service Mesh uses the round-

robin strategy.

Example of a destination rule that uses random load balancing strategy:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule 
spec:
  host: my-svc 

138 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

  trafficPolicy: 
    loadBalancer:
      simple: RANDOM 

Name of the destination rule.

Service affected by the defined policies.

Traffic policy defined for the my-svc service.

Random load balancing strategy for the traffic sent to the my-svc service.

Splitting Services into Subsets

A service can have variants of the application running concurrently with destination rules. You can

group those variants into subsets using Kubernetes tags.

When you have subsets, destination rules allow you to define a global traffic policy for the service

and override the policy on the subsets.

Example of destination rule with subsets and policy overrides:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy: 
    loadBalancer:
      simple: RANDOM
  subsets: 
  - name: v1 
    labels: 
      version: v1
  - name: v2
    labels:
      version: v2
    trafficPolicy: 
      loadBalancer:
        simple: ROUND_ROBIN

Traffic policy defined at a service level.

List of subsets defined for the service.

Name of the subset.

List of label tags used to select the service instances belonging to the subset.

Traffic policy set at the subset level, overriding the policy set at the service level.

Routing Traffic
OpenShift Service Mesh traffic management relies on virtual services and destination rules. After

combining these custom resources, you can perform A/B testing or route traffic to a specific

version of a service.

Route traffic based on request headers with the following steps:

• Deploy different services or different versions of the same service.

DO328-SM1.1-en-2-20200910 139



Chapter 4 | Controlling Service Traffic

• Create destination rules to split the service into subsets.

• Create a virtual service to check the request headers and route the request to a destination

service or to a subset.

Creating Routing Rules

A virtual service is a compilation of conditions and actions that you can use to route HTTP, TCP,

and unterminated TLS traffic to a desired destination.

Virtual services in combination with destination rules allow you to route traffic based on request

headers. The following conditions and actions are involved:

HTTPRoute
Conditions and actions defined for HTTP/1.1, HTTP2, and gRPC traffic.

HTTPMatchRequest
List of match conditions to meet in order to execute the action defined by the rule.

HTTPRouteDestination
Action that routes the traffic to a desired destination.

StringMatch
Rule to compare a string against a value. The available options to do the comparison are:

exact, prefix, and regex.

Destination
Destination for traffic that matches specified conditions.

Example of a virtual service with routing based on request headers:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: my-virtual-service
spec:
  hosts:
    - "*"
  http: 
    - match: 
        - headers: 
          end-user: 
            exact: redhatter 
      route: 
        - destination: 
            host: my-svc
            subset: v2
    - route: 
        - destination:
            host: my-svc
            subset: v1

List of HTTPRoute conditions and actions.

List of HTTPMatchRequest conditions and actions.

Header rule.

Name of the HTTP header to check.

140 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

StringMatch rule for the HTTP header. The match condition is activated when the request

has an HTTP header called end-user with the value redhatter.

HTTPRouteDestination. When the match condition is activated, the request is redirected

to this route.

Destination. When the headers condition is satisfied, the traffic is redirected to the v2
subset of the my-svc service.

Default route. Without a previous matching, the traffic is routed to this destination.

The previous example routes all the traffic that has the HTTP header end-user, with a value of

redhatter, to the subset v2 of the my-svc service. When the HTTP header does not match the

defined values, the traffic goes to the subset v1 of the my-svc service.

Redirecting traffic to an endpoint based on the presence of a specific HTTP header is often used

for A/B testing and for HTTP authorization.

 

References

Destination Rule reference

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

in Istio documentation.

Virtual Service reference

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

in Istio documentation.

DO328-SM1.1-en-2-20200910 141

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/


Chapter 4 | Controlling Service Traffic

Guided Exercise

Routing Traffic Based on Request
Headers

In this exercise, you will route traffic to services in Red Hat OpenShift Service Mesh based on

request headers.

Outcomes
You should be able to create subsets of a service, and route traffic to services in a mesh,

based on request headers.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise:

[student@workstation ~]$ lab traffic-route start

 1. Log in to the OpenShift cluster.

1.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

 2. Create the headers project, and then add it to the ServiceMeshMemberRoll resource.

2.1. The required YAML files and scripts for this guided exercise are located in the /
home/student/DO328/labs/traffic-route directory. Change to this directory

using the cd command.

142 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[student@workstation ~]$ cd /home/student/DO328/labs/traffic-route
[student@workstation traffic-route]$ 

2.2. Create the headers project.

[student@workstation traffic-route]$ oc new-project headers
Now using project "headers" on server
"https://api.cluster.domain.example.com:6443".
...output omitted...

2.3. Add the headers project to the list of members in the ServiceMeshMemberRoll
resource. The ServiceMeshMemberRoll is available in the istio-system project.

Use the add-project-to-smmr.sh script to add the headers project to the list of

members in the ServiceMeshMemberRoll resource.

[student@workstation traffic-route]$ sh add-project-to-smmr.sh
servicemeshmemberroll.maistra.io/default patched

 3. Deploy a simple Vert.X application with two versions of the same service, and with /
headers as the URI prefix. This application exposes a single GET endpoint that returns:

• “Hello World!” on version v1.

• “Hello Red Hat!” on version v2.

The source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps/ in the maven-simplest and maven-simplest-v2 directories.

3.1. Examine the application.yaml file, which describes the necessary resources to

deploy the application. This file defines two different deploys of an application, a

service, a virtual service, and a gateway.

Run the oc apply -f application.yaml command to deploy the application.

[student@workstation traffic-route]$ oc apply -f application.yaml
deployment.apps/headers-v1 created
deployment.apps/headers-v2 created
service/headers created
gateway.networking.istio.io/headers-gateway created
virtualservice.networking.istio.io/headers-vs created

Now the Vert.X application is deployed in the service mesh and is accessible from

outside the mesh.

3.2. Examine the get-ingress-gateway-url.sh script, which uses the oc command

to gather the Istio ingress gateway URL.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation traffic-route]$ export  \
> GATEWAY_URL=$(sh get-ingress-gateway-url.sh)

DO328-SM1.1-en-2-20200910 143



Chapter 4 | Controlling Service Traffic

3.3. Execute the curl command several times, in combination with the GATEWAY_URL
variable, to confirm access to the application from the terminal.

[student@workstation traffic-route]$ while true; \
> do curl -s ${GATEWAY_URL}; \
> sleep 1; done
Hello World!
Hello Red Hat!
Hello Red Hat!
Hello World!
...output omitted...

When you have variants of a service without destination rules defined, Kubernetes

balances the traffic between service instances randomly.

3.4. Press Ctrl+C in the terminal to stop the curl command.

...output omitted...
Hello World!
^C
[student@workstation traffic-route]$ 

 4. Route all traffic to the v1 subset of the application.

4.1. Examine the destination-rule.yaml file, which defines the subsets of the Vert.X

application.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: headers
spec:
  host: headers
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

Service affected by the defined policies.

Name assigned to the subset.

Labels used to make the subset grouping.

The destination-rule.yaml file defines two subsets for the headers service:

• A subset called v1 grouping all the application instances that have the version:
v1 flag.

• A subset called v2 grouping all the application instances that have the version:
v2 flag.

Use the oc create command to create a destination rule.

144 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[student@workstation traffic-route]$ oc create -f destination-rule.yaml
destinationrule.networking.istio.io/headers created

4.2. Examine the virtual-service-subset-v1.yaml file, which uses destination

rules subsets to route traffic.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: headers-vs
spec:
  hosts:
    - "*"
  gateways:
    - headers-gateway
  http:
    - match:
        - uri:
            prefix: /headers
      route:
        - destination:
            host: headers
            subset: v1

Rule to accept only traffic with the /headers prefix in the URI.

Route assigned to all ingress traffic with the /headers prefix in the URI.

Destination service.

Destination service subset.

The virtual service defined in virtual-service-subset-v1.yaml redirects all

the ingress traffic for /headers to the subset v1 of the headers service.

Use the oc apply command to update the headers-vs virtual service with the new

configuration.

[student@workstation traffic-route]$ oc apply -f virtual-service-subset-v1.yaml
virtualservice.networking.istio.io/headers-vs configured

4.3. Execute the curl command several times, in combination with the GATEWAY_URL
variable, to confirm the routing of all traffic to the v1 subset.

[student@workstation traffic-route]$ while true; \
> do curl -s ${GATEWAY_URL}; \
> sleep 1; done
Hello World!
Hello World!
Hello World!
Hello World!
...output omitted...

4.4. Press Ctrl+C in the terminal to stop the curl command.

DO328-SM1.1-en-2-20200910 145



Chapter 4 | Controlling Service Traffic

...output omitted...
Hello World!
^C
[student@workstation traffic-route]$ 

 5. Route traffic based on headers.

5.1. Examine the virtual-service-with-header-subsets.yaml file, which uses

destination rules subsets in combination with header rules to route traffic.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: headers-vs
spec:
  hosts:
    - "*"
  gateways:
    - headers-gateway
  http:
    - match:
        - uri:
            prefix: /headers
          headers:
            end-user:
              exact: redhatter
      route:
        - destination:
            host: headers
            subset: v2
    - match:
        - uri:
            prefix: /headers
      route:
        - destination:
            host: headers
            subset: v1

Match condition for HTTP traffic. This rule is activated when the request URI has

the /headers prefix, and an HTTP header called end-user with redhatter
as value.

Route destination assigned to the match condition. When the match condition is

activated, the request is redirected to the v2 subset of the headers service.

When no previous match conditions are activated for traffic to /headers, the

request is redirected to the v1 subset of the headers service.

Use the oc apply command to update the headers-vs virtual service with the new

configuration.

[student@workstation traffic-route]$ oc apply \
> -f virtual-service-with-header-subsets.yaml
virtualservice.networking.istio.io/headers-vs configured

146 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

5.2. Execute the curl command in combination with the GATEWAY_URL variable.

[student@workstation traffic-route]$ curl ${GATEWAY_URL}
Hello World!

Without specifying any extra HTTP headers, the request is redirected to the v1
subset, returning “Hello World!”

5.3. Execute the curl command in combination with the GATEWAY_URL variable and

send the end-user HTTP header.

[student@workstation traffic-route]$ curl -H "end-user: redhatter" ${GATEWAY_URL}
Hello Red Hat!

When the end-user: redhatter HTTP header is added to the request, the

service mesh redirects the request to the v2 subset.

 6. Visualize traffic routing with Kiali.

6.1. Examine the get-kiali-url.sh script, which uses the oc command to gather the

Kiali URL.

Export the Kiali URL to an environment variable called KIALI_URL.

[student@workstation traffic-route]$ export KIALI_URL=$(sh get-kiali-url.sh)

6.2. Execute the firefox command in combination with the KIALI_URL variable to

access Kiali.

[student@workstation traffic-deploy]$ firefox ${KIALI_URL}

6.3. Log in as the developer user.

6.4. Click Graph to visualize the traffic.

DO328-SM1.1-en-2-20200910 147



Chapter 4 | Controlling Service Traffic

Figure 4.8: Kiali dashboard

6.5. On the Graph page, select the headers namespace.

Figure 4.9: Graph representation of the headers application

6.6. Click the Display → Traffic Animation option to add motion to the graphics.

148 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

Figure 4.10: Adding animation to the Kiali graphics

6.7. Examine the traffic-simulator.sh script. This script simulates traffic to the

deployed application, making curl calls to the ingress URL.

Run the traffic-simulator.sh script to generate some traffic.

[student@workstation traffic-deploy]$ sh traffic-simulator.sh

6.8. Observe the Kiali console to see how the traffic flows into the application to the two

service subsets. You may have to wait for a few seconds until you can see the changes

in the Graph page in Kiali.

DO328-SM1.1-en-2-20200910 149



Chapter 4 | Controlling Service Traffic

Figure 4.11: Routed traffic flow

6.9. Press Ctrl+C in the terminal to stop the traffic-simulator.sh script.

[student@workstation traffic-route]$ sh traffic-simulator.sh
^C
[student@workstation traffic-route]$ 

 7. Return to the home directory.

[student@workstation traffic-route]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-route finish

This concludes the guided exercise.

150 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

Accessing External Services

Objectives
After completing this section, you should be able to control egress traffic to access external

services.

Managing and Routing Egress Traffic in OpenShift
Service Mesh
Preceding sections introduced the capabilities of OpenShift Service Mesh to route between

services inside the mesh. It is common, however, for applications deployed in an OpenShift project

to require access to services in different projects, or even outside the OpenShift cluster. This

section describes how OpenShift Service Mesh enables the management and routing of service

requests outside the mesh. Traffic originating from services inside the mesh and targeting external

services is called egress traffic.

Figure 4.12: Ingress and Egress Traffic in Red Hat OpenShift Service Mesh

There are two elements related to egress traffic in OpenShift Service Mesh. The Istio control

plane includes egress gateways, configuring these gateways to allow all egress traffic, or to restrict

egress traffic to registered services. ServiceEntry resources register external services that are

requested by internal services.

Configuring Egress Traffic Configuration in Istio
By default, OpenShift Service Mesh allows all egress traffic. If a service invokes another service

not managed by OpenShift Service Mesh, the Envoy proxy redirects the requests to the default

DO328-SM1.1-en-2-20200910 151



Chapter 4 | Controlling Service Traffic

Istio gateway. By default, this egress gateway forwards the requests to the external network,

allowing all external requests to be serviced.

This setup allows all services in the mesh to reach any external service without restrictions. In

some cases, it is beneficial to restrict the external services allowed to a specific list of approved

services. The spec.istio.global.outboundTrafficPolicy.mode configuration value in

the ServiceMeshControlPlane resource controls this behavior.

The default value for this entry is ALLOW_ANY. This value instructs Istio to allow all egress traffic

regardless of the destination. If this configuration holds the value REGISTRY_ONLY, the gateway

only forwards requests to services explicitly registered.

Registering External Services
The REGISTRY_ONLY configuration value restricts traffic to registered external services only. To

register external services, create a ServiceEntry resource associated to the external service, as

follows:

[user@host ~]$ oc create -f - <<'EOF'
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: my-external-service 
spec:
  hosts:
  - example.external.com 
  ports:
  - number: 80
    name: http
    protocol: HTTP
  resolution: DNS
  location: MESH_EXTERNAL
  EOF

Give each service a meaningful name for easy identification.

The hostname where the external service is exposed.

The actual IP of the service must be resolved via DNS by the proxy.

MESH_EXTERNAL indicates that the service is external to the mesh.

This ServiceEntry configures Istio to allow egress traffic to example.external.com:80
from any service in the mesh.

Enabling Direct Access to External Services
Sometimes, it is necessary to access external services bypassing the Envoy proxy, such as for

extreme performance requirements or strict immutability of the requests. You can configure

Istio to denylist or allowlist ranges of IP addresses for the proxy to intercept. The Envoy

proxy intercepts all IPs belonging to any range in the global.proxy.includeIPRanges
configuration entry. Istio traffic management policies handle all requests to those IPs. The

Envoy proxy does not intercept any request targeting an IP belonging to a range in the

global.proxy.excludeIPRanges configuration entry. Those requests bypass Istio policies

and monitoring.

To update the configuration, edit the ServiceMeshControlPlane resource or use an oc
patch command similar to:

152 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[user@host ~]$ oc patch smcp basic-install -n istio-system --type merge \
> -p '{"spec":{"istio":{"global":{"proxy":{"includeIPRanges":"10.0.0.1/24"}}}}}'

Note that this configuration is global for the whole Istio installation, and affects all traffic

in all meshes managed by Istio. To apply this same behavior for specific pods, add the

traffic.sidecar.istio.io/excludeOutboundPorts or traffic.sidecar.istio.io/
includeOutboundIPRanges annotations in the Pod resource.

kind: Pod
apiVersion: v1
metadata:
  name: application_pod
  annotations:
    sidecar.istio.io/inject: 'false'
    traffic.sidecar.istio.io/includeOutboundIPRanges: '10.0.0.1/24'
    ...output omitted...
  namespace: application_project
  ...output omitted...
spec:
  ...output omitted...

 

References

Accessing External Services

https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-

control/

in Istio documentation.

DO328-SM1.1-en-2-20200910 153

https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-control/
https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-control/


Chapter 4 | Controlling Service Traffic

Guided Exercise

Accessing External Services

In this exercise, you will connect an application with OpenShift with an external service,

deployed in a namespace not managed by Istio. Those same steps are also valid for

connecting with a service deployed outside the OpenShift cluster.

Outcomes
You should be able to enable egress connections from the mesh, either globally for all

services or for a single external service.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command deploys the Financial application and the News service in two separate

projects in the Red Hat OpenShift cluster. The command also includes the Financial

application into the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-external start

 1. Review the installed applications and acknowledge the correct functioning.

1.1. Log in to the Red Hat OpenShift cluster using the developer account.

[student@workstation ~]$ source /usr/local/etc/ocp4.config
[student@workstation ~]$ oc login \
> -u ${RHT_OCP4_DEV_USER} -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.2. Retrieve the URL of the Istio ingress gateway by running the following command:

[student@workstation ~]$ ISTIO_GW=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath="{.spec.host}{.spec.path}")
[student@workstation ~]$ echo $ISTIO_GW
istio-ingressgateway-istio-system.apps.ocp4.example.com

1.3. Open a web browser to verify the application is functioning correctly. The Financial

application is accessed through the ingress gateway URL as just retrieved, with the /
frontend path appended. You can use your favorite browser to open that URL, or

use the following command to open the URL in Firefox:

[student@workstation ~]$ firefox $ISTIO_GW/frontend &

154 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

1.4. Navigate through the application to generate traffic between services. Make sure you

gather historical data, exchange data, and news. Note that the News service resides in

a different namespace, traffic-external-news, and hence is considered egress

traffic. Gathering news successfully proves that egress traffic is allowed.

Figure 4.13: News Section in the Finance Application

1.5. Observe the application graph Kiali generates for the Financial application. You can

find the Kiali URL in the Red Hat OpenShift console, or use the following command:

[student@workstation ~]$ oc get route kiali \
> -n istio-system -o jsonpath="https://{.spec.host}{.spec.path}"
https://kiali-istio-system.apps.ocp4.example.com

Open the resulting URL, and log in user the developer credentials. Go to the Graph
menu and review the Service graph for the traffic-external namespace. The

graph should be similar to the following one:

DO328-SM1.1-en-2-20200910 155



Chapter 4 | Controlling Service Traffic

Figure 4.14: Service Graph for the Finance Application

For details about how to log in and navigate through Kiali interface refer to the

Observing Service Interactions with Kiali section in the Chapter 3, Observing a Service

Mesh chapter.

Note that the News service does not appear in the graph. Instead, a generic

PassthroughCluster restricted namespace shows. This generic entry proves that

the service mesh is not managing external traffic to the News service.

 2. Restrict egress traffic globally to registered services only.

2.1. Update Istio configuration and define outbound traffic policy to allow egress traffic

only to registered services. To do so, edit the basic-install control plane, and set

the global.outboundTrafficPolicy.mode entry to REGISTRY_ONLY.

[student@workstation ~]$ oc patch smcp basic-install \
> --type merge -n istio-system \
> -p '{"spec":{"istio":{"global":{"outboundTrafficPolicy":
{"mode":"REGISTRY_ONLY"}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

2.2. Validate the external News service is not available anymore. Get back to the Financial

application front end in your browser and navigate to the News section in the left

menu. The application shows that no news can be loaded.

Alternatively, you can check how Kiali detects the failing connection and updates the

service graph:

156 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

Figure 4.15: Service Graph Displaying Blocked Egress Traffic

Note

Browser cache may cause the application to still display the news on the page. Force

reload the web page to instruct the browser to obtain the new page, or use browser

instructions to delete cache, and reload the page.

The Service graph in Kiali may also require some time to update. Some arrows may

look different, depending on the time span selected and traffic analyzed.

 3. Create a ServiceEntry resource for the News service. The presence of that resource

includes the News service in the registry of allowed targets for egress traffic.

3.1. Retrieve the host where the external News service is available, either through the

OpenShift console or through CLI commands:

• Log in to the OpenShift console and select to the traffic-external-news
project. Within this project, navigate to the Networking → Routes menu entry.

The only route available shows the host used to publish the service.

• Use the oc get route command to retrieve the host defined in the news route

in the traffic-external-news project:

[student@workstation ~]$ NEWS_HOST=$(oc get route news -n traffic-external-news \
> -o jsonpath="{.spec.host}")

3.2. Create a ServiceEntry resource in the traffic-external namespace.

You can use the file ~/DO328/solutions/traffic-external/

DO328-SM1.1-en-2-20200910 157



Chapter 4 | Controlling Service Traffic

news_serviceentry.yml as a template, and replace the host with the one

obtained in the previous step.

[student@workstation ~]$ cd ~/DO328/solutions/traffic-external/
[student@workstation traffic-external]$ sed -e "s/_NEWS_HOST_/$NEWS_HOST/g" \
> news_serviceentry.yml | oc create -n traffic-external -f -
serviceentry.networking.istio.io/news created
[student@workstation traffic.external]$ cd ~
[student@workstation ~]$ 

3.3. Validate now the external News service is allowed. Get back to the Financial

application front end in your browser and navigate to the News section in the left

menu. The application shows that news are again displayed.

After reviewing the application, you can also review how Kiali is now displaying the

News service as a managed service:

Figure 4.16: Service Graph Displaying Allowed Egress Traffic

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-external finish

This concludes the guided exercise.

158 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

Lab

Controlling Service Traffic

Performance Checklist
In this lab, you will deploy multiple versions of a service in the service mesh, route traffic

based on request headers, and restrict the egress traffic.

Outcomes
You should be able to deploy applications on Red Hat OpenShift Service Mesh, route traffic

inside the mesh and restrict egress traffic.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

This command deploys the Financial application, the News service, and the AB Proxy in

separate projects in the Red Hat OpenShift cluster. The command also includes the Financial

application in the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-mesh start

The following project information is needed for this exercise. This lab uses two projects:

• traffic-mesh: financial application composed of multiple services. This project is used

to deploy a variation of the front end service and to set routes based on request headers.

• traffic-mesh-news: project deployed outside of the service mesh to provide a news

feed for the financial application. This project is used to configure restrictions to the

egress traffic in OpenShift Service Mesh.

Variations of the front end service that you will use in this lab:

• v2: initial deployment of the front end service that has a dark header.

• beta: new version of the front end service that has a red header.

To help with the testing, the traffic-mesh-proxy project is deployed and ready to

use in the cluster. This project contains an application that works as a proxy for the main

application, adding custom HTTP headers to the requests.

To configure the behavior of the proxy, the following helper scripts are available:

• proxy-set-beta-config.sh: configures the proxy to add the version:beta header

to all requests.

DO328-SM1.1-en-2-20200910 159



Chapter 4 | Controlling Service Traffic

• proxy-set-v2-config.sh: configures the proxy to add the version:v2 header to all

requests.

1. The companion scripts for this lab are located in ~/DO328/labs/traffic-mesh. Change

to that directory using the cd command.

[student@workstation ~]$ cd ~/DO328/labs/traffic-mesh
[student@workstation traffic-mesh]$ 

2. Log in to the OpenShift cluster as a unprivileged user and verify that the lab projects are

successfully deployed.

3. Configure an ingress gateway named traffic-mesh-gateway to allow ingress HTTP

traffic on port 80 to enter the mesh.

4. Deploy a new beta version of the frontend service with the following characteristics:

• Name: frontend-beta.

• Use the quay.io/redhattraining/ossm-frontend:beta image and port 3000.

• The container needs a environment variable called REACT_APP_GW_ENDPOINT. This

variable gathers the value for the key GW_ADDR stored in the frontend-cm config map.

5. Split the frontend service into subsets with the following characteristics:

• Name: frontend-destination-rule.

• Create a group with all the instances that have the version: v2 tag and assign to this

group the name v2.

• Create a group with all the instances that have the version: beta tag and assign to this

group the name beta.

6. Create a virtual service named frontend-vs, which uses the ingress gateway and redirects

the frontend traffic following this rules:

• Traffic with a header matching version: beta is redirected to the beta subset.

• Traffic with wrong or missing headers is redirected to the v2 subset.

Note

All traffic for the front end service uses the /frontend prefix.

7. Test the routing configuration using the traffic-mesh-proxy application.

8. Restrict egress traffic globally to registered services only.

9. Test the restricted egress policy using the traffic-mesh-proxy application.

10. Allow egress traffic for the news service. Assign the name news-se to the required custom

resource.

11. Test the egress traffic using the traffic-mesh-proxy application.

12. Return to the home directory.

160 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[student@workstation traffic-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab traffic-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab traffic-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 161



Chapter 4 | Controlling Service Traffic

Solution

Controlling Service Traffic

Performance Checklist
In this lab, you will deploy multiple versions of a service in the service mesh, route traffic

based on request headers, and restrict the egress traffic.

Outcomes
You should be able to deploy applications on Red Hat OpenShift Service Mesh, route traffic

inside the mesh and restrict egress traffic.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

This command deploys the Financial application, the News service, and the AB Proxy in

separate projects in the Red Hat OpenShift cluster. The command also includes the Financial

application in the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-mesh start

The following project information is needed for this exercise. This lab uses two projects:

• traffic-mesh: financial application composed of multiple services. This project is used

to deploy a variation of the front end service and to set routes based on request headers.

• traffic-mesh-news: project deployed outside of the service mesh to provide a news

feed for the financial application. This project is used to configure restrictions to the

egress traffic in OpenShift Service Mesh.

Variations of the front end service that you will use in this lab:

• v2: initial deployment of the front end service that has a dark header.

• beta: new version of the front end service that has a red header.

To help with the testing, the traffic-mesh-proxy project is deployed and ready to

use in the cluster. This project contains an application that works as a proxy for the main

application, adding custom HTTP headers to the requests.

To configure the behavior of the proxy, the following helper scripts are available:

• proxy-set-beta-config.sh: configures the proxy to add the version:beta header

to all requests.

162 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

• proxy-set-v2-config.sh: configures the proxy to add the version:v2 header to all

requests.

1. The companion scripts for this lab are located in ~/DO328/labs/traffic-mesh. Change

to that directory using the cd command.

[student@workstation ~]$ cd ~/DO328/labs/traffic-mesh
[student@workstation traffic-mesh]$ 

2. Log in to the OpenShift cluster as a unprivileged user and verify that the lab projects are

successfully deployed.

2.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation traffic-mesh]$ source /usr/local/etc/ocp4.config

2.2. Log in to OpenShift as the developer user.

[student@workstation traffic-mesh]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

2.3. Change to the traffic-mesh project.

[student@workstation traffic-mesh]$ oc project traffic-mesh
Now using project "traffic-mesh" on server ...

2.4. Verify the status of the traffic-mesh project pods.

[student@workstation traffic-mesh]$ oc get pods
NAME                           READY   STATUS    RESTARTS   AGE
currency-v1-67bfdfd775-59f8v   2/2     Running   0          66s
exchange-v2-5d5c669777-s9zgk   2/2     Running   0          66s
frontend-v2-5cf6499bcd-hfp44   2/2     Running   0          66s
history-v1-8656f7d44f-ddp7c    2/2     Running   0          66s

2.5. Verify the status of the traffic-mesh-news project pods.

[student@workstation traffic-mesh]$ oc get pods -n traffic-mesh-news
NAME                   READY   STATUS    RESTARTS   AGE
news-cfcd97f4f-9nfkr   1/1     Running   0          10m

2.6. Verify the status of the traffic-mesh-proxy project pods.

[student@workstation traffic-mesh]$ oc get pods -n traffic-mesh-proxy
NAME                        READY   STATUS    RESTARTS   AGE
ab-proxy-7bc6db76dc-bfjgp   1/1     Running   0          10m

DO328-SM1.1-en-2-20200910 163



Chapter 4 | Controlling Service Traffic

3. Configure an ingress gateway named traffic-mesh-gateway to allow ingress HTTP

traffic on port 80 to enter the mesh.

3.1. Create a Gateway object YAML file, for example traffic-mesh-gateway.yaml, to

store the object definition.

The completed object definition is available in the ~/DO328/solutions/traffic-
mesh/traffic-mesh-gateway.yaml file. Use it to verify your file and fix mistakes.

3.2. Create the gateway configuration with oc create.

[student@workstation traffic-mesh]$ oc create -f traffic-mesh-gateway.yaml
gateway.networking.istio.io/traffic-mesh-gateway created

4. Deploy a new beta version of the frontend service with the following characteristics:

• Name: frontend-beta.

• Use the quay.io/redhattraining/ossm-frontend:beta image and port 3000.

• The container needs a environment variable called REACT_APP_GW_ENDPOINT. This

variable gathers the value for the key GW_ADDR stored in the frontend-cm config map.

4.1. Create a Deployment object YAML file, for example new-frontend-
deployment.yaml, to store the object definition.

The completed object definition is available in the ~/DO328/solutions/traffic-
mesh/new-frontend-deployment.yaml file. You can use the solution file to verify

and fix mistakes in your file.

4.2. Create the deployment with the oc create command.

[student@workstation traffic-mesh]$ oc create -f new-frontend-deployment.yaml
deployment.apps/frontend-beta created

5. Split the frontend service into subsets with the following characteristics:

• Name: frontend-destination-rule.

• Create a group with all the instances that have the version: v2 tag and assign to this

group the name v2.

• Create a group with all the instances that have the version: beta tag and assign to this

group the name beta.

5.1. Create a DestinationRule object YAML file, for example frontend-destination-
rule.yaml, to store the object definition.

The completed object definition is available in the ~/DO328/solutions/traffic-
mesh/frontend-destination-rule.yaml file. You can use the solution file to

verify and fix mistakes in your file.

5.2. Create the destination rules with the oc create command.

[student@workstation traffic-mesh]$ oc create -f frontend-destination-rule.yaml
destinationrule.networking.istio.io/frontend-destination-rule created

164 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

6. Create a virtual service named frontend-vs, which uses the ingress gateway and redirects

the frontend traffic following this rules:

• Traffic with a header matching version: beta is redirected to the beta subset.

• Traffic with wrong or missing headers is redirected to the v2 subset.

Note

All traffic for the front end service uses the /frontend prefix.

6.1. Create a VirtualService object YAML file, for example frontend-virtual-
service.yaml, to store the object definition.

The completed object definition is available in the ~/DO328/solutions/traffic-
mesh/frontend-virtual-service.yaml file. You can use the solution file to

verify and fix mistakes in your file.

6.2. Create the virtual service with the oc create command.

[student@workstation traffic-mesh]$ oc create -f frontend-virtual-service.yaml
virtualservice.networking.istio.io/frontend-vs created

7. Test the routing configuration using the traffic-mesh-proxy application.

7.1. Export the traffic-mesh-proxy URL to an environment variable called

AB_PROXY_URL.

[student@workstation traffic-mesh]$ export AB_PROXY_URL=$(oc get route ab-proxy \
> -n traffic-mesh-proxy -o template --template '{{ "http://" }}{{ .spec.host }}')

7.2. Use the proxy-set-v2-config.sh helper script to configure the proxy to append

the version: v2 headers to all requests.

[student@workstation traffic-mesh]$ sh proxy-set-v2-config.sh
Updated proxy to send version:v2 headers

7.3. Use a web browser to verify the route configuration for the version: v2 HTTP

headers. The Financial application is accessible through the AB proxy URL. Use your

favorite browser to open that URL, or use the following command to open the URL in

Firefox:

[student@workstation traffic-mesh]$ firefox ${AB_PROXY_URL}/frontend

All requests through the AB proxy append the version: v2 header, so the web UI

shows a dark header.

7.4. Use the proxy-set-beta-config.sh helper script to configure the proxy to

append the version: beta headers to all requests.

[student@workstation traffic-mesh]$ sh proxy-set-beta-config.sh
Updated proxy to send version:beta headers

DO328-SM1.1-en-2-20200910 165



Chapter 4 | Controlling Service Traffic

7.5. Reload the web page in the browser to verify the route configuration for the version:
beta HTTP headers.

All requests through the AB proxy append the version: beta header, so the web UI

shows a red header.

Note

Browser cache may cause the application to still display the dark header. Force the

web page to reload, instructing the browser to obtain the new page, or use browser

instructions to delete the cache and reload the page.

8. Restrict egress traffic globally to registered services only.

8.1. Update the Istio configuration and define outbound traffic policy to allow egress traffic

only to registered services.

[student@workstation traffic-mesh]$ oc patch smcp basic-install \
> --type merge -n istio-system \
> -p '{"spec":{"istio":{"global":{"outboundTrafficPolicy":
{"mode":"REGISTRY_ONLY"}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

9. Test the restricted egress policy using the traffic-mesh-proxy application.

9.1. Reload the web page in your browser, and then navigate to the News section. The

application reports that it cannot load any news.

Note

The propagation of the new policy can take several seconds; you might need to wait

to see the changes.

10. Allow egress traffic for the news service. Assign the name news-se to the required custom

resource.

10.1. Retrieve the host where the external news service is available.

[student@workstation traffic-mesh]$ oc get route news -n traffic-mesh-news \
> -o jsonpath="{.spec.host}"
news-traffic-mesh-news.apps.example.com

10.2. Create a service entry resource YAML file, for example service-entry.yaml, to

store the object definition.

A template object definition is available in the ~/DO328/solutions/traffic-
mesh/service-entry.yaml file. You can use the solution file to verify and fix

mistakes in your file.

Note

Remember to set the host to the correct one, obtained in the previous step.

10.3. Create the service entry with the oc create command.

166 DO328-SM1.1-en-2-20200910



Chapter 4 | Controlling Service Traffic

[student@workstation traffic-mesh]$ oc create -f service-entry.yaml
serviceentry.networking.istio.io/news-se created

11. Test the egress traffic using the traffic-mesh-proxy application.

11.1. Reload the web page in your browser and navigate to the News section. The application

shows a list of news.

12. Return to the home directory.

[student@workstation traffic-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab traffic-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab traffic-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 167



Chapter 4 | Controlling Service Traffic

Summary

In this chapter, you learned:

• Red Hat OpenShift Service Mesh implements the sidecar pattern injecting an Envoy sidecar into

application pods.

• A Gateway resource configures how Istio handles ingress and egress connections and exposes

services deployed in the mesh.

• DestinationRule resources define how to route traffic to subsets of services based on

different conditions, such as request headers.

• Gateways either allow all egress traffic or restrict egress traffic to services that are registered as

ServiceEntry resources.

168 DO328-SM1.1-en-2-20200910



Chapter 5

Releasing Applications with
OpenShift Service Mesh

Goal Release applications with canary and mirroring
release strategies.

Objectives • Release application services with a safe canary
rollout.

• Deploy a "mirror" service to test a new service
with a realistic load.

Sections • Deploying an Application with Canary Releases
(and Guided Exercise)

• Deploying an Application with a Mirror Launch
(and Guided Exercise)

Lab Releasing Applications with OpenShift Service
Mesh

DO328-SM1.1-en-2-20200910 169



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Deploying an Application with Canary
Releases

Objectives
After completing this section, you should be able to release application services with a safe canary

rollout.

Describing Canary Releases
Deploying software is a complex and risky process. After a release, developers carry out

verification activities to check that the deployment is successful, such as watching logs,

monitoring metrics and validating that the changes are applied. If something goes wrong, the team

rolls back the deployment to the previous stable version.

A simple release approach is to deploy the new version replacing the old one. However, this

deployment strategy immediately exposes all users to any defects introduced by the new version.

Canary releases address this problem using a progressive and safe deployment approach where

both versions of the application, the old and the new, run in parallel until the new version is

completely validated and ready for all users. The new version, also called the canary, initially

receives only a small amount of all application traffic. Therefore, if something goes wrong with this

new version of the application, a minimal number of users are affected. As you gain confidence

with how the canary works, you progressively route more traffic to it.

The complete process is as follows:

• Initially, send a small amount of the traffic to the canary. The old version receives most of the

traffic, whereas only a small portion goes to the new version. This ensures that the new version

can be tested in production without compromising the stability of the service for the majority of

users.

• Test the new version against the limited amount of traffic you configured in the previous step.

When you are satisfied with the results, increase the amount of traffic sent to the canary. Repeat

this step to slowly make the canary available to more users. Continue this process until the

canary receives most of the traffic, while monitoring test results and performance.

• After demonstrating that the new version is sufficiently stable, route the remaining traffic to the

canary. At this point, the old version stops receiving traffic. You can remove the old version of

the application from the cluster or leave it there temporarily in case you need the option of a

quick rollback.

Use Cases
Canary deployment is a good strategy whenever you want to have more control and increase the

level of confidence in your deployments. The following cases are scenarios where a canary release

approach makes sense:

• Your application handles high loads and you want to perform load or stress testing on a new

version.

• You want to validate the new version against a reduced group of users to analyze how this

affects your key performance indicators. User groups can be defined according to different

170 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

conditions, such as user type or location. For example, a common scenario is releasing canaries

only for internal users or trusted clients.

• You need a safe strategy to deploy a new critical version.

Deploying a Canary Release with OpenShift
Service Mesh
Canary releases are not specific to OpenShift Service Mesh. You can adopt a canary strategy if

you a have a way to control how traffic is distributed between each version. The most common

case is using a router or a load balancer that lets you manage traffic routing.

In Kubernetes, you can use the canary strategy by creating a new deployment with the same

service selector label as the old version, and adjusting the replica ratio between the old and the

new version. The number of replicas of each version dictates the amount traffic that each version

receives. Therefore, if both versions, the old and the new, scale to one replica, each of them

receives 50% of the traffic.

However, if you want to send only 1% of the traffic to the canary, you would need to scale the old

version to 99 replicas to adjust the replica ratio. This is a clear problem, as it requires more cluster

resources and leads to an inefficient use of those resources. Moreover, this solution only allows you

to control how traffic is routed based on percentages.

With OpenShift Service Mesh, you can take advantage of the Istio traffic management features to

handle traffic distribution without a dependency on replica ratios. Furthermore, Istio offers various

traffic routing policies, so you are not restricted to a strategy based on traffic percentage.

Virtual services, in combination with destination rules, can define traffic routes for each version.

Each version is released as a Deployment and represented by a DestinationRule subset,

which filters the service endpoints for that version. Figure 5.1 shows how these configuration

resources relate in a canary scenario.

Figure 5.1: Example of Resources Configuration for Canary Releases

First, assume that you have already deployed an application called myapp. The Deployment and

the Service resources also already exist. The service that represents the application looks like

the following:

DO328-SM1.1-en-2-20200910 171



Chapter 5 | Releasing Applications with OpenShift Service Mesh

apiVersion: v1
kind: Service
metadata:
  labels:
    app: myapp
  name: myapp
spec:
  selector:
    app: myapp
  ...

The deployment for the initial version of the application (v1) looks like the following:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-v1
spec:
  ...
  template:
    metadata:
      labels:
        app: myapp
        version: v1
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
        ...

Pay special attention to the version label of the deployment. Labels are the main property used

to identify the version of the application, and to split traffic between versions. Also note that you

must enable the injection of the Envoy sidecar by setting the sidecar.istio.io/inject
annotation to "true". This allows the application to use Istio routing features.

Deploying a Canary Release

To deploy a canary release, you must create a new deployment for the new version and split traffic

between versions using a virtual service and a destination rule.

1. Create a Deployment resource for the new version. For example, for v2, create a new

Deployment that looks like this:

kind: Deployment
metadata:
  name: myapp-v2
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: myapp
        version: v2
      annotations:

172 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

        sidecar.istio.io/inject: "true"
    spec:
      containers:
        ...

As the example shows, the new deployment must meet the following requirements:

Use a unique name for this deployment, different from the name of the old deployment.

Specify the same application label used in the old deployment, so that the service is

aware that the new version belongs to the same application as the old version.

Change the value of the version label so that OpenShift Service Mesh can distinguish

between versions when routing traffic.

2. Create a DestinationRule resource to define the subsets that represent each version.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: myapp
spec:
  host: myapp
  subsets:
    - name: v1
      labels:
        version: v1
    - name: v2
      labels:
        version: v2

This destination rule defines the following configuration:

The name of the targeted service.

A subset for v1, filtering labels specified in the myapp-v1 deployment. In this case,

version: v1.

A subset for v2, filtering labels specified in the myapp-v2 deployment. In this case,

version: v2.

3. Create a VirtualService resource to define the traffic route for each version. Associate

each subset with a route destination and add a weight.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: myapp
spec:
  hosts:
    - "*"
  gateways:
    - my-gateway
  http:
    - route:
      - destination:
          host: myapp
          subset: v1
          port:

DO328-SM1.1-en-2-20200910 173



Chapter 5 | Releasing Applications with OpenShift Service Mesh

            number: 3000
        weight: 90
      - destination:
          host: myapp
          subset: v2
          port:
            number: 3000
        weight: 10

There are two destination configurations defined in this virtual service, one for each

version. v1 receives 90% of the traffic, whereas v2 receives the remaining 10%. Each

destination must contain the following information:

The service hostname. It must be the same as the host field defined in the destination

rule.

The name of one of the subsets defined in the associated destination rule.

The percentage of traffic routed to the version.

If you need to route traffic using more advanced criteria, then you can use

spec.http.match for HTTP traffic or spec.tcp.match for TCP traffic.

After you create these resources, ensure that traffic is being routed as expected. To verify the

routing, send traffic to your application and check that each version receives the expected amount

of traffic. You can check your application responses, inspect the logs, or use Kiali, as discussed in

Inspecting Canary Traffic with Kiali.

When you are ready to send more traffic to your canary, update the route weights or matching

filters. For example, if you want to increase the traffic share received by the canary to 60%, update

the weight field of each subset to adjust the new percentages.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: myapp
spec:
  ...
  http:
    - route:
      - destination:
          host: myapp
          subset: v1
          ...
        weight: 40
      - destination:
          host: myapp
          subset: v2
          ...
        weight: 60

Similarly, if you need to quickly roll back to the previous version, update the weights to direct more

traffic to it.

174 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Splitting Traffic Using Kiali
Kiali provides a web user interface to observe and manage the services in your service mesh in real

time. As well as providing observability of the platform, Kiali offers configuration features to help

you manage the platform. With Kiali, you can edit the configuration of Istio traffic management

features to control canary releases. In particular, you can edit resource files in yaml format to

modify the configuration of Istio resources. You can also use traffic management wizards to

balance traffic between versions in a user-friendly interface.

Kiali can help you to control how traffic is routed to different versions without explicitly creating

the VirtualService and the DestinationRule resources. Instead of creating or editing these

resources in OpenShift, for example with the oc command, you can use the Kiali configuration

capabilities.

In the Kiali menu, navigate to Services to open the services page.

Next, select your project in the Namespace selector and click the name of your application

service to go to the service configuration page:

Figure 5.2: Kiali Services Page

On the lower part of the page, information about workloads, virtual services, and destination rules

is distributed in tabs. If you have created the deployments but have not yet created any Istio traffic

management resources, neither Virtual Services nor Destination Rules should exist on the screen,

as shown in the following example:

DO328-SM1.1-en-2-20200910 175



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Figure 5.3: Service Resources Section in Kiali

Open the weighted routing wizard to configure traffic splitting. Select Create Weighted Routing
from the Actions list in the upper right.

Figure 5.4: Kiali Weighted Routing Wizard Selector

In the Create Weighted Routing window that displays, use the sliders to adjust the traffic

percentage assigned to each version.

176 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Figure 5.5: Kiali Weighted Routing Wizard

If you need to setup additional options, such as binding TLS or gateway binding, click Show
Advanced Options.

Note

Currently, the weighted routing wizard has limited capabilities and only handles

very basic scenarios, such as routing traffic based on percentages. Moreover, it is

only capable of managing VirtualService and DestinationRule resources

created with the wizard. It does not allow the management of VirtualService
and DestinationRule resources created directly in OpenShift.

When you need to increase the amount of traffic directed to the canary, reopen the wizard and

adjust the sliders.

Warning

There is a bug in Kiali UI v1.12 that causes the deletion of the gateway field when

updating the configuration of the weighted routing wizard. If you encounter this

problem, edit the wizard configuration again to restore the gateway value.

Inspecting Canary Traffic with Kiali
You can inspect the traffic flow in the Kiali Graph section and visualize how traffic is distributed to

each version. Click Graph in the navigation pane to visualize the graph. Make sure that you select

Versioned app graph as the graph type and Requests percentage as the graph edge

labels.

DO328-SM1.1-en-2-20200910 177



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Figure 5.6: Kiali Traffic Graph

Notice how Kiali identifies that the two versions belong to the same application. You can also see

the amount of traffic that each version receives. This allows you to verify that your traffic splitting

configuration works as expected.

Configuring Istio Resources in Kiali
As well as providing wizards to manage traffic, Kiali also allows you to edit the configuration of Istio

resources in yaml format. To edit the configuration of these resources, select Services in the Kiali

navigation pane, select the resource you want to edit, and then edit the yaml code.

Editing the configuration of a resource from the Kiali UI has the same result as editing the resource

using the oc command.

Additionally, you can modify Istio configuration in Kiali by editing the yaml code in the Istio Config

section. Select Istio config in navigation pane. Select the resource you want to edit, and then

click the YAML tab. In this tab, you can view the specification in yaml format and modify it.

178 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Figure 5.7: YAML edition screen in Kiali

 

References

Canary Deployments using Istio

https://istio.io/blog/2017/0.1-canary/

Istio 1.4 Docs: Destination Rule

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

Istio 1.4 Docs: Virtual Service

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

DO328-SM1.1-en-2-20200910 179

https://istio.io/blog/2017/0.1-canary/
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/


Chapter 5 | Releasing Applications with OpenShift Service Mesh

References

For more information, refer to the Kiali overview section in the Red Hat Service Mesh

Guide at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

180 DO328-SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index


Chapter 5 | Releasing Applications with OpenShift Service Mesh

Guided Exercise

Deploying an Application with Canary
Releases

In this exercise, you will use Red Hat OpenShift Service Mesh to deploy different versions of

a service using canary releases.

Outcomes
You should be able to:

• Roll out versions of an application as canary releases using OpenShift Service Mesh.

• Specify the traffic percentage directed to each canary deployment.

• Visualize traffic distribution and identify errors using Kiali.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

Run the following command on workstation to setup the environment.

[student@workstation ~]$ lab release-canary start

 1. Review the resource files provided. The setup script used these files to deploy the initial

version of the vertx-greet application.

The vertx-greet application exposes a GET endpoint that returns a greeting message.

It also implements a basic rate limit feature to help you understand one of the scenarios

in this exercise. Note that this limit is not the same as the rate limit feature included in

OpenShift Service Mesh. The source code is available in the Git repository at https://
github.com/RedHatTraining/DO328-apps/ in the vertx-greet directory.

1.1. Navigate to the directory where the cluster resource files for this exercise are located.

[student@workstation ~]$ cd ~/DO328/labs/release-canary/

1.2. Review the deployment-v1.yaml resource file.

DO328-SM1.1-en-2-20200910 181



Chapter 5 | Releasing Applications with OpenShift Service Mesh

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vertx-greet-v1
spec:
  selector:
    matchLabels:
      app: vertx-greet
  replicas: 1
  template:
    metadata:
      labels:
        app: vertx-greet
        version: v1
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: vertx-greet
          image: quay.io/redhattraining/ossm-vertx-greet:1.0
          ports:
            - containerPort: 8080

This file defines the Deployment resource for the initial version of the application.

Each version is associated to a deployment. The initial version is v1, which is reflected

both in metadata.name and spec.template.metadata.labels.version.

1.3. Review the service.yaml resource file.

apiVersion: v1
kind: Service
metadata:
  labels:
    app: vertx-greet
  name: vertx-greet
spec:
  ports:
    - name: http
      port: 8080
      protocol: TCP
      targetPort: 8080
  selector:
    app: vertx-greet

The service directs internal traffic to the deployment pods. You do not need to

change this service or create new ones when deploying canary releases.

1.4. Review the gateway.yaml resource file.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: vertx-greet-gateway
spec:

182 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

  selector:
    istio: ingressgateway
  servers:
    - port:
        number: 80
        name: http
        protocol: HTTP
      hosts:
        - "*"

The istio gateway sits at the edge of the service mesh and allows incoming

connections to the application.

1.5. Review the virtual-service.yaml resource file.

apiVersion: networking.istio.io/v1alpha3
  kind: VirtualService
  metadata:
    name: vertx-greet
  spec:
    hosts:
    - "*"
    gateways:
    - vertx-greet-gateway
    http:
    - route:
      - destination:
          host: vertx-greet
          port:
            number: 8080

The Istio virtual service defines traffic routes from the istio gateway to the application

and defines traffic splitting for each version. Initially, the virtual service only includes

one route, as only one version of the application is deployed.

 2. Verify that the initial version application is deployed and running.

2.1. Run the following command to load the environment variables for this exercise.

[student@workstation release-canary]$ source /usr/local/etc/ocp4.config

2.2. Log in to OpenShift as the developer user.

[student@workstation release-canary]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

Ensure that you are using the release-canary project.

[student@workstation release-canary]$ oc project release-canary
...output omitted...

Next, perform the rest of the steps in this project.

DO328-SM1.1-en-2-20200910 183



Chapter 5 | Releasing Applications with OpenShift Service Mesh

2.3. Check that all the resources have been deployed by the setup script.

[student@workstation release-canary]$ oc get \
> deployment,pod,service,virtualservice,gateway
NAME                             READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/vertx-greet-v1   1/1     1            1           5m38s

NAME                                 READY   STATUS    RESTARTS   AGE
pod/vertx-greet-v1-bd87877dd-6rj2m   2/2     Running   0          5m38s

NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
service/vertx-greet   ClusterIP   172.30.37.155   <none>        8080/TCP   5m38s

NAME                                             GATEWAYS                ...
virtualservice.networking.istio.io/vertx-greet   [vertx-greet-gateway]   ...

NAME                                              AGE
gateway.networking.istio.io/vertx-greet-gateway   5m38s

2.4. Use the oc get route command to get the URL of the istio gateway. Save the

result into a variable for later use.

[student@workstation release-canary]$ GATEWAY_URL=$(oc get route istio-
ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

2.5. Verify that the application works. Make a request to the route URL that you stored in

the GATEWAY_URL variable.

[student@workstation release-canary]$ curl $GATEWAY_URL
Hello World!

 3. Generate the canary release. Deploy version 2 of the vertx-greet application by creating

a new deployment. After the new version is deployed, route a portion of the traffic to the

new version.

3.1. Make a copy of the deployment-v1.yaml file and name it deployment-v2.yaml.

[student@workstation release-canary]$ cp deployment-v1.yaml deployment-v2.yaml

3.2. Modify the deployment-v2.yaml file to introduce the changes for version 2.

Change the value of metadata.name to vertx-greet-v2, change the value of

spec.template.metadata.labels.version to v2. Finally, add the GREETING
environment variable with the value Hello Red Hat!.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vertx-greet-v2
spec:
  selector:
    matchLabels:

184 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

      app: vertx-greet
  replicas: 1
  template:
    metadata:
      labels:
        app: vertx-greet
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: vertx-greet
          image: quay.io/redhattraining/ossm-vertx-greet:1.0
          ports:
            - containerPort: 8080
          env:
          - name: GREETING
            value: "Hello Red Hat!"

You can see the complete deployment for version 2 at ~/DO328/solutions/
release-canary/deployment-v2.yaml.

3.3. Deploy version 2 by creating the new deployment.

[student@workstation release-canary]$ oc create -f deployment-v2.yaml
deployment.apps/vertx-greet-v2 created

3.4. Review the destination-rule.yaml file provided.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: vertx-greet
spec:
  host: vertx-greet
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

The file defines two subsets, one for each version. Each subset represents

a portion of the traffic, and includes a name and a label that associates the

subset with the deployment version. The version is the one specified by the

spec.template.metadata.labels.version property in each Deployment
resource.

3.5. Create a DestinationRule with the destination-rule.yaml file.

[student@workstation release-canary]$ oc create -f destination-rule.yaml
destinationrule.networking.istio.io/vertx-greet created

DO328-SM1.1-en-2-20200910 185



Chapter 5 | Releasing Applications with OpenShift Service Mesh

3.6. Modify the VirtualService resource with the oc edit command to send 80%

of the traffic to v1 and the remaining 20% to v2. Associate the existing destination

with the v1 subset and add a weight of 80. Next, add another destination for the v2
subset with a weight of 20.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

Apply the changes in the text editor.

...output omitted...
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  ...output omitted...
  name: vertx-greet
  ...output omitted...
spec:
  hosts:
  - "*"
  gateways:
  - vertx-greet-gateway
  http:
  - route:
    - destination:
        host: vertx-greet
        subset: v1
        port:
          number: 8080
      weight: 80
    - destination:
        host: vertx-greet
        subset: v2
        port:
          number: 8080
      weight: 20
...output omitted...

Save your changes to the resource, and then close the editor.

3.7. Run test_canary.py to check that the portion of responses expected for each

service corresponds to the weights configured in the previous steps. This script

sends a sequence of 50 requests to the specified URL and shows the result. From a

previous step, you should have the gateway route URL stored in the GATEWAY_URL
environment variable. Execute the script passing this variable as the first parameter.

[student@workstation release-canary]$ ./test_canary.py $GATEWAY_URL

Wait until the script ends.

...output omitted...
Hello World!
Hello World!
Hello World!
Hello World!

186 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Hello World!
Hello World!
Hello World!
Hello Red Hat!
...output omitted...
Total requests: 50
* 'Hello World!' responses: 42 (84.0%)
* 'Hello Red Hat!' responses: 8 (16.0%)
* Errors: 0 (0.0%)

Notice how the response percentages for each version show values close to the

weights that you specified in the VirtualService resource. Expect to see small

deviations in the traffic statistics when compared to the configured weights, as there

is a degree of random variation in traffic splitting.

 4. Create another canary release for version 3. This version includes a rate limit feature, which

establishes the maximum number of requests per second that the application can handle.

The application will reject requests received at a rate that exceeds this limit. After deploying

version 3, modify the traffic weights so that traffic is now distributed between the three

versions.

4.1. Make a copy of the deployment-v2.yaml file and name it deployment-v3.yaml.

[student@workstation release-canary]$ cp deployment-v2.yaml deployment-v3.yaml

4.2. Introduce the changes for version 3 in deployment-v3.yaml.

Change the name to vertx-greet-v3, change the value of

spec.template.metadata.labels.version to v3, change the GREETING
value, and add a new environment variable MAX_REQUESTS_PER_SECOND with a

value of 1.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vertx-greet-v3
spec:
  selector:
    matchLabels:
      app: vertx-greet
  replicas: 1
  template:
    metadata:
      labels:
        app: vertx-greet
        version: v3
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: vertx-greet
          image: quay.io/redhattraining/ossm-vertx-greet:1.0
          ports:
            - containerPort: 8080
          env:

DO328-SM1.1-en-2-20200910 187



Chapter 5 | Releasing Applications with OpenShift Service Mesh

          - name: GREETING
            value: "Hello v3!"
          - name: MAX_REQUESTS_PER_SECOND
            value: "1"

You can see the complete deployment for version 3 at ~/DO328/solutions/
release-canary/deployment-v3.yaml.

4.3. Deploy version 3 by creating the new deployment.

[student@workstation release-canary]$ oc create -f deployment-v3.yaml
deployment.apps/vertx-greet-v3 created

4.4. Modify the DestinationRule resource. Use the oc edit command to create a

new subset for version 3.

[student@workstation release-canary]$ oc edit destinationrule vertx-greet

In the text editor, add the subset for v3.

...output omitted...
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  ...output omitted...
  name: vertx-greet
  ...output omitted...
spec:
  host: vertx-greet
  subsets:
  - labels:
      version: v1
    name: v1
  - labels:
      version: v2
    name: v2
  - labels:
      version: v3
    name: v3
...output omitted...

Save and close the editor to apply the changes.

4.5. Modify the VirtualService resource to assign a small portion of traffic to v1 and

balance the rest between v2 and v3. Use the oc edit command to modify the

weight property of v1 and v2, and to add a new destination node for v3.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

In the text editor, modify the weight property of v1 and v2, and add a new

destination for v3.

188 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

...output omitted...
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  ...output omitted...
  name: vertx-greet
  ...output omitted...
spec:
  hosts:
  - "*"
  gateways:
  - vertx-greet-gateway
  http:
  - route:
    - destination:
        host: vertx-greet
        subset: v1
        port:
          number: 8080
      weight: 10
    - destination:
        host: vertx-greet
        subset: v2
        port:
          number: 8080
      weight: 45
    - destination:
        host: vertx-greet
        subset: v3
        port:
          number: 8080
      weight: 45
...output omitted...

Save and close the editor to apply the changes.

4.6. Run test_canary.py again to check that the portion of responses expected for

each service corresponds to the weights configured. Execute test_canary.py
passing GATEWAY_URL as a parameter.

[student@workstation release-canary]$ ./test_canary.py $GATEWAY_URL
...output omitted...
Hello Red Hat!
Hello World!
Hello Red Hat!
Hello Red Hat!
Hello v3!
Server responded with error  HTTP Error 503: Service Unavailable

Server responded with error  HTTP Error 503: Service Unavailable

Hello World!
...output omitted...

DO328-SM1.1-en-2-20200910 189



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Total requests: 50
* 'Hello World!' responses: 5 (10.0%)
* 'Hello Red Hat!' responses: 18 (36.0%)
* 'Hello v3!' responses: 3 (6.0%)
* Errors: 24 (48.0%)

Notice how version 3 only returns a few correct responses, even though there are a

significant number of errors. The new version, which limits the number of requests per

second, is unable to attend all requests when they come at a high rate.

 5. Inspect traffic with Kiali to gain more insight into traffic routing.

5.1. Obtain the Kiali web console url.

[student@workstation release-canary]$ KIALI_URL=$(oc get route \
> -n istio-system kiali \
> -o jsonpath='http://{.spec.host}')

5.2. Open the Kiali web console in the web browser.

[student@workstation release-canary]$ firefox $KIALI_URL &

5.3. Click Log in with OpenShift. Log in using the developer account. Find your

credentials in the /usr/local/etc/ocp4.config classroom configuration file.

The user name is in the RHT_OCP4_DEV_USER variable and the password is in

RHT_OCP4_DEV_PASSWORD.

5.4. In the Kiali web console navigation pane, click Graph to open the graph view.

5.5. Click Select a namespace → release-canary to gather metrics for the release-
canary project.

Figure 5.8: Kiali namespace selector

5.6. Click No edge labels → Requests percentage to activate traffic percentage labels

in graph edges.

5.7. Click Display → Traffic Animation to include traffic animation in the graph.

5.8. Specify a longer duration for metric queries to make sure you can inspect all recent

traffic. Click Last 1m → Last 30m to show the graph with metrics from the last 30

minutes.

190 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

5.9. Take a moment to inspect the traffic graph. Whereas v1 and v2 are working as

expected, v3 is causing the errors. Click the v3 rounded square representing the

workload. Notice how many of the requests to this version result in an error.

Figure 5.9: Kiali traffic graph with errors

The new rate limiting feature introduced in v3 causes this behavior, as it does not

allow for more than one request per second. When you run the test_canary.py
script, you send a sequence of 50 requests to the application. Roughly 45% of them

are routed to v3, as you specified in the VirtualService resource. The script

does not apply any delay between requests, so as soon as one is completed, the

next one is sent. Under this scenario, v3 is receiving more than one request per

second. Therefore, you must modify the traffic share so that v3 does not receive

more requests than it can handle.

 6. Reduce the traffic share of version 3. Modify the VirtualService resource to adjust the

traffic load of version 3.

6.1. Use the oc edit command to modify the VirtualService resource again and

reduce the traffic share of v3.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

In the text editor, reduce the weight of v3 and send the rest to v2.

...output omitted...
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: vertx-greet
spec:

DO328-SM1.1-en-2-20200910 191



Chapter 5 | Releasing Applications with OpenShift Service Mesh

  hosts:
  - "*"
  gateways:
  - vertx-greet-gateway
  http:
  - route:
    - destination:
        host: vertx-greet
        subset: v1
        port:
          number: 8080
      weight: 10
    - destination:
        host: vertx-greet
        subset: v2
        port:
          number: 8080
      weight: 88
    - destination:
        host: vertx-greet
        subset: v3
        port:
          number: 8080
      weight: 2
...output omitted...

Save and close the editor to apply the changes.

6.2. Run test_canary.py again. Increase the number of requests to 100 by adding the

requests parameter, so that you can see some requests routed to v3.

[student@workstation release-canary]$ ./test_canary.py $GATEWAY_URL --requests 100

Wait until the script ends.

...output omitted...
Total requests: 100
* 'Hello World!' responses: 5 (5.0%)
* 'Hello Red Hat!' responses: 93 (93.0%)
* 'Hello v3!' responses: 2 (2.0%)
* Errors: 0 (0.0%)

Now, v3 does not limit requests, as only 2% of the traffic is sent to this version.

Therefore, v3 returns no errors.

Note

If you do not see any requests routed to v3, run the test_canary.py script again.

The traffic weight assigned to v3 is now very low and it is possible that v3 receives 0

out of 100 requests.

Similarly, errors can occur if, by chance, two requests are directed to v3 in less than

a second. Rerun the test_canary.py script in that case too.

192 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

 7. Inspect the traffic graph in Kiali again and verify that v3 is working as expected after the

traffic reduction.

7.1. Switch back to the Kiali console in the browser.

7.2. Click Graph in the Kiali console navigation pane. Select Last 5min in the metrics

duration selector to only show traffic for the last 5 minutes. Check that the traffic

graph does not show any errors.

Figure 5.10: Kiali traffic graph without errors

 8. Return to the home directory.

[student@workstation release-canary]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-canary finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 193



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Deploying an Application with a Mirror
Launch

Objectives
After completing this section, you should be able to deploy a "mirror" service to test a new service

with a realistic load.

Testing in Production
When releasing new versions of services, it is often necessary to test the new versions of the

services in a production environment. Testing in production is important because it is difficult to

simulate production workloads or realistic production data in testing or staging environments.

Testing in production consists of:

• Deploying the new version of the service in a production environment alongside the existing

version of the service.

• Sending a copy of production traffic to both the new service and the existing service. This is

known as traffic mirroring.

• Verifying the correct behavior of the new service.

The responses sent back to clients are sent from the previous version of the service, so there is

little risk of service disruption.

Traffic mirroring is also beneficial when the services involved are stateful. When the new version of

the service starts functioning, it starts with a state known to be compatible with the current state

of the old version. Sending the same traffic to both stateful services allows them to maintain a

synchronized state. When the new version of the service becomes the production version, it will

hold the right state.

These situations may be complex to solve programmatically, but OpenShift Service Mesh features

make them feasible. Traffic mirroring allows testing the new service in production, with production

requests, without service disruption, and keeping the state of both versions of stateful services

synchronized.

Note

Traffic mirroring is also known as Mirror Launches or Dark Launches, referring

to the capacity of releasing new versions of services while keeping them hidden

from clients.

Mirroring in OpenShift Service Mesh
OpenShift Service Mesh uses DestinationRule resources to define subsets (usually

service versions) and the destination entry in VirtualService resources to route the

requests between subsets. OpenShift Service Mesh provides traffic mirroring by using the same

DestinationRule resources and introducing a mirror entry in the VirtualService route:

194 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: my_virtual_service
spec:
  hosts:
    - target_host
  http:
  - route:
    - destination:
        host: old_service_name
        subset: old_subset
    mirror: 
      host: new_service_name
      subset: new_subset

The mirror entry defines the service to which Istio is sending request copies.

The name of the service that receives the mirrored traffic.

The subset of hosts that receive the mirrored traffic, as defined in the DestinationRule.

DO328-SM1.1-en-2-20200910 195



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Note

The mirror entry is an attribute of the objects forming the http array. If you find

the indentation and representation in yaml format to be confusing, consider the

following snippet of the same resource in json format:

{
    "apiVersion": "networking.istio.io/v1alpha3",
    "kind": "VirtualService",
    "metadata": {
        "name": "my_virtual_service",
    },
    "spec": {
        "hosts": [
            "target_host"
        ],
        "http": [
            {
                "route": [
                    {
                        "destination": {
                            "host": "old_service_name",
                            "subset": "old_subset"
                        }
                    }
                ],
                "mirror": {
                    "host": "new_service_name",
                    "subset": "new_subset"
                }
           }
        ]
    }
}

Istio does not distinguish whether the mirror host is an external or an internal service. Istio can

mirror traffic to any service with a related VirtualService resource.

Mirroring a Percentage of the Traffic

There are situations where it is not needed or desirable to mirror all the traffic to the new service.

For example, when maintaining the latest state of the service is not required, or when reducing

traffic between services is more important than testing all requests. In those situations, Istio and

OpenShift Service Mesh allow defining a percentage of the mirrored traffic:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: my_virtual_service
spec:
  hosts:
    - target_host
  http:

196 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

  - route:
    - destination:
        host: old_service_name
        subset: old_subset
    mirror:
      host: new_service_name
      subset: new_subset
    mirror_percent: 10

In this example, only 10% of the requests sent to old_service_name are mirrored to

new_service_name.

Selecting the Appropriate Deployment Strategy
Canary releases and traffic mirroring are both deployment strategies that help you validate the

release of new service versions. Depending on your deployment and testing plan, you may want to

use one or the other. To pick the right strategy, follow these guidelines:

• Use canary releases when you want to deploy a new version directly in production while

minimizing the risk. Also, choose this strategy if you need to introduce real users in the validation

process of the new version. By picking canary releases, you accept that a small portion of your

users might experience problems derived from the new version.

• Use traffic mirroring when you want to test the new version with production load without making

the version available to the public. For example, traffic mirroring can be suitable if you want

to test how the application responds to 100% of the production load. This approach is less

risky than canary releases. If something goes wrong, it does not affect users. However, traffic

mirroring is also more limited, because you can not include real users in the validation process.

Combining both strategies is also an interesting option. First, you use traffic mirroring to validate

that the new version works correctly with production traffic. Next, you deploy the new version as a

canary to start validating it against real users.

 

References

Mirroring

https://archive.istio.io/v1.4/docs/tasks/traffic-management/mirroring/

in Istio documentation.

DO328-SM1.1-en-2-20200910 197

https://archive.istio.io/v1.4/docs/tasks/traffic-management/mirroring/


Chapter 5 | Releasing Applications with OpenShift Service Mesh

Guided Exercise

Deploying an Application with a Mirror
Launch

In this exercise, you will perform a Dark Launch release of an application and control the

amount of traffic mirrored to it.

The application you are deploying is a stateful variant of the greetings service: the service

respond request with a predefined response in v1, and a configurable response in v2. The

status kept by both versions includes the amount of requests received. This status is stored

in memory, so it is lost if the service is restarted.

Outcomes
You should be able to mirror all or part of the traffic from one service to another to execute a

Dark Launch release.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command creates the release-dark project in your OpenShift cluster and deploys a

single service on it. Although not needed for this exercise, you can review the source code of

this service at https://github.com/RedHatTraining/DO328-apps/ in the vertex-
greet directory.

[student@workstation ~]$ lab release-dark start

 1. Validate that the application has successfully deployed.

1.1. Run the following command to load the environment variables created in Guided

Exercise: Creating a Lab Environment:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

198 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Use the release-dark namespace for the remainder of this exercise.

[student@workstation ~]$ oc project release-dark
Now using project "release-dark" on server ...output omitted...

1.4. Verify the application is running by checking its logs and pod status.

[student@workstation ~]$ oc get pods
NAME                             READY   STATUS    RESTARTS   AGE
vertx-greet-v1-f44b9976c-skbch   2/2     Running   0          3m11s

The actual name of your pods may be different.

 2. Deploy a new version of the application, but continue sending traffic to the old version. The

new version uses the same image as the old one, quay.io/redhattraining/vertx-
greet:latest, but introduces a new environment variable that changes the greeting

message: GREETING="Hola Mundo!".

2.1. Create the deployment resource for the same quay.io/redhattraining/vertx-
greet:latest image. Use vertx-greet-v2 as the deployment name, and set the

version label to v2. Inject the GREETING environment variable into the deployed

container.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vertx-greet-v2
spec:
  selector:
    matchLabels:
      app: vertx-greet
      version: v2
  replicas: 1
  template:
    metadata:
      labels:
        app: vertx-greet
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: vertx-greet
          image: quay.io/redhattraining/ossm-vertx-greet:latest
          ports:
            - containerPort: 8080
          resources:

DO328-SM1.1-en-2-20200910 199



Chapter 5 | Releasing Applications with OpenShift Service Mesh

            limits:
              memory: "200Mi"
              cpu: "250m"
          env:
          - name: GREETING
            value: "Hola Mundo!"

Save the Deployment resource in a file named deployment-v2.yml. You can use

the provided solution file at ~/DO328/solutions/release-dark/deployment-
v2.yml to check your file and correct any errors.

2.2. Create the Deployment resource in OpenShift using the oc create command:

[student@workstation ~]$ oc create -f deployment-v2.yml
deployment.apps/vertx-greet-v2 created

2.3. Validate the pod for the new version of the service is deployed and running:

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
vertx-greet-v1-f44b9976c-dps95    2/2     Running   0          5m4s
vertx-greet-v2-7849968c47-mq7hc   2/2     Running   0          2m39s

 3. Generate traffic to the v1 service. Visualize in Grafana, and verify v2 is not receiving traffic.

3.1. Retrieve the gateway URL where the service is exposed. Open a new terminal and

execute the following command:

[student@workstation ~]$ GATEWAY_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

3.2. In the same terminal, execute this script to send a request to the vertx-greet
service every 0.5 seconds:

[student@workstation ~]$ watch -p -n0.5 curl -s $GATEWAY_URL 

Keep this script active until the end of the exercise.

3.3. Return to the previous terminal window. Find the URL to Grafana by examining the

routes available in the istio-namespace. You can use the OpenShift console, or

execute the following command:

[student@workstation ~]$ GRAFANA_URL=$(oc get route grafana \
> -n istio-system -o jsonpath='https://{.spec.host}')

Open the URL in the Firefox web browser. Use the lessons learned in Collecting

Service Metrics, and the instructions from Guided Exercise: Collecting Service Metrics,

to log into Grafana using your developer credentials.

[student@workstation ~]$ firefox $GRAFANA_URL &

3.4. Go to the Istio Workload Dashboard by navigating to Home → Istio → Istio
Workload Dashboard. In the dashboard, select the release-dark namespace

200 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

and the vertx-greet-v1 workload. Note how the Incoming Request Volume
indicates the service is receiving around two requests per second.

Leave this browser window open so that later you can review the amount of traffic

received.

3.5. Validate that the state of the service changes with the requests. Execute the

following command several times and see how the request number increases as the

service receives requests. Note also that only the v1 service is showing, indicating no

traffic is sent to the v2 service:

[student@workstation ~]$ oc get pods -o name | \
> xargs -L 1 oc logs --tail 1 -c vertx-greet
INFO: Attending greeting request #109 from vertx-greet-v1-f44b9976c-pkq44
[student@workstation ~]$ 

 4. Configure OpenShift Service Mesh to mirror all requests sent to v1 to v2. Visualize in

Grafana, and verify v2 is receiving the same amount of traffic. Validate that both versions

change the state synchronously.

4.1. Update the DestinationRule resource to include the new version of the service as

a subset. Edit the resource directly in the OpenShift console, or use the oc edit
DestinationRule vertx-greet -n release-dark command to open the

resource in your default editor. Add a subset named v2 matching the version: v2
label:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: vertx-greet
  labels:
    kiali_wizard: weighted_routing
spec:
  host: vertx-greet
  subsets:
  - labels:

DO328-SM1.1-en-2-20200910 201



Chapter 5 | Releasing Applications with OpenShift Service Mesh

      version: v1
    name: v1
  - labels:
      version: v2
    name: v2

4.2. Update the VirtualService to mirror traffic to the v2 subset. In this way, a copy

of all requests sent to the v1 subset of the vertx-greet host are also sent to the

v2 subset. Use the OpenShift console, or the oc edit VirtualService vertx-
greet -n release-dark command to edit the VirtualService resource:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: vertx-greet
  labels:
    kiali_wizard: weighted_routing
spec:
  hosts:
  - "*"
  gateways:
  - vertx-greet-gateway
  http:
  - route:
    - destination:
        host: vertx-greet
        subset: v1
        port:
          number: 8080
    mirror:
      host: vertx-greet
      subset: v2

4.3. Return to the browser window and observe that the amount of traffic sent to v1 is

roughly the same. Open a new browser tab to the same URL. Navigate back to the

Istio Workload Dashboard and select the release-dark namespace. This

time, select the vertx-greet-v2 workload.

Review the Incoming Request Volume graph. Note the amount of traffic received

by the v2 version of the service is the same as the traffic received by the v1 version.

4.4. Validate that both services change the state synchronously. Both services should

update the request count on each request. Restart both services, so they start with

the same initial state:

[student@workstation ~]$ oc delete pod --all -n release-dark
pod "vertx-greet-v1-f44b9976c-pkq44" deleted
pod "vertx-greet-v2-7849968c47-s2s5p" deleted

Wait several seconds for both services to restart, and then use the following

command to check the status of both services. Run the command several times to

validate that both services increase the request count, keeping their internal states

synchronized:

202 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

[student@workstation ~]$ oc get pods -o name | \
> xargs -L 1 oc logs --tail 1 -c vertx-greet
May 12, 2020 12:52:06 PM io.vertx.greet.GreetServer lambda$0
INFO: Attending greeting request #55 from vertx-greet-v1-f44b9976c-pq457
May 12, 2020 12:52:07 PM io.vertx.greet.GreetServer lambda$0
INFO: Attending greeting request #55 from vertx-greet-v2-7849968c47-66fpg

 5. Mirror 10% of the requests sent to v1 to v2. Visualize in Grafana, and verify v2 receives

roughly one tenth of the traffic v1 receives.

5.1. Update the VirtualService resource to restrict traffic mirroring to 10% using

the OpenShift console or the oc edit VirtualService vertx-greet -n
release-dark command:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: vertx-greet
  labels:
    kiali_wizard: weighted_routing
spec:
  hosts:
  - "*"
  gateways:
  - vertx-greet-gateway
  http:
  - mirror:
      host: vertx-greet
      subset: v2
    mirror_percent: 10
    route:
    - destination:
        host: vertx-greet
        subset: v1
        port:
          number: 8080
    

5.2. Return to your browser window. Observe that the traffic sent to v2 has reduced to

one tenth of the traffic received by v2. Verify that the traffic sent to v1 is still the

same as before, roughly two requests per second.

 6. Accept the v2 version of the service by transferring all traffic to this version. Update the

VirtualService resource to route all traffic to the v2 subset using the OpenShift

console or the oc edit VirtualService vertx-greet -n release-dark
command:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  creationTimestamp: "2020-05-12T10:30:01Z"
  generation: 4

DO328-SM1.1-en-2-20200910 203



Chapter 5 | Releasing Applications with OpenShift Service Mesh

  labels:
    kiali_wizard: weighted_routing
  name: vertx-greet
  namespace: release-dark
  resourceVersion: "20336884"
  selfLink: /apis/networking.istio.io/v1alpha3/namespaces/release-dark/
virtualservices/vertx-greet
  uid: 46be6a2b-1a89-4c98-9c5b-d342566329da
spec:
  gateways:
  - vertx-greet-gateway
  hosts:
  - '*'
  http:
  - route:
    - destination:
        host: vertx-greet
        port:
          number: 8080
        subset: v2

Confirm that the v2 service is receiving all traffic by reviewing the Incoming Request
Volume graph for both versions. The v1 service receives no requests, while the v2 service

receives all requests.

 7. Finalize the traffic generation process. In the window terminal running the watch
command, press Ctrl+C to terminate the process. Then, you can close that terminal.

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-dark finish

This concludes the guided exercise.

204 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Lab

Releasing Applications with OpenShift
Service Mesh

Performance Checklist
In this lab, you will deploy different versions of a service using canary releases, and use

service mesh mirroring to perform a dark launch.

Outcomes
You should be able to:

• Deploy a new version of a service using canary releases and redirect a percentage of

traffic to the new version.

• Mirror traffic between two versions of a microservice using Red Hat OpenShift Service

Mesh mirroring.

Before You Begin
To perform this lab, ensure you have:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift client (oc) installed on workstation.

You will be using an application that simulates an online payment processor for an e-

commerce application in this lab. The application has two microservices:

• gateway: Written in Java using the Quarkus framework. It simulates processing of

payments using multiple payment gateways like banks, bitcoin, mobile wallets and more.

This microservice is specific to this application and is not equivalent to the ingress

gateway.

• payment: Written in Java using the Quarkus framework. The payment microservice

acts as an API gateway and the single point of communication for traffic coming into the

service mesh. It communicates with the gateway microservice to process payments.

The source code for the application is available in the payments folder in the GitHub

repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this

exercise.

[student@workstation ~]$ lab release-mesh start

The lab release-mesh start command creates a new project called release-mesh,

owned by the developer user (the value of the $RHT_OCP4_DEV_USER environment

variable in your /usr/local/etc/ocp4.config file). It deploys an initial version of the

payment and gateway microservices in this project.

DO328-SM1.1-en-2-20200910 205

https://github.com/RedHatTraining/DO328-apps


Chapter 5 | Releasing Applications with OpenShift Service Mesh

You can examine the template that deploys the microservices in the ~/DO328/labs/
release-mesh/app-deployment.yaml file.

1. Log in to OpenShift as the developer user and inspect the deployed microservices in the

release-mesh project. Verify that the payment and gateway microservices are deployed

and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

2. Test the initial version (v1) of the payment and gateway microservices. Invoke the /pay/
{amount} endpoint relative to the service mesh gateway URL, where amount is an integer

value representing a random amount.

You can also use the test_app.py script in the /home/student/DO328/labs/
release-mesh folder to test the application. This script takes the service mesh gateway

URL as an argument (./test_app.py $GW_URL). The script sends 50 requests and

prints the version, and percentage of traffic processed by each version of the payment
microservice. It also prints the error rate (if any) during request processing.

Verify that you see the response only from v1 of the payment microservice. Verify that all

payment requests are processed by v1 of the gateway microservice.

Note

You cannot directly invoke the gateway microservice. Inspect the log output

from the gateway microservice to verify the version of the microservice that is

processing the payments.

3. The development team is ready to deploy and test v2 of the payment microservice. This

version has several new enhancements that must be tested in a production environment.

Deploy v2 of the payment microservice. A prebuilt, publicly available container image

is provided in the Quay.io registry at the URL quay.io/redhattraining/ossm-
payment:2.0.

4. Route 10% of all traffic to v2 of the payment microservice. v1 of the payment microservice

should still handle most of the traffic (90%).

Note

A virtual service resource for the payment microservice was created by the lab start

script.

Use the test_app.py script to verify the traffic split.

5. The developers are also working on a new version of the gateway microservice. The

developers are not yet ready to deploy the new version of the gateway microservice to

206 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

process payments. They want to test this new version with real production data and monitor

the performance characteristics of the microservice.

Deploy v2 of the gateway microservice. A prebuilt, publicly available container image is

provided to you in the Quay.io registry at the URL quay.io/redhattraining/ossm-
gateway:2.0.

Enable mirroring of traffic from v1 of the gateway microservice to v2 of the gateway
microservice. v1 of the gateway microservice should still exclusively process all transactions.

Use the app_test.py script to test the changes and verify that you do not see any errors.

Inspect the log output from both versions of the gateway microservice to verify that all

transactions sent to v1 are mirrored to v2.

Note

A virtual service and destination rule resource has already been created by the lab

start script.

6. Return to the home directory.

[student@workstation release-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab release-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab release-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 207



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Solution

Releasing Applications with OpenShift
Service Mesh

Performance Checklist
In this lab, you will deploy different versions of a service using canary releases, and use

service mesh mirroring to perform a dark launch.

Outcomes
You should be able to:

• Deploy a new version of a service using canary releases and redirect a percentage of

traffic to the new version.

• Mirror traffic between two versions of a microservice using Red Hat OpenShift Service

Mesh mirroring.

Before You Begin
To perform this lab, ensure you have:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift client (oc) installed on workstation.

You will be using an application that simulates an online payment processor for an e-

commerce application in this lab. The application has two microservices:

• gateway: Written in Java using the Quarkus framework. It simulates processing of

payments using multiple payment gateways like banks, bitcoin, mobile wallets and more.

This microservice is specific to this application and is not equivalent to the ingress

gateway.

• payment: Written in Java using the Quarkus framework. The payment microservice

acts as an API gateway and the single point of communication for traffic coming into the

service mesh. It communicates with the gateway microservice to process payments.

The source code for the application is available in the payments folder in the GitHub

repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this

exercise.

[student@workstation ~]$ lab release-mesh start

The lab release-mesh start command creates a new project called release-mesh,

owned by the developer user (the value of the $RHT_OCP4_DEV_USER environment

variable in your /usr/local/etc/ocp4.config file). It deploys an initial version of the

payment and gateway microservices in this project.

208 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps


Chapter 5 | Releasing Applications with OpenShift Service Mesh

You can examine the template that deploys the microservices in the ~/DO328/labs/
release-mesh/app-deployment.yaml file.

1. Log in to OpenShift as the developer user and inspect the deployed microservices in the

release-mesh project. Verify that the payment and gateway microservices are deployed

and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

1.1. Run the following command to load the environment variables defined in the guided

exercise where you created the lab environment:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Set the current project to release-mesh:

[student@workstation ~]$ oc project release-mesh
Now using project "release-mesh" on server ...output omitted...

1.4. Verify that the pods for the initial version(v1) of the payment and gateway
microservices are deployed, and in a Running state:

[student@workstation ~]$ oc get pods
NAME                          READY   STATUS    RESTARTS   AGE
gateway-v1-5484d6fb59-8vrxf   2/2     Running   0          111s
payment-v1-d74848855-whncc    2/2     Running   0          111s

2. Test the initial version (v1) of the payment and gateway microservices. Invoke the /pay/
{amount} endpoint relative to the service mesh gateway URL, where amount is an integer

value representing a random amount.

You can also use the test_app.py script in the /home/student/DO328/labs/
release-mesh folder to test the application. This script takes the service mesh gateway

URL as an argument (./test_app.py $GW_URL). The script sends 50 requests and

prints the version, and percentage of traffic processed by each version of the payment
microservice. It also prints the error rate (if any) during request processing.

Verify that you see the response only from v1 of the payment microservice. Verify that all

payment requests are processed by v1 of the gateway microservice.

Note

You cannot directly invoke the gateway microservice. Inspect the log output

from the gateway microservice to verify the version of the microservice that is

processing the payments.

DO328-SM1.1-en-2-20200910 209



Chapter 5 | Releasing Applications with OpenShift Service Mesh

2.1. Run the oc get route command to gather the service mesh gateway URL.

[student@workstation ~]$ GW_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

2.2. Test the application. Make a request to the /pay/{amount} endpoint relative to the

gateway URL (GW_URL).

[student@workstation ~]$ curl $GW_URL/pay/10
[payment-v1] OK. Transaction id is 6493

Note the response from v1 of the payment microservice. Your transaction id may be

different.

2.3. Test the application using the test_app.py script.

Do not add any relative endpoints to the gateway URL. It automatically generates a

random amount when invoking the payment microservice.

[student@workstation ~]$ cd ~/DO328/labs/release-mesh
[student@workstation release-mesh]$ ./test_app.py $GW_URL
Canary Release Test
Sending 50 requests to istio-ingressgateway ...output omitted...
[payment-v1] OK. Transaction id is 9918
[payment-v1] OK. Transaction id is 8137
...output omitted...
[payment-v1] OK. Transaction id is 7685

#### Stats ####

Total requests: 50
* '[payment-v1] OK' responses: 50 (100.0%)
* Errors: 0 (0.0%)

Note that payment-v1 is used to process all requests.

2.4. Use the oc logs command to view the logs for the gateway microservice. Get the

pod name from the oc get pods command.

[student@workstation release-mesh]$ oc logs gateway-v1-5484d6fb59-8vrxf \
> -c gateway-v1
...output omitted...
Processing payment for $10 through gateway-v1...
Processing payment for $0 through gateway-v1...
Processing payment for $1 through gateway-v1...
Processing payment for $2 through gateway-v1...
...output omitted...
Processing payment for $48 through gateway-v1...
Processing payment for $49 through gateway-v1...

The logging output shows only the log message and has been trimmed to fit the width

of the page. You will see time stamps, the class name, and the logging level printed

before the log messages in your console.

Note that gateway-v1 is processing payments for all requests.

210 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

3. The development team is ready to deploy and test v2 of the payment microservice. This

version has several new enhancements that must be tested in a production environment.

Deploy v2 of the payment microservice. A prebuilt, publicly available container image

is provided in the Quay.io registry at the URL quay.io/redhattraining/ossm-
payment:2.0.

3.1. You can copy and create the deployment YAML resource file for v2 from the app-
deployment.yaml file that was originally used to deploy the microservice.

The full deployment YAML resource is also available in the /home/student/DO328/
solutions/release-mesh/payment-v2-deploy.yaml file.

The YAML resource snippet to deploy v2 is as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    app: payment
    version: v2
  name: payment-v2
spec:
  replicas: 1
  selector:
    matchLabels:
      app: payment
      version: v2
  template:
    metadata:
      labels:
        app: payment
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
      - name: payment-v2
        image: quay.io/redhattraining/ossm-payment:2.0
        imagePullPolicy: Always
        ports:
...output omitted...

Deploy v2 using the oc create command.

[student@workstation release-mesh]$ oc create -f payment-v2-deploy.yaml
deployment.apps/payment-v2 created

3.2. Verify that v2 of the payment microservice is deployed and in Running state.

[student@workstation release-mesh]$ oc get pods
NAME                          READY   STATUS    RESTARTS   AGE
gateway-v1-5484d6fb59-8vrxf   2/2     Running   0          46m
payment-v1-d74848855-whncc    2/2     Running   0          46m
payment-v2-64d475cb84-wc7cc   2/2     Running   0          22s

DO328-SM1.1-en-2-20200910 211



Chapter 5 | Releasing Applications with OpenShift Service Mesh

4. Route 10% of all traffic to v2 of the payment microservice. v1 of the payment microservice

should still handle most of the traffic (90%).

Note

A virtual service resource for the payment microservice was created by the lab start

script.

Use the test_app.py script to verify the traffic split.

4.1. Create a destination rule resource for the payment microservice.

The full destination rule YAML resource is also available in the /home/student/
DO328/solutions/release-mesh/payment-dest-rule.yaml file.

The YAML resource snippet to create the destination rule is as follows:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: payment-dr
spec:
  host: payment
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

Create the destination rule using the oc create command.

[student@workstation release-mesh]$ oc create -f payment-dest-rule.yaml
destinationrule.networking.istio.io/payment-dr created

4.2. Edit the payment-vs virtual service resource.

[student@workstation release-mesh]$ oc edit vs payment-vs

Split the traffic between v1 and v2.

...output omitted...
spec:
  gateways:
  - payment-api-gw
  hosts:
  - '*'
  http:
  - route:
    - destination:
        host: payment
        port:
          number: 8080

212 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

        subset: v1
      weight: 90
    - destination:
        host: payment
        port:
          number: 8080
        subset: v2
      weight: 10

Save your changes.

4.3. Test the application using the test_app.py script.

[student@workstation release-mesh]$ ./test_app.py $GW_URL
...output omitted...
#### Stats ####

Total requests: 50
* '[payment-v1] OK' responses: 48 (96.0%)
* '[payment-v2] OK' responses: 2 (4.0%)
* Errors: 0 (0.0%)

Note that the traffic is split between v1 and v2 (approximately 90/10 ratio). The split

may not be exact. The service mesh tries to maintain the ratio between versions as

much as possible.

5. The developers are also working on a new version of the gateway microservice. The

developers are not yet ready to deploy the new version of the gateway microservice to

process payments. They want to test this new version with real production data and monitor

the performance characteristics of the microservice.

Deploy v2 of the gateway microservice. A prebuilt, publicly available container image is

provided to you in the Quay.io registry at the URL quay.io/redhattraining/ossm-
gateway:2.0.

Enable mirroring of traffic from v1 of the gateway microservice to v2 of the gateway
microservice. v1 of the gateway microservice should still exclusively process all transactions.

Use the app_test.py script to test the changes and verify that you do not see any errors.

Inspect the log output from both versions of the gateway microservice to verify that all

transactions sent to v1 are mirrored to v2.

Note

A virtual service and destination rule resource has already been created by the lab

start script.

5.1. You can copy and create the deployment YAML resource file for v2 from the app-
deployment.yaml file that was originally used to deploy the microservice.

The full deployment YAML resource is also available in the /home/student/DO328/
solutions/release-mesh/gateway-v2-deploy.yaml file.

The YAML resource snippet to deploy v2 is as follows:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

DO328-SM1.1-en-2-20200910 213



Chapter 5 | Releasing Applications with OpenShift Service Mesh

  labels:
    app: gateway
    version: v2
  name: gateway-v2
spec:
  replicas: 1
  selector:
    matchLabels:
      app: gateway
      version: v2
  template:
    metadata:
      labels:
        app: gateway
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
      - name: gateway-v2
        image: quay.io/redhattraining/ossm-gateway:2.0
        imagePullPolicy: Always
        ports:
...output omitted...

Deploy v2 using the oc create command.

[student@workstation release-mesh]$ oc create -f gateway-v2-deploy.yaml
deployment.apps/gateway-v2 created

5.2. Verify that v2 of the gateway microservice is deployed and in Running state.

[student@workstation release-mesh]$ oc get pods
NAME                          READY   STATUS    RESTARTS   AGE
gateway-v1-5484d6fb59-8vrxf   2/2     Running   0          64m
gateway-v2-f4dc796bd-c72zc    2/2     Running   0          49s
payment-v1-d74848855-whncc    2/2     Running   0          64m
payment-v2-64d475cb84-wc7cc   2/2     Running   0          18m

5.3. Edit the destination rule for the gateway microservice and add details for v2. You can

get the name of the destination rule resource using the oc get dr command.

[student@workstation release-mesh]$ oc edit dr gateway-dr

Add the details for v2 as follows:

...output omitted...
spec:
  host: gateway
  subsets:
  - labels:
      version: v1

214 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

    name: v1
  - labels:
      version: v2
    name: v2

Save your changes.

5.4. Edit the virtual service for the gateway microservice and enable mirroring. You can get

the name of the virtual service resource using the oc get vs command.

[student@workstation release-mesh]$ oc edit vs gateway-vs

Enable mirroring as follows:

...output omitted...
spec:
  gateways:
  - payment-api-gw
  hosts:
  - gateway
  http:
  - mirror:
      host: gateway
      subset: v2
    route:
    - destination:
        host: gateway
        subset: v1
      weight: 100

Save your changes.

5.5. Test the application using the test_app.py script.

[student@workstation release-mesh]$ ./test_app.py $GW_URL
...output omitted...
#### Stats ####

Total requests: 50
* '[payment-v1] OK' responses: 44 (88.0%)
* '[payment-v2] OK' responses: 6 (12.0%)
* Errors: 0 (0.0%)

Note that the traffic split between v1 and v2 remains the same (approximately 90/10

ratio) as configured earlier.

5.6. Use the oc logs command to view the logs for both versions of the gateway
microservice. Get the pod names from the oc get pods command.

[student@workstation release-mesh]$ oc logs gateway-v1-5484d6fb59-8vrxf \
> -c gateway-v1
...output omitted...
Processing payment for $0 through gateway-v1...
Processing payment for $1 through gateway-v1...
Processing payment for $2 through gateway-v1...

DO328-SM1.1-en-2-20200910 215



Chapter 5 | Releasing Applications with OpenShift Service Mesh

...output omitted...
Processing payment for $48 through gateway-v1...
Processing payment for $49 through gateway-v1...

[student@workstation release-mesh]$ oc logs gateway-v2-f4dc796bd-c72zc \
> -c gateway-v2
...output omitted...
Processing payment for $0 through gateway-v2...
Processing payment for $1 through gateway-v2...
Processing payment for $2 through gateway-v2...
...output omitted...
Processing payment for $48 through gateway-v2...
Processing payment for $49 through gateway-v2...

The logging output shows only the log message, and has been trimmed to fit the width

of the page. Notice the time stamps, the class name, and the logging level printed

before the log messages in your console.

Note that all requests sent to gateway-v1 are mirrored to gateway-v2.

6. Return to the home directory.

[student@workstation release-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab release-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab release-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-mesh finish

This concludes the lab.

216 DO328-SM1.1-en-2-20200910



Chapter 5 | Releasing Applications with OpenShift Service Mesh

Summary

In this chapter, you learned:

• Red Hat OpenShift Service Mesh supports canary releases. You can control the percentage of

traffic sent to new versions of microservices.

• You can configure Traffic routing to specific versions based on URL and HTTP header matching.

• Kiali can be used to visualize the traffic flow in the service mesh and to configure weighted

routing.

• Red Hat OpenShift Service Mesh supports traffic mirroring to perform dark launches. You can

use this feature to test newer versions of your microservices without impacting currently running

services in production.

DO328-SM1.1-en-2-20200910 217



218 DO328-SM1.1-en-2-20200910



Chapter 6

Testing Service Resilience with
Chaos Testing

Goal Test the resiliency of an OpenShift Service Mesh
with Chaos Testing.

Objectives • Create test errors to identify weaknesses in
your application.

• Create a delay in your services to test for
weaknesses in your application.

Sections • Throwing HTTP Errors (and Guided Exercise)

• Creating Delays in Services (and Guided
Exercise)

Lab Testing Service Resilience with Chaos Testing

DO328-SM1.1-en-2-20200910 219



Chapter 6 | Testing Service Resilience with Chaos Testing

Throwing HTTP Errors

Objectives
After completing this section, you should be able to create test errors to identify weaknesses in

your application.

Chaos Testing
Although microservice-based applications are highly scalable, they also suffer from common

problems or fallacies associated with distributed computing There are eight fallacies of distibuted

computing. In this lecure, we will focus on two of the most common in general use cases.

• The network is reliable.

• There is zero latency.

These two assumptions must be addressed because network instability occurs and, if not dealt

with, can create unpredictable application behavior. For example, presenting unexpected errors to

the user, or silently ignoring errors without sending any notifications. To validate how applications

respond to network instability, you can introduce chaos to simulate network instability.

Chaos Testing is the process of testing a microservices-based application in production or in an

environment similar to production by introducing random errors to verify that the steps taken to

handle these problems are correct.

Netflix coined the term Chaos Testing to refer to the techniques they used to test their systems in

production, aimed at verifying that all their complex applications behaved as expected in the event

of network errors. Netflix engineers resorted to these techniques because they knew that network

errors and instability are inevitable.

You can use service mesh traffic management capabilities to introduce latency spikes or

connection errors in your application so that you can perform chaos testing.

Throwing HTTP Errors

Use the HTTPFaultInjection.Abort object on path spec.http.fault.abort to inject

errors into the VirtualService.

The Abort object requires two configuration values:

httpStatus
HTTP status code returned on abort

percentage
Percentage of total request to abort

The httpStatus value is the literal number representing the HTTP status code. If you want to

return an Internal Server Error use:

httpStatus: 500

220 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

The percentage is configured using a double value, ranging from 0.0 for a 0% and 100.0 for

100%.

For example, if you want to drop 20% of the connections to example-svc from other services

and return the Bad Request error, you can use a code like this in the Virtual Service:

apiVersion: networking.istio.io/v1alpha3
  kind: VirtualService
  metadata:
    name: example-vs
  spec:
    hosts:
    - example-svc
    http:
    - route:
      - destination:
          host: example-svc
          subset: v1
      fault: 
        abort: 
          percentage: 
            value: 20.0
          httpStatus: 400

The HTTPFaultInjection configuration object responsible for all the faults injected into

the service.

The HTTPFaultInjection.Abort configuration object responsible for the error injection

configuration.

Percentage of the connections to abort.

The HTTP status code to return on abort.

When testing your application with HTTP errors, the percentage of failed requests can be lower

than your configured value. This is because the virtual service resources contain automatic retries

of failed requests.

For more information about retries, see Configuring Retry.

 

References

Istio 1.4 / Fault Injection

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/

Istio 1.4 / Virtual Service / HTTPFaultInjection.Abort

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

#HTTPFaultInjection-Abort

Fallacies of distributed computing

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Chaos engineering

https://en.wikipedia.org/wiki/Chaos_engineering

DO328-SM1.1-en-2-20200910 221

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Abort
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Abort
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Chaos_engineering


Chapter 6 | Testing Service Resilience with Chaos Testing

Guided Exercise

Throwing HTTP Errors

In this exercise, you will set up Services Mesh to throw errors in an application route and

verify these errors.

Outcomes
You should be able to set up a route to throw HTTP errors.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the application is deployed in the cluster to test its behavior.

The source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps/ in the customer, preference, and recommendation directories.

[student@workstation ~]$ lab chaos-error start

 1. Log in to OpenShift and verify that the sample project deployed successfully.

1.1. Run the following command to load the environment variables created in the

Verifying OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project chaos-error:

[student@workstation ~]$ oc project chaos-error
Now using project "chaos-error" on server ...

222 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

1.4. Verify that pods are ready:

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-6948b8b959-cl5zf         2/2     Running   0          11s
preference-6d5d86cb79-9cjkv       2/2     Running   0          11s
recommendation-69db8d6c48-wrkc6   2/2     Running   0          11s

1.5. Save the ingress-gateway route host name with the /chaos endpoint into a

variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/chaos)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ for i in {1..10};do curl $INGRESS_URL; done
customer => preference => recommendation v1 from 'f11b097f1dd0': 1
customer => preference => recommendation v1 from 'f11b097f1dd0': 2
customer => preference => recommendation v1 from 'f11b097f1dd0': 3
customer => preference => recommendation v1 from 'f11b097f1dd0': 4
customer => preference => recommendation v1 from 'f11b097f1dd0': 5
customer => preference => recommendation v1 from 'f11b097f1dd0': 6
customer => preference => recommendation v1 from 'f11b097f1dd0': 7
customer => preference => recommendation v1 from 'f11b097f1dd0': 8
customer => preference => recommendation v1 from 'f11b097f1dd0': 9
customer => preference => recommendation v1 from 'f11b097f1dd0': 10

 2. Edit the recommendation VirtualService and configure it to always throw the HTTP

error 500:

[student@workstation ~]$ oc edit virtualservice recommendation

Add this after the route section under the http block with this fault section:

    fault:
      abort:
        httpStatus: 500
        percentage:
          value: 50.0

The spec section should look like:

spec:
  hosts:
  - recommendation
  http:
  - route:
    - destination:
        host: recommendation
    fault:
      abort:

DO328-SM1.1-en-2-20200910 223



Chapter 6 | Testing Service Resilience with Chaos Testing

        httpStatus: 500
        percentage:
          value: 50.0

Save the file to update of the VirtualService.

If you have trouble editing the VirtualService, you can find the new VirtualService definition

in the file DO328/solutions/chaos-error/vs-recommendation-error.yml. Apply

this definition using the following command:

[student@workstation ~]$ oc replace -f DO328/solutions/chaos-error/vs-
recommendation-error.yml
virtualservice.networking.istio.io/recommendation replaced

 3. To verify that the recommendation application is throwing random errors, repeat the

previous service verification:

[student@workstation ~]$ for i in {1..10};do curl $INGRESS_URL; done
customer => preference => recommendation v1 from 'f11b097f1dd0': 11
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => preference => recommendation v1 from 'f11b097f1dd0': 14
customer => preference => recommendation v1 from 'f11b097f1dd0': 15
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => preference => recommendation v1 from 'f11b097f1dd0': 19
customer => preference => recommendation v1 from 'f11b097f1dd0': 20

Note

By default, Istio retries each request twice. To clearly show how abort injections

result in errors, retries are deactivated in this exercise.

If no errors are thrown in the first ten requests, then redo the test to see the errors.

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-error finish

This concludes the guided exercise.

224 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

Creating Delays in Services

Objectives
After completing this section, you should be able to create a delay in your services to test for

weaknesses in your application.

Creating Delays in Services
The second distributed computing fallacy is network latency, which can spike at any moment.

Similar to network errors, network latency must be tested in your application to avoid unexpected

errors. During chaos testing you can inject artificial delays into services to simulate latency,

verifying that the application handles these problems gracefully.

You can inject delay errors independently or in parallel with connection errors. Red Hat

recommends that you perform both types of tests.

To inject delays in a VirtualService resource, use the HTTPFaultInjection.Delay object

inside the HTTPFaultInjection configuration object.

The Delay object requires two configuration values:

fixedDelay
Delay to add to the connection.

percentage
Percentage of total requests into which the delay is injected.

You can declare the fixedDelay value in hours, minutes, seconds, and milliseconds (h/m/s/ms).

fixedDelay: 1h

The percentage value is a double value, ranging from 0.0 for a 0% and 100.0 for 100%.

For example, to add a 400 milliseconds delay to 10% of connections to the example-svc service,

you can use the following:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: example-vs
spec:
  hosts:
  - example-svc
  http:
  - route:
    - destination:
        host: example-svc
        subset: v1
    fault: 
      delay: 

DO328-SM1.1-en-2-20200910 225



Chapter 6 | Testing Service Resilience with Chaos Testing

        percentage: 
          value: 10.0
        fixedDelay: 400ms 

The HTTPFaultInjection configuration object responsible for injecting faults into the

service.

The HTTPFaultInjection.Delay configuration object responsible for the delay injection

configuration.

Percentage of the connections to delay.

Amount of time to delay the connection.

 

References

Istio 1.4 / Fault Injection

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/

Istio 1.4 / Virtual Service / HTTPFaultInjection.Delay

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

#HTTPFaultInjection-Delay

226 DO328-SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Delay
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Delay


Chapter 6 | Testing Service Resilience with Chaos Testing

Guided Exercise

Creating Service Delays

In this exercise, you will set up Services Mesh to add and verify delays in an application route.

Outcomes
You should be able to set up a delay in a route.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that the microservices application is deployed in the cluster to test

its behavior.

The source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps/ in the customer, preference, and recommendation directories.

[student@workstation ~]$ lab chaos-delay start

 1. Log in to OpenShift and verify that the sample project is successfully deployed.

1.1. Run the following command to load the environment variables created in the

Verifying OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project chaos-delay:

[student@workstation ~]$ oc project chaos-delay
Now using project "chaos-delay" on server ...

DO328-SM1.1-en-2-20200910 227



Chapter 6 | Testing Service Resilience with Chaos Testing

1.4. Verify that pods are ready:

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-69d5499fc4-h77bx         2/2     Running   0          11s
preference-558cf4f584-9bpd5       2/2     Running   0          11s
recommendation-c495d86d7-4h8rf   2/2     Running   0          11s

1.5. Save the ingress-gateway route host name with the /delay endpoint into a

variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/delay)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ for i in {1..10};do curl -m 2 $INGRESS_URL; done
customer => preference => recommendation v1 from 'f11b097f1dd0': 1
customer => preference => recommendation v1 from 'f11b097f1dd0': 2
customer => preference => recommendation v1 from 'f11b097f1dd0': 3
customer => preference => recommendation v1 from 'f11b097f1dd0': 4
customer => preference => recommendation v1 from 'f11b097f1dd0': 5
customer => preference => recommendation v1 from 'f11b097f1dd0': 6
customer => preference => recommendation v1 from 'f11b097f1dd0': 7
customer => preference => recommendation v1 from 'f11b097f1dd0': 8
customer => preference => recommendation v1 from 'f11b097f1dd0': 9
customer => preference => recommendation v1 from 'f11b097f1dd0': 10

 2. Edit the recommendation VirtualService and configure it to add a delay of 7 seconds:

[student@workstation ~]$ oc edit virtualservice recommendation

Add this after the route section under the http block with this fault section:

    fault:
      delay:
        percentage:
          value: 50
        fixedDelay: 7s

The spec section should look like:

spec:
  hosts:
  - recommendation
  http:
  - route:
    - destination:
        host: recommendation
    fault:
      delay:

228 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

        percentage:
          value: 50
        fixedDelay: 7s

Save the file to perform the update of the VirtualService.

If you have any trouble editing the VirtualService, you can find the new VirtualService

definition in the file DO328/solutions/chaos-delay/vs-recommendation-
delayed.yml. Apply this definition with the following command:

[student@workstation ~]$ oc replace -f DO328/solutions/chaos-delay/vs-
recommendation-delayed.yml
virtualservice.networking.istio.io/recommendation replaced

 3. To verify that the recommendation service is disrupting the flow of the application, repeat

the previous verification with a timeout of 2 seconds:

[student@workstation ~]$ for i in {1..10};do curl -m 2 $INGRESS_URL; done
customer => preference => recommendation v1 from 'f11b097f1dd0': 1
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
customer => preference => recommendation v1 from 'f11b097f1dd0': 5
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
customer => preference => recommendation v1 from 'f11b097f1dd0': 8
customer => preference => recommendation v1 from 'f11b097f1dd0': 9
customer => preference => recommendation v1 from 'f11b097f1dd0': 10

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-delay finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 229



Chapter 6 | Testing Service Resilience with Chaos Testing

Lab

Testing Service Resilience with Chaos
Testing

Performance Checklist
In this lab, you will simulate network issues to test application resilience and graceful handling

of network issues.

Outcomes
You should be able to use OpenShift Service Mesh to simulate network failures and delays.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.

The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps

in the exchange-application directory.

The exchange application consists of the following services:

• Frontend

• Currency

• Exchange

• History

You can examine the services in the chaos-mesh project. The application is available using

the istio-ingressgateway route at the /frontend endpoint.

[student@workstation ~]$ lab chaos-mesh start

1. Log in to OpenShift and verify that the application is ready.

1.1. Run the following command to load the environment variables created in the Verifying

OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

230 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps


Chapter 6 | Testing Service Resilience with Chaos Testing

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project chaos-mesh:

[student@workstation ~]$ oc project chaos-mesh
Now using project "chaos-mesh" on server ...

1.4. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-566cddc8c6-jtd5g   2/2     Running   0          13s
exchange-66b78bf65c-s72gv   2/2     Running   0          13s
frontend-5648fbb85f-td5dg   2/2     Running   0          13s
history-54b5c9d476-rk4pd    2/2     Running   0          13s

1.5. Save the ingress-gateway route hostname with the /frontend endpoint into a

variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

1.7. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history

On the Historical Data page, click Submit.

1.8. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

2. Introduce a delay fault to the exchange-vservice virtual service resource with the

following parameters:

• Delay time: 10s.

• The fault should influence 20% of all requests to the exchange-vservice virtual service.

With the delay fault in place, test how the frontend application responds to large delay

times.

DO328-SM1.1-en-2-20200910 231



Chapter 6 | Testing Service Resilience with Chaos Testing

3. Introduce an abort fault to the exchange-vservice virtual service resource with the

following parameters:

• HTTP error code: 500.

The fault should influence 30% of all requests to the exchange-vservice virtual service.

With the abort fault in place, test how the frontend application reacts to HTTP errors.

4. Optionally, update the frontend deployment to use the quay.io/redhattraining/
ossm-frontend:3.0 image.

With both the delay and abort faults in place, test how the new application handles the

injected network issues.

Evaluation

Grade your work by running the lab chaos-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab chaos-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-mesh finish

This concludes the lab.

232 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

Solution

Testing Service Resilience with Chaos
Testing

Performance Checklist
In this lab, you will simulate network issues to test application resilience and graceful handling

of network issues.

Outcomes
You should be able to use OpenShift Service Mesh to simulate network failures and delays.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.

The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps

in the exchange-application directory.

The exchange application consists of the following services:

• Frontend

• Currency

• Exchange

• History

You can examine the services in the chaos-mesh project. The application is available using

the istio-ingressgateway route at the /frontend endpoint.

[student@workstation ~]$ lab chaos-mesh start

1. Log in to OpenShift and verify that the application is ready.

1.1. Run the following command to load the environment variables created in the Verifying

OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

DO328-SM1.1-en-2-20200910 233

https://github.com/RedHatTraining/DO328-apps


Chapter 6 | Testing Service Resilience with Chaos Testing

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project chaos-mesh:

[student@workstation ~]$ oc project chaos-mesh
Now using project "chaos-mesh" on server ...

1.4. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-566cddc8c6-jtd5g   2/2     Running   0          13s
exchange-66b78bf65c-s72gv   2/2     Running   0          13s
frontend-5648fbb85f-td5dg   2/2     Running   0          13s
history-54b5c9d476-rk4pd    2/2     Running   0          13s

1.5. Save the ingress-gateway route hostname with the /frontend endpoint into a

variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

1.7. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history

On the Historical Data page, click Submit.

1.8. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

2. Introduce a delay fault to the exchange-vservice virtual service resource with the

following parameters:

• Delay time: 10s.

• The fault should influence 20% of all requests to the exchange-vservice virtual service.

With the delay fault in place, test how the frontend application responds to large delay

times.

234 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

2.1. Edit the exchange-vservice virtual service resource. You can use the ~/DO328/
solutions/chaos-mesh/vservice-delay.yaml. Alternatively, add the delay

fault manually:

[student@workstation ~]$ oc edit virtualservice exchange-vservice

Add the following fault section to the first object in the .spec.http path:

  http:
  - match:
    - uri:
        prefix: /exchange
    rewrite:
      uri: /
    route:
    - destination:
        host: exchange
        port:
          number: 8080
    fault:
      delay:
        fixedDelay: 10s
        percentage:
          value: 20

Save the file to update the virtual service.

2.2. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

Refresh the Historical Data page until you encounter the delay.

The application waits until the delay is resolved. This is suboptimal in case of a non-

responsive service, and is considered a bug in the application.

3. Introduce an abort fault to the exchange-vservice virtual service resource with the

following parameters:

• HTTP error code: 500.

The fault should influence 30% of all requests to the exchange-vservice virtual service.

With the abort fault in place, test how the frontend application reacts to HTTP errors.

3.1. Edit the exchange-vservice virtual service resource. You can use the ~/DO328/
solutions/chaos-mesh/vservice-abort.yaml. Alternatively, add the delay

fault manually:

[student@workstation ~]$ oc edit virtualservice exchange-vservice

Add the following abort section into the already existing fault section:

DO328-SM1.1-en-2-20200910 235



Chapter 6 | Testing Service Resilience with Chaos Testing

    fault:
      delay:
        fixedDelay: 10s
        percentage:
          value: 20
      abort:
        percentage:
          value: 30
        httpStatus: 500

3.2. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

3.3. Open the Firefox developer console. Right-click anywhere on the web page. Then, click

Inspect Element.

In the Inspector window, click Console.

3.4. With the developer console open, refresh the page until you see the following error:

SyntaxError: "JSON.parse: unexpected keyword at line 1 column 1 of the JSON data"

The application does not inform the user about any network errors. It fails silently and

prints errors only into the developer console.

This behavior leads to user confusion and is considered a bug.

4. Optionally, update the frontend deployment to use the quay.io/redhattraining/
ossm-frontend:3.0 image.

With both the delay and abort faults in place, test how the new application handles the

injected network issues.

4.1. Update the frontend deployment:

[student@workstation ~]$ oc edit deployment frontend

Change the image version in the .spec.template.spec.containers[0].image
path:

    spec:
      containers:
      - env:
        - name: REACT_APP_GW_ENDPOINT
          valueFrom:
            configMapKeyRef:
              key: GW_ADDR
              name: frontend-cm
       image: quay.io/redhattraining/ossm-frontend:3.0

Save the file to update the deployment.

4.2. Verify that the frontend pod is in the Running state:

236 DO328-SM1.1-en-2-20200910



Chapter 6 | Testing Service Resilience with Chaos Testing

[student@workstation ~]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-c6879ff94-d7xdr    2/2     Running   0          151m
exchange-b8bb857cd-7xl6l    2/2     Running   0          151m
frontend-847f8bb99f-h4ssf   2/2     Running   0          40s
history-548b7f4954-jdjr8    2/2     Running   0          151m

4.3. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

Note the following:

• Because of time-out, no request takes longer than 3 seconds. After 3 seconds, the

request is discarded and another request is issued.

The time-out pattern addresses long delays.

• When the exchange service returns a 5xx response, requests are re-executed up to 3

times.

The retry pattern addresses service and network unreliability.

• When the application encounters more than 3 errors, the last error is propagated to

the user.

Evaluation

Grade your work by running the lab chaos-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab chaos-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 237



Chapter 6 | Testing Service Resilience with Chaos Testing

Summary

In this chapter, you learned:

• How to inject random errors into services to test the application resilience to network errors.

• How to inject random delays into network connections to test applications behavior when faced

with network latency.

• How to use errors and delays to perform Chaos Testing.

238 DO328-SM1.1-en-2-20200910



Chapter 7

Building Resilient Services

Goal Leverage OpenShift Service Mesh strategies for
creating resilient services.

Objectives • Describe the strategies for creating resilient
services with Service Mesh.

• Configure time-outs to maintain service
reliability.

• Configure a service retry to maintain service
reliability.

• Configure a circuit breaker pattern to maintain
service reliability.

Sections • Describing Strategies for Resilient Services with
OpenShift Service Mesh (and Quiz)

• Configuring Time-outs (and Guided Exercise)

• Configuring Retry (and Guided Exercise)

• Configuring a Circuit Breaker (and Guided
Exercise)

Lab Building Resilient Services

DO328-SM1.1-en-2-20200910 239



Chapter 7 | Building Resilient Services

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Objectives
After completing this section, you should be able to describe the strategies for creating resilient

services with Service Mesh.

Describing Strategies for Resilience
As discussed in Chapter 6, Testing Service Resilience with Chaos Testing, microservices-based

architectures are subject to the negative effects of distributed computing: unreliable networks,

transport costs, and latencies. Therefore, you should assume that applications will sometimes

experience problems and outages.

Preparing for resilience is a way to make applications more reliable and ready to overcome some

of these challenges. Istio takes reliability into account and includes resilience features as a part

of its traffic management model. In particular, virtual services and destination rules allow you to

configure flexible resilience strategies at different levels, such as the service level or the subset

level.

Resilience strategies include:

Load balancing
Use load balancing to prevent service overloads by distributing the load among several

service replicas sufficient to handle the load. To achieve resiliency with load balancing, you

must have at least one redundant replica. Thus, if a replica fails, then the load balancer can

redistribute all traffic among the rest of the healthy replicas without overwhelming them.

Time-outs
When making a request to a service, you might encounter errors, such as a slow-down or

failure in the service or network.

Instead of waiting indefinitely when these errors occur, establish a time-out beyond which the

request is rejected. Setting a time-out helps applications release resources that are blocked

waiting for a response. It also protects the whole system against cascading failures.

Retries
Sometimes, services might be temporarily unavailable due to transient problems, such as

network outages or momentary overloads. To address this situation, configure Istio to retry

the initially failed request a given number of times so that a request that would otherwise fail

due to a momentary problem can eventually succeed.

Circuit breakers
When a service approaches capacity, you can stop sending traffic to it, or break the circuit.

The service fails fast and you protect the service from becoming overloaded, which can cause

instability.

Istio can break the circuit statically and dynamically. You can define static connection and

request limits to protect a service against high loads. The dynamic mechanism uses outlier

detection, which monitors the status of each service host and stops sending traffic to hosts

that become unhealthy.

240 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Implementing Service Resilience with Load Balancing
One basic way of implementing service resilience is to distribute the load among multiple replicas

of the same service. If one of the replicas experiences a failure, then the load balancer removes

that replica from its pool and distributes the load among the healthy nodes. To be resilient, the

service must have at least one redundant replica, which is known as the N+1 redundancy rule.

For example, if a service receives 50 requests per second, and each replica can handle 10 requests

per second, then the minimum number of replicas to be resilient is six. If one of the replicas fails,

then the service still has five replicas that can handle 100% of the load.

To configure load balancing for resilience at the service level, you must use the

DestinationRule configuration resource. Specifically, you must set the value of the

spec.trafficPolicy.loadBalancer.simple field to one of the following algorithms:

ROUND_ROBIN
Requests are sent to each host in turn to distribute the load evenly. This is the default

algorithm.

RANDOM
Requests are sent to hosts randomly. Under high loads, requests are distributed randomly

across instances.

LEAST_CONN
Requests are sent to a host with few connections. This algorithm picks two random hosts and

chooses the host with the fewest active connections.

The following is an example of a destination rule that uses the least requested load balancer:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule 
spec:
  host: my-svc
  trafficPolicy: 
    loadBalancer:
      simple: LEAST_CONN

Name of the destination rule.

Service affected by the defined policies.

Traffic policy defined for the my-svc service.

Load balancing algorithm name.

You can also define load balancing policies at the subset level, applying specific load balancers to

different versions of the same service. The following example shows how to specify load balancing

features both at the service and the subset level for a specific version:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy: 
    loadBalancer:

DO328-SM1.1-en-2-20200910 241



Chapter 7 | Building Resilient Services

      simple: LEAST_CONN
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2
    trafficPolicy: 
      loadBalancer:
        simple: RANDOM

Traffic policy that applies the LEAST_CONN load balancer to the service.

Traffic policy that applies the RANDOM load balancer to the v2 subset, overriding the policy at

the service level.

Consistent Hash Load Balancing

Istio includes a more advanced load balancing algorithm called Consistent Hash-based load

balancing. This load balancer provides soft session affinity by mapping HTTP headers, cookies, or

source IP to a particular service host. When hosts are added to or removed from the service, the

affinity is lost.

You can use this load balancer to keep a user session on a host when you want all requests from

that user to go to the same host. The following example demonstrates using the session_id
cookie as the hash key to apply this strategy:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy:
    loadBalancer:
      consistentHash:
        httpCookie:
          name: session_id
          ttl: 0s

Similarly, you can use the same approach with other HTTP headers or cookies. For example, you

can distribute the load based on the requested endpoint.

Because Consistent Hash-based load balancing establishes affinity between request data

and specific hosts, this type of load balancing can lead to host overload when your traffic is

unbalanced. For example, demanding users generating high loads, or popular endpoints receiving

much more load than other endpoints may cause this overload.

242 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

 

References

N+1 redundancy

https://en.wikipedia.org/wiki/N%2B1_redundancy

Istio Docs: Traffic Management

https://archive.istio.io/v1.4/docs/concepts/traffic-management/

Istio Docs: LoadBalancerSettings

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

#LoadBalancerSettings

References

For more information, refer to the Traffic management section in the Red Hat

Service Mesh Guide at

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/index

DO328-SM1.1-en-2-20200910 243

https://en.wikipedia.org/wiki/N%2B1_redundancy
https://archive.istio.io/v1.4/docs/concepts/traffic-management/
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#LoadBalancerSettings
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#LoadBalancerSettings
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index


Chapter 7 | Building Resilient Services

Quiz

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which three strategies can be used to implement service resiliency in OpenShift

Service Mesh? (Choose three.)

a. Canary releases.

b. Load balancing.

c. Time-outs.

d. Distributed tracing.

e. Circuit breakers.

 2. Your networking provider is experiencing problems that affect your cluster. These

problems cause outages in the network that last for less than a second. As a result, a

small percentage of requests directed to your services fail.

Which resilience strategy can make the failing requests succeed?

a. Load balancing.

b. Circuit breaker.

c. Retries.

d. Time-outs.

 3. You are deploying an application on OpenShift Service Mesh. You estimate that the

application will receive an average of 30 requests per second.

Assuming that the application can handle up to 10 requests per second, what is a good

strategy for resilience?

a. Scale the service to 4 replicas and balance the load among them.

b. Scale the service to 3 replicas and balance the load among them.

c. Limit the load to 10 requests per second with a circuit breaker.

d. Configure retries to resend a request to the service if the request fails.

 4. Which resilience strategy protects a service from overloading by stopping traffic

directed to it?

a. Retries.

b. Circuit breaker.

c. Time-outs.

d. Load balancing.

244 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Solution

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which three strategies can be used to implement service resiliency in OpenShift

Service Mesh? (Choose three.)

a. Canary releases.

b. Load balancing.

c. Time-outs.

d. Distributed tracing.

e. Circuit breakers.

 2. Your networking provider is experiencing problems that affect your cluster. These

problems cause outages in the network that last for less than a second. As a result, a

small percentage of requests directed to your services fail.

Which resilience strategy can make the failing requests succeed?

a. Load balancing.

b. Circuit breaker.

c. Retries.

d. Time-outs.

 3. You are deploying an application on OpenShift Service Mesh. You estimate that the

application will receive an average of 30 requests per second.

Assuming that the application can handle up to 10 requests per second, what is a good

strategy for resilience?

a. Scale the service to 4 replicas and balance the load among them.

b. Scale the service to 3 replicas and balance the load among them.

c. Limit the load to 10 requests per second with a circuit breaker.

d. Configure retries to resend a request to the service if the request fails.

 4. Which resilience strategy protects a service from overloading by stopping traffic

directed to it?

a. Retries.

b. Circuit breaker.

c. Time-outs.

d. Load balancing.

DO328-SM1.1-en-2-20200910 245



Chapter 7 | Building Resilient Services

Configuring Time-outs

Objectives
After completing this section, you should be able to configure time-outs to maintain service

reliability.

Defining Time-outs
Cloud-native applications are composed of different microservices making various internal and

external calls. When an application relies on different components distributed across the network,

the network connection becomes one of the biggest potential problems for the stability of your

application.

Both the network and external service are inherently unreliable. To improve the resilience of your

applications, you can use a time-out.

A time-out is the amount of time that a service or an application waits for some event. OpenShift

Service Mesh enables you to configure the time-out outside of your application code, in the Envoy

proxy, using virtual services or HTTP headers.

Using a time-out provides:

• A simple way of mitigating cascading failures. Because your application is failing early, you stop

propagating slow responses from downstream services to systems that depend on yours.

• A guarantee that a network request finishes within a limited time.

• Better resource usage, because the time-outs reduce the time an application is blocked waiting

for a response.

Configuring Time-outs in OpenShift Service Mesh
Time-outs can be managed in the application code, but that approach has drawbacks including:

• Adding an additional layer of complexity that must be maintained.

• Coupling the application with the network layer.

Using OpenShift Service Mesh to manage time-outs enables you to maintain a separation of

application business logic and network management.

In OpenShift Service Mesh, you can configure the time-outs using virtual services or HTTP

headers without modifying your application code.

Note

The default time-out for HTTP connections in OpenShift Service Mesh is 15
seconds.

246 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Configuring Time-outs Using Virtual Services

Virtual services allow you to configure time-outs for all traffic routed to a service. You can apply

a time-out setting using the timeout field in the route rules and assigning a value measured in

seconds.

The following example shows a time-out configuration in a virtual service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: a-service-vs
spec:
  hosts:
    - example-svc
  http:
    - route:
        - destination:
          host: preference
      timeout: 1s

In the preceding example, Envoy waits up to 1 second on any call to the example-svc service

before returning a time-out error.

Configuring Time-outs Using HTTP Headers

In OpenShift Service Mesh, you can use HTTP headers to modify Envoy behavior. The Envoy

proxy can add, remove, or modify HTTP headers for incoming requests. When requests with HTTP

headers modifying Envoy proxy behaviour are made from outside the mesh, the Envoy proxy

ignores them.

In OpenShift Service Mesh, you can use the PILOT_SIDECAR_USE_REMOTE_ADDRESS
flag to modify how Envoy determines the origin of a connection. Setting the value of

PILOT_SIDECAR_USE_REMOTE_ADDRESS to true, allows you to configure time-outs using

headers.

Warning

Changing Pilot settings can have unexpected consequences on the stability and

behavior of your service mesh.

You can configure time-outs adding the x-envoy-upstream-rq-timeout-ms request HTTP

header with a value assigned in milliseconds.

The following example shows a request to a service with time-out settings:

HTTP/1.1 200 OK
date: Wed, 13 May 2020 13:56:01 GMT
...output omitted...
x-envoy-upstream-rq-timeout-ms: 500
...output omitted...

The preceding example defines a time-out of 500 milliseconds that is only valid until the service

responds to that request.

DO328-SM1.1-en-2-20200910 247



Chapter 7 | Building Resilient Services

Selecting Time-outs for Resilience
Each application is different, and the time required to generate a response depends on multiple

factors, such as how busy the application is or if it calls external services. There is no standard

way of calculating a precise value for the time-out, but there are several things to consider when

defining a time-out value:

• The value allows slow responses to arrive.

• The value stops waiting for a response that is not returned.

• A high value increases latency, especially in distributed systems.

• A high value potentially increases computing resources waiting for a dead service to respond.

Time-outs are not the only solution to increase the reliability of your applications. You can

combine time-outs with more advanced strategies like retries or circuit breakers.

 

References

Time-outs in Istio

https://archive.istio.io/v1.4/docs/tasks/traffic-management/request-timeouts/

HTTPRoute

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

#HTTPRoute

HTTP Header sanitizing with Envoy

https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/

header_sanitizing

248 DO328-SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/traffic-management/request-timeouts/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRoute
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRoute
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/header_sanitizing
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/header_sanitizing


Chapter 7 | Building Resilient Services

Guided Exercise

Configuring Time-outs

In this exercise, you will configure time-outs for an application deployed in OpenShift Service

Mesh.

Outcomes
You should be able to configure time-outs in OpenShift Service Mesh.

The application is composed of several services calling each other. These services pass

requests as follows:

• customer: the entry point of the application sending requests to the preference
service.

• preference: receives requests from the customer service, and sends requests to the

recommendation service.

• recommendation: receives requests from the preference service and returns a

response. This is the last service in the chain of requests.

The final response from the application includes the responses from each service.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab resilience-timeout start

 1. This guided exercise uses scripts that are located in ~/DO328/labs/resilience-
timeout. Change to that directory.

[student@workstation ~]$ cd ~/DO328/labs/resilience-timeout
[student@workstation resilience-timeout]$ 

 2. Log in to the OpenShift cluster as an unprivileged user and verify that the lab project has

successfully deployed.

2.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

DO328-SM1.1-en-2-20200910 249



Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ source /usr/local/etc/ocp4.config

2.2. Log in to OpenShift as the developer user.

[student@workstation resilience-timeout]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

2.3. Change to the resilience-timeout project.

[student@workstation resilience-timeout]$ oc project resilience-timeout
Now using project "resilience-timeout" on server ...

2.4. Verify the status of the resilience-timeout project pods.

[student@workstation resilience-timeout]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-f7bffdbf6-9mbzn          2/2     Running   0          50s
preference-5585d5987f-9z26q       2/2     Running   0          50s
recommendation-75c77bd445-55bb4   2/2     Running   0          50s

2.5. Examine the response-times.sh script which uses the curl command to make a

call to the lab application and returns a custom output.

Execute the response-times.sh script to test the lab application response time..

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation v1 from 'f11b097f1dd0': 1
HTTP code: 200
Time: 0,032099s

 3. Configure a delay of 3 seconds in the recommendation-vs virtual service.

3.1. Examine the recommendation-delay.yaml file that configures a 3 seconds delay.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
...output omitted...
  http:
    - fault:
        delay:
          percent: 100
          fixedDelay: 3s
...output omitted...

Use the oc replace command to replace the virtual service configuration with the

new one.

[student@workstation resilience-timeout]$ oc replace -f recommendation-delay.yaml
virtualservice.networking.istio.io/recommendation-vs replaced

250 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

 4. Verify the response time of the application.

4.1. Execute the response-times.sh script to verify the increased response time.

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation v1 from 'f11b097f1dd0': 2
HTTP code: 200
Time: 3,063155s

 5. Configure a route time-out of 0.5 seconds in the preference-vs virtual service.

5.1. Examine the route-timeout.yaml file that configures the route time-out.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
...output omitted...
  http:
    - route:
        ...output omitted...
      timeout: 0.5s

Use the oc replace command to replace the virtual service configuration with the

new one.

[student@workstation resilience-timeout]$ oc replace -f route-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

 6. Verify the response time of the application.

6.1. Execute the response-times.sh script to verify the time-out setting.

[student@workstation resilience-timeout]$ sh response-times.sh
customer => Error: 504 - upstream request timeout
HTTP code: 503
Time: 1,630933s

The preference service only waits 0.5 seconds for a response from the

recommendation service. The reason that the response takes more than 0.5

seconds is because of the default Istio retry policies.

 7. Update the preference-vs virtual service to remove the route time-out setting.

7.1. Examine the removed-timeout.yaml file that configures the preference-vs
virtual service to use the default route time-out settings.

Use the oc replace command to replace the virtual service configuration with the

new one.

[student@workstation resilience-timeout]$ oc replace -f removed-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

7.2. Execute the response-times.sh script to test the response of the lab application.

DO328-SM1.1-en-2-20200910 251



Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation v1 from 'f11b097f1dd0': 5
HTTP code: 200
Time: 3,034979s

After removing the time-out in the preference-vs virtual service, the response

time returns to values close to 3 seconds.

 8. Verify that the application applied a timeout of 0.5 seconds per request.

8.1. Set the PILOT_SIDECAR_USE_REMOTE_ADDRESS environment variable in the

istio-pilot deployment.

By default the Envoy proxy discards any HTTP header that modifies its behaviour.

Enabling the PILOT_SIDECAR_USE_REMOTE_ADDRESS environment variable allows

you to modify the time-out settings using HTTP headers.

[student@workstation resilience-timeout]$ oc set env deployment/istio-pilot \
> PILOT_SIDECAR_USE_REMOTE_ADDRESS=true -n istio-system
deployment.apps/istio-pilot updated

Wait a few seconds until OpenShift redeploys the istio-pilot container with the

new environment variable. Use the oc command to follow the progress.

[student@workstation resilience-timeout]$ oc get pods -n istio-system
NAME                                      READY   STATUS        RESTARTS   AGE
...output omitted...
istio-ingressgateway-7f6fcf4bc9-9ng74     1/1     Running       0          42h
istio-pilot-5bbc676f7c-lj29x              2/2     Running       0          7s
istio-pilot-6b5f69bcc7-4h6v8              2/2     Terminating   0          42h
istio-policy-7cb97db7c8-cf55c             2/2     Running       0          42h
...output omitted...

Warning

Changing pilot settings can have unexpected consequences on the stability and

behavior of your service mesh.

8.2. Examine the headers-timeout.yaml file that configures the customer virtual

service to add a header.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
...output omitted...
  http:
    - headers:
        request:
          set:
            x-envoy-upstream-rq-timeout-ms: "500"
...output omitted...

Use the oc replace command to replace the virtual service configuration with the

new one.

252 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ oc replace -f headers-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

8.3. Execute the response-times.sh script to verify the time-out setting.

[student@workstation resilience-timeout]$ sh response-times.sh
customer => Error: 504 - upstream request timeout
HTTP code: 503
Time: 1,563069s

 9. Return to the home directory.

[student@workstation resilience-timeout]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-timeout finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 253



Chapter 7 | Building Resilient Services

Configuring Retry

Objectives
After completing this section, you should be able to configure a service retry to maintain service

reliability.

Defining the Retry Pattern
The retry pattern is a behavioral design pattern that focuses on reducing transient, short-lived

communication failures. In a cloud-native environment, microservices often rely on networks to

communicate with other microservices. Because networks can be unreliable, a microservice might

encounter a number of issues during a communication request, such as:

• A request is lost, mishandled, or dropped due to an overloaded network.

• A target service experiences a temporary failure, for example, due to storage becoming

temporarily disconnected.

• A subset of target service pods experience a failure.

• A request response takes longer than expected, resulting in the source service experiencing a

time-out.

When a request fails due to any of the errors described above, a repeated request with identical

parameters might still succeed. The retry pattern prevents propagation of such transient errors

into the application.

OpenShift Service Mesh enables you to implement the retry pattern without changing the

application code. Consequently, you can easily change the retry configuration at runtime, without

recompiling or redeploying your application.

Configuring Retries in OpenShift Service Mesh
Implementing the retry pattern in the logic of the application is possible, but has several

drawbacks:

• The application code contains non-business logic. The application code becomes less focused,

and thus more difficult to understand and maintain.

• Depending on the implementation, changing the parameters of the retry configuration might

require redeploying the application.

Implementing the retry pattern using OpenShift Service Mesh provides benefits, including:

• Envoy proxies in OpenShift Service Mesh provide advanced configuration integrated with the

Red Hat OpenShift platform. For example, you can enable automatic outlier detection in case of

multiple 50x HTTP status codes, and provide routing logic for subsequent retries.

• Both administrators and developers can change the configuration of retries and other resiliency

features. This encourages the DevOps approach towards developing and maintaining an

application.

254 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Configuring Retry Using Virtual Service

You can configure the retry pattern in the virtual service resource, for example:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: example-vs
spec:
  hosts:
  - example-svc
  http:
  - route:
    - destination:
        host: example-svc
        subset: v1
    retries: 
      attempts: 3 
      perTryTimeout: 2s 
      retryOn: 5xx,retriable-4xx 

The HTTPRetry object responsible for configuring retries.

The number of times to resend a request.

A time-out value for each retry request. Valid values are in milliseconds ms, seconds s,

minutes m, or hours h.

A policy that specifies conditions that cause failed requests to retry. The value is a list of

comma-separated values.

Virtual services retry failed requests twice by default. To disable the retry configuration, set the

attempts parameter of the retry configuration to 0. For example:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: vs-with-no-retry
spec:
  hosts:
  - example-svc
  http:
  - retries:
      attempts: 0
    route:
    - destination:
        host: example-svc

Selecting Retry Policies

The virtual service resource enables you to select one or more retry policies. The Envoy proxy

evaluates each failed request using the retry policies. If the Envoy proxy matches a request with

any of the selected policies, it retries that request.

Selecting retry policies is important for optimal behavior of your service mesh. OpenShift Service

Mesh contains, among others, the following retry policies:

DO328-SM1.1-en-2-20200910 255



Chapter 7 | Building Resilient Services

5xx
This policy matches any response that contains the 5xx response code. Additionally, this

policy matches any requests that do not get a response, such as due to a disconnect, reset, or

a read time-out.

Note that setting the x-envoy-upstream-rq-timeout-ms header overrides the

configuration time-out. If a request violates a value set in this header, the response contains

the 504 response code, but will not be matched by the 5xx policy.

gateway-error
This policy matches responses that contain the 502, 503, or 504 response codes.

reset
This policy matches requests without any response due to disconnect, reset, or read time-out.

retriable-4xx
This policy matches request responses that contain the 409 response code.

Note that the list above is not exhaustive. When choosing a retry policy, it is a good practice to first

analyze all failed requests in your application and choose the most specific policy for that case. For

example, an application pod might take a long time to start, and responds to first requests with a

time-out. You can mitigate the issue using the reset retry policy.

Selecting Retry Parameters for Resiliency

The configuration of the retry communication pattern requires carefully considering the

parameters of your environment, such as the latency requirements, network layout, application

complexity, and others.

There are no standard values for the retry configuration that are suitable for every environment.

The following non-exhaustive list contains some of the considerations for selecting retry

parameters:

• An incorrect retry policy can substantially impact application performance. For example, if the

back end application is incorrectly configured, and any requests result in a disconnect response,

then retries only increase the overall number of retries with no benefits to the end-user.

• Increasing the number of retries increases the potential probability for success at the cost of

performance. A higher number of retries results in larger network saturation and can cause

issues in busy environments.

• Increasing the time-out value helps to reduce the load for compute-intensive services that

can take longer to respond. However, increasing the time-out values also increases the overall

latency of your system.

An incorrect retry setting makes your environment less resilient, and can accelerate performance

issues in your environment. Other resilience patterns, such as the circuit breaker, can mitigate

worst-case retry scenarios. Additionally, Red Hat recommends implementing monitoring to alert

you to possible issues as soon as they occur.

256 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

 

References

Retry Concepts

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#retries

HTTP Retry Reference Documentation

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

#HTTPRetry

Retry Policies

https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/

router_filter#x-envoy-retry-on

Envoy Proxy Outlier Detection

https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/

outlier#arch-overview-outlier-detection

Retries in Envoy Proxy

https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/

transient_failures.html?highlight=retry#retries

409 Conflict - HTTP | MDN

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/409

DO328-SM1.1-en-2-20200910 257

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#retries
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRetry
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRetry
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/router_filter#x-envoy-retry-on
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/router_filter#x-envoy-retry-on
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/outlier#arch-overview-outlier-detection
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/outlier#arch-overview-outlier-detection
https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/transient_failures.html?highlight=retry#retries
https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/transient_failures.html?highlight=retry#retries
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/409


Chapter 7 | Building Resilient Services

Guided Exercise

Configuring Retry

In this exercise, you will configure the retry settings of an Envoy proxy.

Outcomes
You should be able to configure retries for a service in OpenShift Service Mesh without

changing the application code.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

The lab command deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository at

https://github.com/RedHatTraining/DO328-apps in the customer, preference, and

recommendation directories.

[student@workstation ~]$ lab resilience-retry start

 1. Log in to the OpenShift cluster and verify that the lab project is successfully deployed.

1.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to the resilience-retry project.

[student@workstation ~]$ oc project resilience-retry
Now using project "resilience-retry" on server ...

1.4. Verify that pods are in the Running state:

258 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps


Chapter 7 | Building Resilient Services

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-f7bffdbf6-9mbzn          2/2     Running   0          50s
preference-5585d5987f-9z26q       2/2     Running   0          50s
recommendation-75c77bd445-55bb4   2/2     Running   0          50s

1.5. Save the ingress-gateway route host name with the /mtls endpoint into a

variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/resilience-retry)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ curl $INGRESS_URL
customer => preference => recommendation v1 from 'f11b097f1dd0': 1

Note that you may encounter an error. This error is injected in the

recommendation-vs virtual service, with a 90% probability of returning the 500
HTTP code. The error injection simulates an environment where retries are useful.

 2. Configure a retry policy for the preference-vs virtual service with the following

parameters:

• The Envoy proxy executes 10 or fewer retry attempts.

• Each retry waits at most 1s before timing out.

• The Envoy proxy issues retries only when the response contains a 500 HTTP code.

2.1. Edit the preference-vs virtual service:

[student@workstation ~]$ oc edit virtualservice preference-vs

2.2. Add the retries configuration. View the ~/DO328/solutions/resilience-
retry/preference-retry.yml file to see the solution.

spec:
  hosts:
  - preference
  http:
  - route:
    - destination:
        host: preference
        port:
          number: 8080
    retries:
      attempts: 10
      perTryTimeout: 1s
      retryOn: 5xx

 3. Verify the retry configuration.

DO328-SM1.1-en-2-20200910 259



Chapter 7 | Building Resilient Services

3.1. Change to the ~/DO328/labs/resilience-retry directory:

[student@workstation ~]$ cd ~/DO328/labs/resilience-retry
[student@workstation resilience-retry]$

3.2. Examine the test-retries.sh file. Then, execute it.

[student@workstation resilience-retry]$ sh test-retries.sh
Executing 10 requests:

customer => preference => recommendation v1 from 'f11b097f1dd0': 6
customer => preference => recommendation v1 from 'f11b097f1dd0': 7
customer => Error: 503 - preference => Error: 500 - fault filter abort

customer => preference => recommendation v1 from 'f11b097f1dd0': 8
customer => preference => recommendation v1 from 'f11b097f1dd0': 9
customer => preference => recommendation v1 from 'f11b097f1dd0': 10
customer => preference => recommendation v1 from 'f11b097f1dd0': 11
customer => preference => recommendation v1 from 'f11b097f1dd0': 12
customer => preference => recommendation v1 from 'f11b097f1dd0': 13
customer => preference => recommendation v1 from 'f11b097f1dd0': 14

Done

 4. Set the recommendation-vs virtual service to have a 99% probability of returning a 500
HTTP code.

4.1. Edit the recommendation-vs virtual service:

[student@workstation resilience-retry]$ oc edit virtualservice recommendation-vs

4.2. Change the percentage value to 99.

spec:
  hosts:
  - recommendation
  http:
  - fault:
      abort:
        httpStatus: 500
        percentage:
         value: 99
    route:
    - destination:
        host: recommendation
        port:
          number: 8080

 5. Change the retry value of the preference-vs virtual service to retry 100 times, with a 2s
time-out limit.

5.1. Edit the preference-vs virtual service:

260 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

[student@workstation resilience-retry]$ oc edit virtualservice preference-vs

5.2. Change the number of retries and time-out settings:

spec:
  hosts:
  - preference
  http:
  - retries:
      attempts: 100
      perTryTimeout: 2s
      retryOn: 5xx
    route:
    - destination:
        host: preference
        port:
          number: 8080

 6. Verify the responsiveness of the service:

[student@workstation resilience-retry]$ sh test-retries.sh
Executing 10 requests:

customer => preference => recommendation v1 from 'f11b097f1dd0': 15
customer => preference => recommendation v1 from 'f11b097f1dd0': 16
customer => preference => recommendation v1 from 'f11b097f1dd0': 17
customer => preference => recommendation v1 from 'f11b097f1dd0': 18
customer => preference => recommendation v1 from 'f11b097f1dd0': 19
customer => preference => recommendation v1 from 'f11b097f1dd0': 20
customer => preference => recommendation v1 from 'f11b097f1dd0': 21
customer => preference => recommendation v1 from 'f11b097f1dd0': 22
customer => preference => recommendation v1 from 'f11b097f1dd0': 23
customer => preference => recommendation v1 from 'f11b097f1dd0': 24

Done

The service responds properly even when 99% of the requests fail. Note that you can still

see a reduced number of time-outs or errors.

The large number of retries generates large load on your Red Hat OpenShift cluster. The

script finishes correctly, but takes a long time to complete

Consequently, the retry value considerably increases the overall latency of your application.

Such a high retry configuration is dangerous in case the service is faulty, or incorrectly

configured.

 7. Change into the home directory:

[student@workstation resilience-retry]$ cd ~
[student@workstation ~]$

DO328-SM1.1-en-2-20200910 261



Chapter 7 | Building Resilient Services

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-retry finish

This concludes the guided exercise.

262 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Configuring a Circuit Breaker

Objectives
After completing this section, you should be able to configure a circuit breaker pattern to maintain

service reliability.

Describing the Circuit Breaker
When a service experiences transient errors, those errors tend to occur continuously. Circuit
Breaker uses this knowledge to temporarily avoid directing requests to a failing host. When a

request is about to reach a failing host, the circuit breaks, sending a failure to the client without

the need to wait for the host to respond. This ban is temporary, so the host receives new requests

when normal function is restored.

This behavior has two benefits. First, as requests do not reach the failing hosts, services are more

responsive, even if the host is slow. Second, the service in the host stops receiving requests for

some time, allowing the service to recover from overload and resolve pending requests.

Figure 7.1: The Circuit Breaker

Circuit Breaker classifies host failures as two kinds.

Local origin
Local failures are service errors (usually HTTP codes above 500) generated by the service.

Gateway origin
Gateway failures arise when the service is unreachable or unresponsive, hence it cannot be

used.

A Circuit Breaker identifies both kinds of failures and stops sending requests to the failing host,

forwarding requests only to healthy hosts.

Detecting failing hosts, whether failures are of local origin or gateway failures, and marking them

for eviction is called Outlier Detection.

Selecting Circuit Breakers for Resilience

Circuit Breakers are useful to protect services prone to transient failures. Compute-intensive

services, for example, receive more requests than they can respond to and may experience

transient failures more often. Circuit Breakers redirect requests from the host as it starts failing or

timing out, so the service has time recover from the increased load.

DO328-SM1.1-en-2-20200910 263



Chapter 7 | Building Resilient Services

Other common examples of selecting Circuit Breakers for resilience are services that need to

process requests sequentially. Those services usually store pending requests in a queue that

they process in order. If this queue becomes too big, the service takes too much time to respond,

degrading the service. Circuit Breakers detect those time-outs and give the host time to empty

the queue.

Configuring Circuit Breakers in OpenShift Service
Mesh
OpenShift Service Mesh implements Circuit Breakers at the host (network) level, not at the

service level. That means OpenShift Service Mesh evicts failing hosts, not failing services nor

subsets. This behavior allows services to keep functioning even if some subset or some hosts fail.

Note

Istio terminology, and consequently OpenShift Service Mesh terminology,can

be confusing when referring to a host. In many situations, like in the

DestinationRule resource, host refers to a service as an entry in the Kubernetes

service registry. However, in the context of Circuit Breakers, host refers to a

physical or virtual workload, usually a container.

Managing Unhealthy Hosts

To enable a Circuit Breaker, include an outlierDetection entry in the DestinationRule
resource related to the service:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: myDestinationRule
spec:
  host: myService 
  trafficPolicy: 
    outlierDetection:
      consecutiveErrors: 1 
      interval: 1s 
      baseEjectionTime: 3m 
      maxEjectionPercent: 100 

host does not refer to the physical host, but the service name. See references for details.

The outlierDetection entry belongs to a trafficPolicy object.

Defines how many errors are allowed before evicting the host.

The time interval between checking error counts.

The minimum amount of host ejection time.

The maximum percentage of evicted hosts belonging to a service at any time.

The value for baseEjectionTime indicates the minimum eviction time for the host, not the

actual time. The first time that OpenShift Service Mesh evicts the host, the eviction lasts for

approximately the minimum time. Subsequent evictions multiply the baseEjectionTime by the

number of times the host is evicted. For example, if baseEjectionTime is five seconds, then the

first time the host is evicted, the eviction lasts five seconds. The second time that same host is

evicted, the eviction lasts ten seconds. The third time, the eviction lasts fifteen seconds. And so

on.

264 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

The maxEjectionPercent value limits the percentage of hosts that can simultaneously be in

the evicted state. If the current percentage of evicted hosts is higher than this limit, OpenShift

Service Mesh evicts no other hosts, even if they fail or are unavailable. This limit is useful to avoid

the eviction of all the hosts for a service, making the service unavailable even if some hosts can

respond. The default value for maxEjectionPercent is 10%.

Configuring Connection Limits
Another technique to protect hosts from failing is limiting the number of simultaneous

connections to the host. If hosts are prone to time-out or fail when they receive too many

requests, limiting the number of connections helps prevent the host from crashing.

OpenShift Service Mesh enables applying those limits using a connectionPool entry in the

DestinationRule:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: myDestinationRule
spec:
  host: myService
  trafficPolicy:
    connectionPool:
      tcp: 
        maxConnections: 1 
        connectTimeout: 30ms 
      http: 
        http1MaxPendingRequests: 1 
        maxRequestsPerConnection: 1 

Connection pool settings are divided into HTTP and TCP settings for clarity.

Maximum number of simultaneous connections established to the host.

Maximum time to establish the connection.

Maximum number of requests pending service by the host.

Maximum number of requests permitted on a single connection. OpenShift Service Mesh

reuses connections until reaching this limit, or the tcp.tcpKeepalive time is consumed.

See the Istio reference documentation about DestinationRule resources for the complete list

of supported entries.

When limiting the connections to a host, if the threshold is exceeded it will generate service

failures, specifically, gateway failures. Those limits can be applied simultaneously with a Circuit

Breaker. Failures generated by the connection limit are used by the Circuit Breaker to break the

circuit and start eviction policies. However, connection limits and Circuit Breaker are independent

traffic policies, and developers can use one of them without the other.

Connection pools apply to every host in the service. That means each host has a connection pool

independent from other host pools. If the host depletes its connection pool, OpenShift Service

Mesh establishes no more connections to that host, but continues using the rest of the hosts.

DO328-SM1.1-en-2-20200910 265



Chapter 7 | Building Resilient Services

 

References

Istio documentation on cirtuit breakers

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#circuit-breakers

Istio documentation on outlier detection

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

#OutlierDetection

Istio documentation on connection pools

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

#ConnectionPoolSettings

Envoy proxy documentation on cirtuit breaking

https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/

circuit_breaking

Envoy proxy documentation on outlier detection

https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/

outlier

Istio reference documentation for DestinationRule resources

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

#DestinationRule

266 DO328-SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#circuit-breakers
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#OutlierDetection
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#OutlierDetection
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/circuit_breaking
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/circuit_breaking
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/outlier
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/outlier
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#DestinationRule
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#DestinationRule


Chapter 7 | Building Resilient Services

Guided Exercise

Configuring a Circuit Breaker

In this exercise, you will configure a connection pool for protecting a service from failing, and

a Circuit Breaker to manage unhealthy hosts.

This exercise installs a basic greeting service that fails when it is stressed. First, you add

a connection pool to avoid sending requests to the service that fails Second, you add a

new version of the service. Finally, you deploy the new version beside the old and configure

Circuit Breaker to avoid service failures when the original version of the service is stressed.

Outcomes
You should be able to configure Circuit Breaker and connection pools in OpenShift Service

Mesh.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

[student@workstation ~]$ lab resilience-break start

 1. Validate that the service is working as expected. Include a connectionPool entry to limit

the number of simultaneous connections to the host.

1.1. Log in your Red Hat OpenShift cluster using the developer credentials and make sure

that you use the resilience-break project:

[student@workstation ~]$ source /usr/local/etc/ocp4.config
[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...
[student@workstation ~]$ oc project resilience-break
Now using project "resilience-break" on server ...output omitted...

1.2. The service is exposed in the default gateway, so retrieve the URL using the following

command:

[student@workstation ~]$ GATEWAY_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o template --template '{{ .spec.host }}')

DO328-SM1.1-en-2-20200910 267



Chapter 7 | Building Resilient Services

1.3. Test the service to ensure that it installed and is functioning correctly.

[student@workstation ~]$ curl -w "%{http_code}\n" $GATEWAY_URL
Hello World!
200

1.4. The installed service fails when it receives too many requests. Use the parallel.sh
script provided in the labs folder to perform twenty parallel requests to the service.

[student@workstation ~]$ cd DO328/labs/resilience-break
[student@workstation resilience-break]$ ./parallel.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL"
Hello World!
200
Hello World!
200
503
503
...output omitted...

These results prove that the service is unable to respond to the increased load. The

service correctly responds a few times, providing the Hello World! text and the

200 HTTP code. Eventually the service fails and returns the 503 failure HTTP code.

1.5. Configure a connection pool to reduce the number of connections allowed to the

service. Limit the number of concurrent connections, the number of requests per

connections, and the number of requests pending to one.

You can edit the vertx-greet DestinationRule resource from the Red Hat

OpenShift console, or run the following command in your terminal:

[student@workstation resilience-break]$ oc edit DestinationRule vertx-greet

Add the needed trafficPolicy entry to the resource. The DestinationRule
must look like the following:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  ...output omitted...
  name: vertx-greet
  ...output omitted...
spec:
  host: vertx-greet
  trafficPolicy:
    connectionPool:
      http:
        http1MaxPendingRequests: 1
        maxRequestsPerConnection: 1
      tcp:
        maxConnections: 1

You can see the complete destination rule at ~/DO328/solutions/resilience-
break/dr-connection-pool.yml.

268 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

1.6. Verify that the pool limits pending requests, connections, and requests per

connection to 1.

[student@workstation resilience-break]$ ./parallel.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL"
Hello World!
200
upstream connect error or disconnect/reset before headers. reset reason:
 overflow503
503
503
...output omitted...

The connection pool drops some of the connections, but the service still fails.

 2. Deploy a new version of the service that accepts more requests.

2.1. Use the file deployment-v2.yaml provided in the solutions folder to create the

new Deployment resource.

[student@workstation resilience-break]$ oc create \
> -f ~/DO328/solutions/resilience-break/deployment-v2.yaml
deployment.apps/vertx-greet-v2 created

2.2. Verify that a new pod is deployed.

[student@workstation resilience-break]$ oc get pods
vertx-greet-v1-5bcf556987-ssbft   2/2     Running   0          6m11s
vertx-greet-v2-6794b4bd67-qcgb5   2/2     Running   0          36s

Pod names are generated automatically and yours may differ.

2.3. Validate that the new pod is receiving traffic and responding as expected.

[student@workstation resilience-break]$ ./parallel.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL"
Hello World!
200
upstream connect error or disconnect/reset before headers. reset reason:
 overflow503
upstream connect error or disconnect/reset before headers. reset reason:
 overflow503
Hello from v2
200
Hello from v2
200
upstream connect error or disconnect/reset before headers. reset reason:
 overflow503
...output omitted...

 3. Remove the connection pool and configure a Circuit Breaker so that OpenShift Service

Mesh evicts the failing host after two failures occur during a 2 second interval. Evict hosts

for a minimum of 10 seconds and ensure that OpenShift Service Mesh can evict all hosts.

DO328-SM1.1-en-2-20200910 269



Chapter 7 | Building Resilient Services

3.1. Update the DestinationRule resource to replace the connectionPool entry

with an outlierDetection entry configured with appropriate values. Again, use the

Red Hat OpenShift console, or the oc edit DestinationRule vertx-greet
command to make this update.

The DestinationRule must look like the following:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: vertx-greet
spec:
  host: vertx-greet
  trafficPolicy:
    outlierDetection:
      baseEjectionTime: 10.000s
      consecutiveErrors: 2
      interval: 2.000s
      maxEjectionPercent: 100

You can see the complete destination rule at ~/DO328/solutions/resilience-
break/dr-outlier-detection.yml.

3.2. Verify the Circuit Breaker settings evict the initial service when it receives a few

requests.

You can use the same parallel.sh script to generate a burst of requests, but the

eviction might not display in the output. Use the provided sequential.sh script in

the labs folder to emulate intense traffic to the service.

[student@workstation resilience-break]$ ./sequential.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL;"
Hello from v2
200
Hello from v2
200
Hello from v2
200
Hello World!
200
Hello from v2
200
Hello from v2
200
Hello from v2
200
Hello from v2
200
Hello from v2
200
Hello from v2
200
Hello from v2

270 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

200
Hello from v2
...output omitted...

Note that the initial version provides some responses, but the Circuit Breaker

eventually evicts the host. After eviction, no responses are received from this version

of the service for approximately 10 seconds. The host eventually restores and starts

sending responses again.

Keep this script running for some time, and then review the output. Notice that the

host takes more and more time to recover after each eviction. Press Ctrl+C to stop

the process.

Note also that there are no service failures, because the connection pool has been

removed.

3.3. Change the current working directory to the home folder before finishing the

exercise:

[student@workstation resilience-break]$ cd ~
[student@workstation ~]$ 

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-break finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 271



Chapter 7 | Building Resilient Services

Lab

Building Resilient Services

Performance Checklist
In this lab, you will apply different resilience strategies to improve the reliability of an

application.

Outcomes
You should be able to implement retry policies, limit connections to services, and add Circuit

Breakers to improve the resilience of your applications.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

This command deploys unreliable versions of the currency exchange application and the

news application. The command also includes the Financial application into the Red Hat

OpenShift Service Mesh. The source code is in the Git repository at https://github.com/

RedHatTraining/DO328-apps in the exchange-application, and python-flask-
gossip directories.

[student@workstation ~]$ lab resilience-mesh start

1. This activity uses scripts that are located in ~/DO328/labs/resilience-mesh. Change to

that directory.

[student@workstation ~]$ cd ~/DO328/labs/resilience-mesh
[student@workstation resilience-mesh]$ 

2. Log in to the OpenShift cluster as an unprivileged user and verify that the lab projects are

successfully deployed.

3. Configure a circuit breaker in the external news service with the following characteristics:

• A maximum of 2 consecutive errors

• An interval between ejection sweep analysis of 5 seconds

• A minimum ejection duration of 10 seconds

• A maximum ejection percent of 100

272 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 7 | Building Resilient Services

Name the destination rule resource news-circuit and the service entry resource news-
se.

4. Test the circuit breaker configuration.

5. Configure a retry policy in the currencies service with the following characteristics.

• Retry policy of 4 attempts

• Retry on any 5xx error

• Timeout between retries of 1 second

Name the virtual service resource currency-retries.

6. Test the retry policy applied to the currencies service.

7. Configure the the frontend service with the following connection limits:

• A maximum of 5 pending HTTP requests

• A maximum of 10 requests per connection

• A maximum of 5 HTTP1/TCP connections

Name the destination rule resource frontend-pool.

8. Test the connection limits to the frontend service.

9. Return to the home directory.

[student@workstation resilience-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab resilience-mesh grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab resilience-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 273



Chapter 7 | Building Resilient Services

Solution

Building Resilient Services

Performance Checklist
In this lab, you will apply different resilience strategies to improve the reliability of an

application.

Outcomes
You should be able to implement retry policies, limit connections to services, and add Circuit

Breakers to improve the resilience of your applications.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

This command deploys unreliable versions of the currency exchange application and the

news application. The command also includes the Financial application into the Red Hat

OpenShift Service Mesh. The source code is in the Git repository at https://github.com/

RedHatTraining/DO328-apps in the exchange-application, and python-flask-
gossip directories.

[student@workstation ~]$ lab resilience-mesh start

1. This activity uses scripts that are located in ~/DO328/labs/resilience-mesh. Change to

that directory.

[student@workstation ~]$ cd ~/DO328/labs/resilience-mesh
[student@workstation resilience-mesh]$ 

2. Log in to the OpenShift cluster as an unprivileged user and verify that the lab projects are

successfully deployed.

2.1. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation resilience-mesh]$ source /usr/local/etc/ocp4.config

2.2. Log in to OpenShift as the developer user.

274 DO328-SM1.1-en-2-20200910

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 7 | Building Resilient Services

[student@workstation resilience-mesh]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

2.3. Change to the resilience-mesh project.

[student@workstation resilience-mesh]$ oc project resilience-mesh
Now using project "resilience-mesh" on server ...

2.4. Verify the status of the resilience-mesh project pods.

[student@workstation resilience-mesh]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-84d75bdb8c-8g97h   2/2     Running   0          36s
exchange-5fd7954fb5-874kj   2/2     Running   0          36s
frontend-7559c7874f-fknr9   2/2     Running   0          36s
history-548b7f4954-fc9jx    2/2     Running   0          36s

2.5. Verify the status of the resilience-mesh-news project pods.

[student@workstation resilience-mesh]$ oc get pods -n resilience-mesh-news
NAME                          READY   STATUS    RESTARTS   AGE
news-error-6c49447695-8ktl8   1/1     Running   0          30s
news-ok-8bbf9f9c9-v8f58       1/1     Running   0          30s

2.6. Save the front-end route into a variable.

[student@workstation resilience-mesh]$ FRONTEND=$(oc get route \
> istio-ingressgateway -n istio-system \
> -o jsonpath='{"http://"}{.spec.host}{"/frontend"}')

2.7. Access the lab application using the Firefox web browser on your workstation
machine to check the unreliable behavior of the application.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

The Historical Data and Exchange pages rely on the currency service. This service

returns a failure response for two of three requests.

DO328-SM1.1-en-2-20200910 275



Chapter 7 | Building Resilient Services

Figure Error.1: Front end displaying errors generated by the currency service

2.8. Navigate between the Historical Data and Exchange pages several times to observe

this behavior.

The News page sometimes fails to fetch data from the external service. Reload the

page several times to observe this behavior.

Figure Error.2: News page not receiving data from the external service

3. Configure a circuit breaker in the external news service with the following characteristics:

276 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

• A maximum of 2 consecutive errors

• An interval between ejection sweep analysis of 5 seconds

• A minimum ejection duration of 10 seconds

• A maximum ejection percent of 100

Name the destination rule resource news-circuit and the service entry resource news-
se.

3.1. Get the news service host name.

[student@workstation resilience-mesh]$ oc get route news -n resilience-mesh-news \
> -o jsonpath='{.spec.host}{"\n"}'
news-resilience-mesh-news.apps.ocp4.example.com

Use the news service host in the destination rule and service entry you are going to

create in the following steps.

3.2. Create a service entry object YAML file, for example service-entry.yaml, to store

the object definition.

The completed object definition is available in the ~/DO328/solutions/
resilience-mesh/service-entry.yaml file. You can use the YAML file to verify

your file and fix mistakes.

3.3. Create the service entry configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f service-entry.yaml
serviceentry.networking.istio.io/news-se created

3.4. Create a destination rule object YAML file, for example circuit-breaker.yaml, to

store the object definition.

The completed object definition is available in the ~/DO328/solutions/
resilience-mesh/circuit-breaker.yaml file. You can use the YAML file to

verify your file and fix mistakes.

3.5. Create the destination rule configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f circuit-breaker.yaml
destinationrule.networking.istio.io/news-circuit created

4. Test the circuit breaker configuration.

4.1. Open the lab application in your browser and access the News page.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

4.2. Reload the News page several times to verify that it always displays news. It may take

several seconds to OpenShift Service Mesh to propagate the new configuration.

The circuit breaker detects failures in the connections to the external news feed and

removes the problematic hosts.

DO328-SM1.1-en-2-20200910 277



Chapter 7 | Building Resilient Services

5. Configure a retry policy in the currencies service with the following characteristics.

• Retry policy of 4 attempts

• Retry on any 5xx error

• Timeout between retries of 1 second

Name the virtual service resource currency-retries.

5.1. Create a virtual service object YAML file, for example retries.yaml, to store the

object definition.

The completed object definition is available in the ~/DO328/solutions/
resilience-mesh/retries.yaml file. You can use the YAML file to verify your file

and fix mistakes.

5.2. Create the service entry configuration with the oc create command.

[student@workstation resilience-mesh]$ oc create -f retries.yaml
virtualservice.networking.istio.io/currency-retries created

6. Test the retry policy applied to the currencies service.

6.1. Open the lab application in your browser and access to the Historical Data or Exchange

pages.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

6.2. Navigate through the application pages to verify that all pages are working.

7. Configure the the frontend service with the following connection limits:

• A maximum of 5 pending HTTP requests

• A maximum of 10 requests per connection

• A maximum of 5 HTTP1/TCP connections

Name the destination rule resource frontend-pool.

7.1. Create a destination rule object YAML file, for example connection-pool.yaml, to

store the object definition.

The completed object definition is available in the ~/DO328/solutions/
resilience-mesh/connection-pool.yaml file. You can use the YAML file to

verify your file and fix mistakes.

7.2. Create the service entry configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f connection-pool.yaml
destinationrule.networking.istio.io/frontend-pool created

8. Test the connection limits to the frontend service.

8.1. Examine the parallel-requests.sh script. This script generates parallel

connections to the front-end service and prints the HTTP code from the response.

278 DO328-SM1.1-en-2-20200910



Chapter 7 | Building Resilient Services

Run the parallel-requests.sh script to send a small amount of traffic to the

front-end service.

[student@workstation resilience-mesh]$ sh parallel-requests.sh 2
HTTP code: 200
HTTP code: 200

8.2. Run the parallel-requests.sh script to send a large amount of traffic to the front-

end service.

[student@workstation resilience-mesh]$ sh parallel-requests.sh 33
HTTP code: 200
HTTP code: 200
...output omitted...
HTTP code: 200
HTTP code: 503
HTTP code: 503
HTTP code: 503
...output omitted...

The preceding command shows a mix of 200 and 503 errors. The connection pool

settings are limiting the connections so that some responses are 503 errors.

9. Return to the home directory.

[student@workstation resilience-mesh]$ cd ~
[student@workstation ~]$ 

Evaluation

Grade your work by running the lab resilience-mesh grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab resilience-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-mesh finish

This concludes the lab.

DO328-SM1.1-en-2-20200910 279



Chapter 7 | Building Resilient Services

Summary

In this chapter, you learned:

• With OpenShift Service Mesh you can implement different resilience strategies without

changing your code.

• Load balancing prevents service overloads by distributing the load among several service

replicas.

• Time-outs guarantee that a network request finishes within a specified time limit.

• Retries focuses on reducing transient, short-lived communication failures.

• Circuit Breaker avoids directing requests to a failing host.

• Another technique to protect hosts from failing is limiting the number of simultaneous

connections to the host.

280 DO328-SM1.1-en-2-20200910



Chapter 8

Securing an OpenShift Service
Mesh

Goal Secure and encrypt services in your application
with Red Hat OpenShift Service Mesh.

Objectives • Describe how Citadel manages identities.

• Configure Mutual TLS to secure intra-service
communication.

• Configure restriction on services
communication in OpenShift Service Mesh.

Sections • Describing the Role of Citadel in OpenShift
Service Mesh (and Quiz)

• Configuring Mutual TLS (and Guided Exercise)

• Defining Service to Service Authorization (and
Guided Exercise)

Lab Securing an OpenShift Service Mesh

DO328-SM1.1-en-2-20200910 281



Chapter 8 | Securing an OpenShift Service Mesh

Describing the Role of Citadel in
OpenShift Service Mesh

Objectives
After completing this section, you should be able to describe how Citadel manages identities.

Describing Security of the Microservice Architecture
As organizations move to cloud-native applications with DevOps principles, security practices

often change. Some traditional security concepts still apply, but can become difficult to

implement. For example, traditional firewall security perimeters operate on the network transport

layer (L4), which becomes difficult to implement and maintain in a cloud-native environment.

Cloud-native platforms, such as Red Hat OpenShift, introduce a number of new security concepts,

such as verifying and trusting your container registry, adapting network security to software

defined networking, identifying and preventing unintended egress requests, and similar. As teams

continue iterating upon their application, security is often deprioritized in favor of new feature

development.

Deprioritizing security can lead to:

• Outages

• Data breaches

• Legal liability and noncompliance

• Slower time to production

Security is always a priority in the Red Hat ecosystem. Red Hat products and services encourage

adopting DevSecOps principles.

DevSecOps is an evolution of DevOps principles. DevSecOps integrates security in the software

development design and implementation loops from the beginning. Security becomes a

responsibility of everyone involved in the software development cycle.

Security and Red Hat OpenShift Service Mesh

OpenShift Service Mesh enables developers and system administrators to abstract security away

from application code and into infrastructure configuration, enabling zero-trust perimeters and

deny-by-default behavior.

OpenShift Service Mesh provides, among others, the following security features:

Cryptographically Verifiable Service Identities
Red Hat OpenShift assigns each service a service account by default. However, this identity

is not cryptographically verifiable. OpenShift Service Mesh provides X.509 identities with

advanced security features to verify service identity.

Security features, such as internal traffic encryption, verify services using the service

identities.

282 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Enabling traffic encryption means only the origin and target services can decrypt the traffic.

Consequently, this mitigates the impact of possible security breaches, and reduces avenues

for attack, or attack vectors.

Service authentication
A service inside of Red Hat OpenShift cluster can communicate with any other service by

using the resolvable DNS name, such as svc-name.project-name.dns-domain.

Unrestricted communication can lead to attackers communicating with services to which they

should not have access. Depending on the OpenShift cluster architecture, attackers might

also compromise sensitive data to external servers.

In a large service mesh, developers might also discover that services contact legacy endpoints

or other unexpected services. Because legacy endpoints often become deprecated or

decommissioned, depending on legacy endpoints may cause outages.

OpenShift Service Mesh enables you to explicitly permit or deny service-to-service

communication, further reducing potential attack vectors and providing clarity into the service

mesh communication patterns in your cluster.

Citadel in OpenShift Service Mesh
Citadel is a crucial part of OpenShift Service Mesh, responsible for the public key infrastructure

(PKI). OpenShift Service Mesh uses Citadel to provision X.509 identities for each workload, which

are then used for security features, such as authentication and authorization settings, or mutual

TLS.

Citadel enables the following:

• Self-rotating PKI ensures that Citadel automatically rotates certificates within its PKI that are

about to expire. Administrators do not manually manage certificates issued by Citadel.

The self-rotating PKI aim to reduce the maintenance costs connected with manual PKI

management, and to avoid possible outages related to certificate expiry and misconfiguration.

• Certificate-key pair injection ensures that Citadel mounts necessary certificates into any pod

that OpenShift Service Mesh manages. For example, for any new pod joining OpenShift Service

Mesh, Citadel generates a certificate-key pair identity, mounts it into the pod, and stores the

identity information for further security settings.

The automatic certificate-key pair injection enables OpenShift Service Mesh to automatically

assign identities for workloads. The identities are later used for authorization and authentication

features.

Citadel-Issued Identity Management

When you configure OpenShift Service Mesh to manage a project, Citadel generates a certificate-

key pair for the default project service accounts. OpenShift Service Mesh stores the certificate-

key pair, together with the certificate chain, as a secret named istio.service_account_name.

The secret is mounted into any pods containing the Envoy proxy container.

DO328-SM1.1-en-2-20200910 283



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get secret
NAME                           TYPE                                  DATA   AGE
istio.builder                  istio.io/key-and-cert                 3      98m
istio.default                  istio.io/key-and-cert                 3      98m
istio.deployer                 istio.io/key-and-cert                 3      98m
...output omitted...

All services in a project use the same service account by default. Therefore, all services within

one project encrypt their communication with the identical private key, meaning that a malicious

container injected into the project can decrypt all traffic in the project. Although the attack

surface is reduced to the same project traffic, Red Hat recommends creating a service account for

each microservice in a project to further reduce the attack surface.

Citadel generates a new certificate-key pair for each service account in a project. OpenShift

Service Mesh mounts the certificate-key pair into pods associated with the service account.

Red Hat recommends generating a unique service account for each microservice in your project so

that a malicious process cannot decrypt any traffic in the project.

284 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

User deploys two new pods with separate service accounts.

Citadel generates a new certificate-key pair for each service account.

OpenShift Service Mesh mounts certificate-key pairs into the Envoy proxy container of each

pod.

Pilot creates service-identity mapping for secure naming.

Pilot pushes secure naming information into Envoy proxy containers of each pod.

Service A and Service B can communicate with each other using TLS encryption based on

Citadel-issued identities.

Identity Verification

When Citadel generates a certificate-key pair for a service account, it uses the Secure Production

Identity Framework for Everyone (SPIFFE) to provide further security checks. SPIFFE is a

DO328-SM1.1-en-2-20200910 285



Chapter 8 | Securing an OpenShift Service Mesh

specification maintained by the Cloud Native Computing Foundation (CNCF). SPIFFE is designed

to cryptographically verify that the certificate identity presented by a microservice matches with

the microservice service account.

Each certificate is encoded with SPIFFE Verifiable Identity Document (SVID). The SVID takes the

form of cluster_domain/ns/project_name/sa/service_account_name, and is encoded

into the certificate as the X509v3 Subject Alternative Name parameter.

The role of SPIFFE is to mitigate the attack surface for identity theft. For example, if a malicious

user gains access to the certificate-key pair of the frontend microservice, and finds an exploit to

execute arbitrary code in the gateway microservice, then SPIFFE checks might stop the attack.

Because the service account name is encoded in each certificate, setting a unique service account

for both the microservices ensures that the SPIFFE check fails and Envoy proxy fails to complete

the TLS handshake.

OpenShift Service Mesh provides additional security checks, referred to as secure naming. At

run time, the Pilot component checks whether a service uses the correct service account before

SPIFFE is checked. Consequently, because Pilot expects a response from one service, but receives

response from a different service, if you set each a different service account for each service, then

the Envoy proxy rejects the request because it originated from a service other than the expected

(mapped) one. Secure naming is useful when an attacker compromises network routing in your

OpenShift cluster and can reroute traffic from one service to another service.

 

References

What is DevSecOps?

https://www.redhat.com/en/topics/devops/what-is-devsecops

Understanding Red Hat OpenShift Service Mesh

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/service_mesh/

index#understanding-service-mesh

Istio High-level architecture

https://archive.istio.io/v1.4/docs/concepts/security/#high-level-architecture

Istio PKI

https://archive.istio.io/v1.4/docs/concepts/security/#pki

Istio Secure Naming

https://archive.istio.io/v1.4/docs/concepts/security/#secure-naming

Understanding and creating service accounts

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/authentication/

index#understanding-and-creating-service-accounts

286 DO328-SM1.1-en-2-20200910

https://www.redhat.com/en/topics/devops/what-is-devsecops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://archive.istio.io/v1.4/docs/concepts/security/#high-level-architecture
https://archive.istio.io/v1.4/docs/concepts/security/#pki
https://archive.istio.io/v1.4/docs/concepts/security/#secure-naming
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts


Chapter 8 | Securing an OpenShift Service Mesh

Quiz

Describing the Role of Citadel in
OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which two of the following statements about issuing certificate-key pair identity are

correct? (Choose two.)

a. Citadel generates a new certificate-key pair when a user deploys a new pod in an already

existing project.

b. Citadel generates a new certificate-key pair when a user creates a new service account in

an already existing project.

c. Citadel generates a new certificate-key pair when a user creates a new project.

d. Citadel generates a new certificate-key pair when a user requests a new identity.

 2. Which of the following two statements about microservice security with OpenShift

Service Mesh are recommended practices? (Choose two.)

a. Enable traffic encryption in each project. For example, using TLS and unique service

accounts for each pod.

b. Deploy each pod into a unique project so that malicious pods cannot decrypt internal

traffic of other pods.

c. Encode a custom SVID into each pod identity so that malicious containers are easily

spotted.

d. Enable deny-by-default practices, and refuse communication with any pods with identities

that you cannot cryptographically verify.

 3. An application consists of four services: a front end service, a gateway service, and two

back end services. The front end service serves a web page to the end user. The web

page then sends requests to the gateway service, which communicates with back end

services and replies directly to the web page.

Assuming that Red Hat OpenShift Service Mesh manages all of the services, how many

service accounts should be created in the application project?

a. One, only for the front end service, because no other pod is directly exposed to the end

user.

b. Two, for both the front end and gateway services, because they are exposed to the end

user.

c. Two, for both of the back end services, because they might contain sensitive information.

d. Four, one for each of the services because every service must be cryptographically

verifiable.

DO328-SM1.1-en-2-20200910 287



Chapter 8 | Securing an OpenShift Service Mesh

 4. How does Red Hat Service Mesh store Citadel-generated identities?

a. Using OpenShift secrets, named istio.service_account_name.

b. Using an X.509 certificate-key pair, mounted into each pod.

c. Pilot mounts Citadel-generated identities into each pod.

d. OpenShift cluster administrator stores each identity outside of the cluster.

288 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Solution

Describing the Role of Citadel in
OpenShift Service Mesh

Choose the correct answers to the following questions:

 1. Which two of the following statements about issuing certificate-key pair identity are

correct? (Choose two.)

a. Citadel generates a new certificate-key pair when a user deploys a new pod in an already

existing project.

b. Citadel generates a new certificate-key pair when a user creates a new service account in

an already existing project.

c. Citadel generates a new certificate-key pair when a user creates a new project.

d. Citadel generates a new certificate-key pair when a user requests a new identity.

 2. Which of the following two statements about microservice security with OpenShift

Service Mesh are recommended practices? (Choose two.)

a. Enable traffic encryption in each project. For example, using TLS and unique service

accounts for each pod.

b. Deploy each pod into a unique project so that malicious pods cannot decrypt internal

traffic of other pods.

c. Encode a custom SVID into each pod identity so that malicious containers are easily

spotted.

d. Enable deny-by-default practices, and refuse communication with any pods with identities

that you cannot cryptographically verify.

 3. An application consists of four services: a front end service, a gateway service, and two

back end services. The front end service serves a web page to the end user. The web

page then sends requests to the gateway service, which communicates with back end

services and replies directly to the web page.

Assuming that Red Hat OpenShift Service Mesh manages all of the services, how many

service accounts should be created in the application project?

a. One, only for the front end service, because no other pod is directly exposed to the end

user.

b. Two, for both the front end and gateway services, because they are exposed to the end

user.

c. Two, for both of the back end services, because they might contain sensitive information.

d. Four, one for each of the services because every service must be cryptographically

verifiable.

DO328-SM1.1-en-2-20200910 289



Chapter 8 | Securing an OpenShift Service Mesh

 4. How does Red Hat Service Mesh store Citadel-generated identities?

a. Using OpenShift secrets, named istio.service_account_name.

b. Using an X.509 certificate-key pair, mounted into each pod.

c. Pilot mounts Citadel-generated identities into each pod.

d. OpenShift cluster administrator stores each identity outside of the cluster.

290 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Configuring Mutual TLS

Objectives
After completing this section, you should be able to configure Mutual TLS to secure intra-service

communication.

Describing Mutual TLS in OpenShift Service Mesh
Mutual TLS (mTLS) is a security feature provided by OpenShift Service Mesh. Enabling mTLS

results in encrypted traffic between Envoy proxy containers. Every service injected with Envoy

proxy can perform plain text as well as TLS-encrypted requests.

Enabling mTLS reduces the attack surface of your Red Hat OpenShift cluster. For example, mTLS

mitigates man-in-the-middle attacks between the Red Hat OpenShift nodes by securing internal

(also called east-west) traffic. If an attacker injects a malicious container into your service mesh,

due to a compromised external container registry, for example, this container cannot decrypt

the encrypted network packets. Enabling mTLS also provides a cryptographically verifiable

identity, which serves to further mitigate the attack vector of potential malicious containers. Using

cryptographic identities to further reduce the attack surface is explored in later sections.

Red Hat OpenShift does not provide any mechanism to enable encryption for internal

communication automatically. Cloud administrators who want to adhere to the DevSecOps

principles, such as implementing zero-trust network perimeters, must manually provision and

maintain a Public Key Infrastracture (PKI). The application developers must adjust the application

code to communicate using TLS protocols.

OpenShift Service Mesh enables you to utilize a ready-made and automatically managed PKI

infrastructure. Because TLS is used between Envoy proxies, the application code requires no

modifications to utilize TLS communication. OpenShift Service Mesh manages and rotates

X.509 certificates automatically. Consequently, expired certificates do not result in unresponsive

services.

Mutual TLS Modes

You can enable mTLS in one of two modes:

• Permissive (default)

• Strict

The permissive mode enables Envoy proxies to accept either HTTP or mTLS encrypted traffic.

The permissive mode is the default mTLS mode because it enables communication with services

that are not injected with Envoy proxies. In the permissive mode, you can manually enable mTLS in

projects that do not communicate with services outside of the OpenShift Service Mesh.

The strict mode forbids Envoy proxies to accept HTTP traffic. Consequently, services using plain

text requests are unable to communicate with services in OpenShift Service Mesh. Note that the

strict mode might also disable certain features of OpenShift Service Mesh.

Use the strict mode when you want to enforce zero-trust perimeter, and your services have

no dependencies on services without the Envoy proxy sidecar container. Permissive mode is

DO328-SM1.1-en-2-20200910 291



Chapter 8 | Securing an OpenShift Service Mesh

especially useful when you are migrating some of your services to OpenShift Service Mesh, or for

testing. Even when OpenShift Service Mesh uses the permissive mode, you can set your services

to communicate using mTLS.

Configuring Mutual TLS

Configuring Mutual TLS Globally

You can configure global enforcement of mTLS by modifying the servicemeshcontrolplane
resource. Set the .spec.istio.global.mtls.enabled property to true to enable strict
enforcement mode:

[student@demo ~]$ oc edit servicemeshcontrolplane basic-install -n istio-system
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
  creationTimestamp: "2020-04-15T10:34:31Z"
  finalizers:
  - maistra.io/istio-operator
  generation: 2
  name: basic-install
  namespace: istio-system
spec:
  istio:
    global:
      mtls:
        enabled: true 
    grafana:
      enabled: true

The .spec.istio.global.mtls.enabled property of the

servicemeshcontrolplane resource.

The .spec.istio.global.mtls.enabled property sets all Envoy proxies to both accept and

send strictly mTLS requests. The default setting is false.

Configuring Mutual TLS per Project

When you set the global mTLS mode to PERMISSIVE, you can enforce mTLS on the project level

using the Policy resource:

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: default
spec:
  peers:
  - mtls:
      mode: STRICT

When you create a Policy resource, you configure Envoy proxies to accept only mTLS-encrypted

requests. However, without further configuration, Envoy proxies send plain text HTTP requests.

To configure Envoy proxies to also strictly send mTLS requests, use the DestinationRule
resource:

292 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: dr-mtls
spec:
  host: * 
  trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL 

This destination rule applies to requests for all hosts

Requests use mutual TLS

Verifying State of Mutual TLS

When you configure services to use mTLS, you might find that some services stop responding.

This is often the result of conflicting configuration of services, where one service strictly accepts

mTLS requests while another strictly accepts plain HTTP requests. You might also want to verify

your mTLS service configuration to ensure that the configuration settings are properly applied.

You can both troubleshoot and verify mTLS configuration using the istioctl command-line utility.

You can use the istioctl authn tls-check POD_NAME command to verify Envoy proxy

mTLS settings.

Verifying Service Identity

Any service using mTLS contains a set of X.509 certificates. The Citadel stores the certificates as

a secret with the name of istio.service_account_name, for example:

[student@demo ~]$ oc get secrets -n istio-system | grep istio\\.
istio.builder                          istio.io/key-and-cert    3    45h
istio.default                          istio.io/key-and-cert    3    45h
istio.deployer                         istio.io/key-and-cert    3    45h
istio.grafana                          istio.io/key-and-cert    3    45h
istio.istio-citadel-service-account    istio.io/key-and-cert    3    45h
...output omitted...

You can examine each certificate using the openssl utility:

[student@demo ~]$ oc get secret -n istio-system \
> istio.istio-ingressgateway-service-account \
> -o json | jq -r '.data["cert-chain.pem"]' | \
> base64 --decode | openssl x509 -in /dev/stdin -text -noout
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            8a:da:c5:65:3b:52:b8:90:d6:1b:f1:7d:57:0d:3b:9e
        Signature Algorithm: sha256WithRSAEncryption
        Issuer: O = cluster.local
        Validity
            Not Before: Apr 15 10:35:06 2020 GMT
            Not After : Jul 14 10:35:06 2020 GMT

DO328-SM1.1-en-2-20200910 293



Chapter 8 | Securing an OpenShift Service Mesh

        Subject:
        Subject Public Key Info:
...output omitted...

OpenShift Service Mesh mounts the secret into each Envoy proxy at /etc/certs:

[student@demo ~]$ oc exec frontend-6877597c88-mscmh \
> -c istio-proxy  -- ls /etc/certs
cert-chain.pem 
key.pem 
root-cert.pem 

The Envoy proxy container is named istio-proxy by default.

Envoy certificate that is presented to other Envoy proxies in order to perform TLS handshake.

Envoy's private key, used for decrypting TLS traffic. Forms a certificate-key pair with cert-
chain.pem.

The root certificate to verify other cert-chain.pem certificates. Each Citadel manages its

own root certificate.

Verifying service identity is useful when you change the Citadel certificate authority to your

organization's certificate authority, or when troubleshooting lower-level network issues, such as

failure to perform TLS handshake between two services. You can also verify the SPIFFE identity

encoded in the certificate.

End-to-End TLS

Configuring end-to-end TLS means the communication between an external client and a service

is fully encrypted. However, to utilize all features of OpenShift Service Mesh, you must use the

ingressgateway pods.

Using one route to expose multiple different services is difficult because a single route can have

only one set of certificates.

You can solve the issue by deploying a separate ingress gateway for each service that you

want to expose to external clients. Alternatively, you can create a passthrough-terminated

TLS route for each exposed service and mount the certificates for each route into the default

ingressgateway pod.

To secure your application using a passthrough-terminated TLS route:

1. Create a tls secret with the contents of your certificate-key pair.

[student@demo ~]$ oc -n istio-system create secret tls istio-ingressgateway-
customer-certs --key customer.key --cert customer.crt
secret/istio-ingressgateway-customer-certs created

2. Mount the certificates into the istio-ingressgateway pod.

a. Prepare a patch that mounts the istio-ingressgateway-customer-certs secret

into the istio-ingressgateway pod.

[student@demo ~]$ cat > gateway-patch.json << EOF 
> [{
>   "op": "add",
>   "path": "/spec/template/spec/containers/0/volumeMounts/0",

294 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

>   "value": {
>     "mountPath": "/etc/istio/customer-certs",
>     "name": "customer-certs",
>     "readOnly": true
>   }
> },
> {
>   "op": "add",
>   "path": "/spec/template/spec/volumes/0",
>   "value": {
>   "name": "customer-certs",
>     "secret": {
>       "secretName": "istio-ingressgateway-customer-certs",
>       "optional": true
>     }
>   }
> }]
> EOF

b. Apply the patch.

[student@demo ~]$ oc -n istio-system patch --type=json deploy istio-ingressgateway
 -p "$(cat gateway-patch.json)"
deployment.apps/istio-ingressgateway patched

c. Verify certificates are mounted in the ingressgateway container.

[student@demo ~]$ INGRESS_POD=$(oc -n istio-system get pods -l
 istio=ingressgateway -o jsonpath='{.items..metadata.name}')
[student@demo ~]$ oc -n istio-system exec $INGRESS_POD -- ls /etc/istio/customer-
certs
tls.crt
tls.key

3. Create a gateway that accepts connections using the host of your exposed application, that is,

the resolvable host name used for ingress on the HTTPS port

a. Prepare the gateway yaml file:

[student@demo ~]$ cat > gateway.yml <<EOF
> apiVersion: networking.istio.io/v1alpha3
> kind: Gateway
> metadata:
>   name: customer-gateway
> spec:
>   selector:
>     istio: ingressgateway 
>   servers:
>   - port:
>       number: 443
>       name: https-customer
>       protocol: HTTPS
>     tls:

DO328-SM1.1-en-2-20200910 295



Chapter 8 | Securing an OpenShift Service Mesh

>       mode: SIMPLE  
>       serverCertificate: /etc/istio/customer-certs/tls.crt 
>       privateKey: /etc/istio/customer-certs/tls.key
>     hosts:
>     - "customer.com" 
> EOF

The gateway targets the istio-ingressgateway pod by the label

istio=ingressgateway. The istio-ingressgateway pod contains the

mounted certificate-key pair.

The gateway accepts connections on the HTTPS port 443 using the HTTPS

protocol.

The SIMPLE TLS mode means the server does not verify client certificates. Only the

client verifies the server authority.

Provide path to the mounted certificate-key pair. The route presents this certificate

to clients.

The host of the path. This path responds to https://customer.com. Ensure

clients can correctly resolve this domain.

b. Apply the gateway:

[student@demo ~]$ oc create -f gateway.yml
gateway.networking.istio.io/customer-gateway created

4. Create a virtual service that responds to the customer-gateway gateway.

a. Prepare the virtual service yaml file:

[student@demo ~]$ cat > vservice.yml << EOF
> apiVersion: networking.istio.io/v1alpha3
> kind: VirtualService
> metadata:
>   name: customer-virtualservice
> spec:
>   hosts:
>   - "customer.com"
>   gateways:
>   - customer-gateway
>   http:
>   - match:
>     - uri:
>         prefix: /
>     route:
>     - destination:
>         host: customer
>         port:
>           number: 8080
> EOF

b. Apply the virtual service:

[student@demo ~]$ oc create -f vservice.yml
virtualservice.networking.istio.io/customer-virtualservice created

296 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

5. Create a passthrough-terminated TLS route in the istio-system project that

listens to the domain that you selected earlier. The route redirects requests to the istio-
ingressgateway service.

a. Prepare the route yaml file:

[student@demo ~]$ cat > route.yml << EOF
> apiVersion: route.openshift.io/v1
> kind: Route
> metadata:
>   labels:
>     app: istio-ingressgateway
>   name: customer-https-route
>   namespace: istio-system
> spec:
>   host: customer.com
>   port:
>     targetPort: https
>   tls:
>     insecureEdgeTerminationPolicy: None
>     termination: passthrough
>   to:
>     kind: Service
>     name: istio-ingressgateway
>     weight: 100
>   wildcardPolicy: None
> EOF

b. Apply the route:

[student@demo ~]$ oc create -f route.yml
route.route.openshift.io/customer-https-route created

6. Verify the secure ingress:

[student@demo ~]$ curl https://customer.com/
customer => preference => recommendation v1 from 'f11b097f1dd0': 2

DO328-SM1.1-en-2-20200910 297



Chapter 8 | Securing an OpenShift Service Mesh

 

References

Mutual TLS Deep-Dive

https://archive.istio.io/v1.4/docs/tasks/security/authentication/mutual-tls/

Automatic mutual TLS

https://archive.istio.io/v1.4/docs/tasks/security/authentication/auto-mtls/

Mutual TLS Migration

https://archive.istio.io/v1.4/docs/tasks/security/authentication/mtls-migration/

Gateway

https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-

TLSOptions

Configuring Routes

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.4/html-single/networking#configuring-routes

For more information, refer to the Mutual Transport Layer Security (mTLS) chapter

in the Introducing Istio Mesh for Microservices book at

https://developers.redhat.com/books/introducing-istio-service-mesh-

microservices/

298 DO328-SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/security/authentication/mutual-tls/
https://archive.istio.io/v1.4/docs/tasks/security/authentication/auto-mtls/
https://archive.istio.io/v1.4/docs/tasks/security/authentication/mtls-migration/
https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-TLSOptions
https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-TLSOptions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking#configuring-routes
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/


Chapter 8 | Securing an OpenShift Service Mesh

Guided Exercise

Configuring Mutual TLS

In this exercise, you will configure OpenShift Service Mesh to use mutual TLS (mTLS).

Outcomes
You should be able to:

• Verify mTLS state in the OpenShift Service Mesh cluster.

• Enable mTLS in a specific project using the Policy and DestinationRule resources.

• Validate mTLS state using the istioctl command-line client.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your

system for this exercise.

This command ensures that:

• Your OpenShift cluster meets the requirements.

• Microservices used in this guided exercise are present on your cluster, and ready to use.

• You have access to the solution files on the workstation machine.

[student@workstation ~]$ lab secure-mtls start

 1. Log in to OpenShift and verify that the sample project has been successfully deployed.

1.1. Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

DO328-SM1.1-en-2-20200910 299



Chapter 8 | Securing an OpenShift Service Mesh

1.3. Change to project mtls:

[student@workstation ~]$ oc project mtls
Now using project "mtls" on server ...

1.4. Verify that the pods are ready:

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-6948b8b959-cl5zf         2/2     Running   0          11s
preference-6d5d86cb79-9cjkv       2/2     Running   0          11s
recommendation-69db8d6c48-wrkc6   2/2     Running   0          11s

1.5. Save the ingress-gateway route host name with the /mtls endpoint into a

variable:

[student@workstation ~]$ INGRESS_HOST=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/mtls)

1.6. Verify that the service responds using the INGRESS_HOST variable:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11b097f1dd0': 1

The start script deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository

at https://github.com/RedHatTraining/DO328-apps/ in the customer,

preference, and recommendation directories.

 2. Verify the state of mTLS in your service mesh using the istioctl utility.

2.1. Save the customer pod name into a variable:

[student@workstation ~]$ CUSTOMER_POD=$(oc get pods -l app=customer \
>  -o jsonpath={.items..metadata.name})

2.2. Examine the istioctl output using the CUSTOMER_POD variable:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD
HOST:PORT                                     STATUS  SERVER
customer.mtls.svc.cluster.local:8080          OK      PERMISSIVE
grafana.istio-system.svc.cluster.local:3000   OK      DISABLE
...output omitted...

Mutual TLS is disabled from the client side. The customer pod can communicate with

all of the services because most services are set to the PERMISSIVE mode. Services

in the PERMISSIVE mode accept both HTTP and mTLS connections.

 3. Enforce use of mTLS in the mtls project.

3.1. Create the policy.yml file:

300 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ cat > policy.yml << EOF
> apiVersion: authentication.istio.io/v1alpha1
> kind: Policy
> metadata:
>   name: default
> spec:
>   peers:
>   - mtls:
>       mode: STRICT
> EOF

You can see the complete resource at ~/DO328/solutions/secure-mtls/
policy.yml.

3.2. Apply the Policy resource:

[student@workstation ~]$ oc create -f policy.yml
policy.authentication.istio.io/default created

 4. Recheck the mTLS status in the mtls project.

4.1. Check the state of mTLS in your service mesh:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD | grep mtls.svc
customer.mtls.svc.cluster.local:8080          OK    STRICT    -
preference.mtls.svc.cluster.local:8080        OK    STRICT    -
recommendation.mtls.svc.cluster.local:8080    OK    STRICT    -
...output omitted...

Because the default policy is now in the STRICT mode, all services within the mtls
project accept only TLS requests. However, the services in the mtls project send

only HTTP requests. Consequently, communication in the mtls project is forbidden.

4.2. Check that the service no longer responds to requests:

[student@workstation ~]$ curl $INGRESS_HOST
upstream connect error or disconnect/reset before headers. reset reason:
 connection termination

 5. Resolve the mTLS conflict within the mtls project.

5.1. Create the destrule.yml file:

[student@workstation ~]$ cat > destrule.yml << EOF
> apiVersion: "networking.istio.io/v1alpha3"
> kind: "DestinationRule"
> metadata:
>   name: "default"
> spec:
>   host: "*.mtls.svc.cluster.local"
>   trafficPolicy:
>     tls:

DO328-SM1.1-en-2-20200910 301



Chapter 8 | Securing an OpenShift Service Mesh

>       mode: ISTIO_MUTUAL
> EOF

You can see the complete resource at ~/DO328/solutions/secure-mtls/
dr.yml.

5.2. Apply the destination rule:

[student@workstation ~]$ oc create -f destrule.yml
destinationrule.networking.istio.io/default created

5.3. Verify that there is no longer conflict within the mtls project using the istioctl
client:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD | grep mtls.svc
customer.mtls.svc.cluster.local:8080          OK    STRICT    ISTIO_MUTUAL
preference.mtls.svc.cluster.local:8080        OK    STRICT    ISTIO_MUTUAL
recommendation.mtls.svc.cluster.local:8080    OK    STRICT    ISTIO_MUTUAL
...output omitted...

Services now use the ISTIO_MUTUAL mode, which means sending requests using

mutual TLS.

5.4. Verify that the customer pod responds at the /mtls endpoint:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11b097f1dd0': 2

 6. Secure communication between pods so that each pod can only decrypt its own

communication.

6.1. Create a service account for each pod:

[student@workstation ~]$ oc create serviceaccount customer
serviceaccount/customer created
[student@workstation ~]$ oc create serviceaccount recommendation
serviceaccount/recommendation created
[student@workstation ~]$ oc create serviceaccount preference
serviceaccount/preference created

6.2. Assign the service accounts to pod deployments:

[student@workstation ~]$ oc set serviceaccount deployment customer customer
deployment.apps/customer serviceaccount updated
[student@workstation ~]$ oc set serviceaccount deployment recommendation \
> recommendation
deployment.apps/recommendation serviceaccount updated
[student@workstation ~]$ oc set serviceaccount deployment preference preference
deployment.apps/preference serviceaccount updated

6.3. Assigning a service account to a deployment terminates the current pod and creates

a new pod. Wait until all pods become ready.

302 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-5c7b87c6c5-55vrz         2/2     Running   0          22s
preference-6d98556fc5-vzk7v       2/2     Running   0          23s
recommendation-6b886bd8d8-8r6xq   2/2     Running   0          24s

6.4. Save the new pod name into a variable:

[student@workstation ~]$ CUSTOMER_POD=$(oc get pods -l app=customer -o \
> jsonpath={.items..metadata.name})

6.5. Verify the customer pod uses a unique SVID:

[student@workstation ~]$ oc exec $CUSTOMER_POD -c istio-proxy  \
> cat /etc/certs/cert-chain.pem | \ 
> openssl x509 -text -noout | \
> grep "X509v3 Subject" -A 1 
  X509v3 Subject Alternative Name:
    URI:spiffe://cluster.local/ns/mtls/sa/customer

Execute the following commands in the istio-proxy container, which contains

the certificates.

Print the encoded certificate for this pod.

Decode the certificate using the openssl utility.

Find the Subject Alternative Name, and then print the line below it.

Repeat the step to verify the SVID for the preference and recommendation pods.

6.6. Verify that pods can communicate using the unique identities:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11b097f1dd0': 1

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mtls finish

This concludes the guided exercise.

DO328-SM1.1-en-2-20200910 303



Chapter 8 | Securing an OpenShift Service Mesh

Defining Service to Service Authorization

Objectives
After completing this section, you should be able to configure restriction on services

communication in OpenShift Service Mesh.

Defining Authorization in Zero-Trust Perimeters
Previously, you learned about the concepts of zero-trust networks and using mutual TLS to

encrypt your internal traffic. OpenShift Service Mesh also provides an authorization mechanism,

which uses the strong service identity and provides developers fine-grained control over services

communication.

In OpenShift Service Mesh, you can specify a deny-by-default communication pattern with

targeted exceptions. For example, you expose the front end and gateway services to end users,

but exposing the database directly would be a security risk. Red Hat OpenShift enables you to

selectively expose only specified services. However, if an attacker breaches the initial security

perimeter, internal services are left exposed and accessible to any other service.

An attacker might breach the initial network perimeter by injecting a malicious container into

your cluster, for example due to a compromised container registry. In a worst case scenario, the

malicious container is properly deployed into the cluster with its own Envoy proxy and a valid

cryptographic identity.

OpenShift Service Mesh enables you to mitigate such a breach using the deny-by-default

communication pattern. Developers can configure the OpenShift Service Mesh to allow

connections to the database service only from pods with a trusted identity. Any other

communication is forbidden and the malicious container does not gain full access to the database

pod.

Authorization requires no modifications to the application code. Microservices focus on executing

business logic while Pilot, together with Envoy proxies, ensure that authorization configuration is

enforced.

Additionally, OpenShift Service Mesh enables developers to control egress calls. If the developers

configure OpenShift Service Mesh with security in mind, the malicious container is unable to make

any calls outside of OpenShift Service Mesh. Service to service authorization is another tool in the

toolbox of a DevSecOps organization that enables you to minimize security vectors and mitigate

security breaches.

Describing Authorization Workflow
Developers configure authorization using the AuthorizationPolicy custom resource

definition (CRD). When you create a new AuthorizationPolicy CRD, Pilot generates an Envoy

RBAC policy configuration, which propagates into Envoy proxy containers. Envoy proxies apply the

authorization policies at run time, when another service sends a request.

304 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Figure 8.1: OpenShift Service Mesh Authorization Workflow

Note that mutual TLS is required for authorization policies that use identity, such as principals,

namespaces, or server name indication (SNI). If you do not enable mutual TLS for identity-based

conditions, then the request contains no identity and is denied by the policy.

Configuring Service Authorization
To configure OpenShift Service Mesh authorization policies, use the AuthorizationPolicy
custom resource definition (CRD). The AuthorizationPolicy CRD specifies the following

attributes:

• Subject, matched by the .spec.selector field. This is the target Envoy proxy that enforces

the policy.

• Action, matched by the .spec.action field, specifies an allowlist (ALLOW) or a denylist (DENY)

action. The default value is ALLOW.

• Rule set, matched by the spec.rules field, specifies the trigger for this policy, for example

communication on a specified port. Each rule set has the following attributes:

– source field, specifies the origin of the request, for example, a service identity.

– to field, specifies the HTTP method, port, path, or other properties of the request.

– when field, specifies additional conditions, such as the presence of an HTTP header.

For example:

DO328-SM1.1-en-2-20200910 305



Chapter 8 | Securing an OpenShift Service Mesh

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "test-policy"
spec:
  selector: 
    matchLabels:
      app: test
  action: ALLOW 
  rules: 
  - from:
    - source:
        namespaces: ["test"]
    to:
    - operation:
        methods: ["GET"]
        ports: ["8080"]
        paths: ["/"]

This authorization policy targets all pods that match the app=test label. The Envoy proxy in

matching pods will enforce this authorization policy.

Action is explicitly set to ALLOW. Requests that trigger this policy are permitted. Any other

requests to the matching pods will be denied, unless you specify another authorization policy.

This policy matches requests from the test namespace with the GET HTTP method to the

8080 port matching the / endpoint.

Note the following:

• If you create no authorization policy, then all requests are permitted. However, when you specify

at least one authorization policy, you enable deny-by-default behavior for the Envoy proxy of

the matching workload.

This behavior also applies when you create a single denylist policy. If you create a single

authorization policy with the DENY action, all requests will be denied, and your pod will be

inaccessible.

• You can create multiple authorization policies for one workload.

Creating multiple policies for a single workload is useful for designing atomic, easy-to-maintain

policies. Creating multiple policies for a single workload also enables other patterns, such as

temporary permit requests used for testing or development.

Each Envoy proxy contains a list of authorization policies. When an Envoy proxy receives a

request, each policy is evaluated separately. The first policy that matches is applied. This results

in a logical OR behavior.

Warning

Do not rely on the policy order of your envoy proxy.

• The scope of authorization policies is a project. The test-policy example policy above will

not match workloads with the app=test label in a different project.

306 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Combining Authorization Policy Rule Parameters
You can specify multiple rule parameters, such as the .spec.rules.from.source or

.spec.rules.from.to.operation parameters. Specifying multiple matching parameters

results in the logical OR behavior.

This is useful for specifying multiple trigger conditions for the policy. However, large authorization

policies with multiple rule parameters are be difficult to understand and maintain. It is best

practice to keep your authorization policies as small and atomic as possible in the context of your

environment.

The following policy example combines multiple .spec.rules.from.source fields:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "test-policy-multiple-sources"
spec:
  selector:
    matchLabels:
      app: test
  rules:
  - from:
    - source:
        namespaces: ["test"]
    - source:
        principals: ["cluster.local/ns/test2/sa/test2-service-account"]
    - source:
        ipBlocks: ["10.128.0.0/14"]

The example test-policy-multiple-sources authorization policy specifies no

.spec.action field value. Consequently, the default ALLOW value is applied. The policy permits

any requests that match at least one of the following conditions:

• Requests originate from the test namespace

• Requests identified by the test2-service-account service account in project test2

• Requests originating from an IP in the 10.128.0.0/14 range

The following policy example combines multiple .spec.rules.from.to.operation fields:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "test-policy-multiple-operation"
spec:
  selector:
    matchLabels:
      app: test
  rules:
  - from:
    - to:
      - operation:
          methods: ["GET"]
          ports: ["8080"]

DO328-SM1.1-en-2-20200910 307



Chapter 8 | Securing an OpenShift Service Mesh

      - operation:
          methods: ["POST"]
          ports: ["8080"]
          paths: ["/api/v2/createEmployee/*"]
      - operation:
          methods: ["PUT"]
          ports: ["8080"]
          paths: ["/api/v2/updateEmployee"]

The test-policy-multiple-operation authorization policy permits any requests that match

at least one of the following conditions:

• Any GET requests on the 8080 port.

• POST requests on the 8080 port to the /api/v2/createEmployee/* endpoints.

• PUT requests on the 8080 port to the /api/v2/updateEmployee endpoint.

 

References

Authorization Policy (Reference)

https://archive.istio.io/v1.4/docs/reference/config/security/authorization-policy/

Authorization Policy Conditions

https://archive.istio.io/v1.4/docs/reference/config/security/conditions/

Authorization Policy (Concept)

https://archive.istio.io/v1.4/docs/concepts/security/#authorization-policy

Envoy Proxy HTTP filters

https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/

http_filters

308 DO328-SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/reference/config/security/authorization-policy/
https://archive.istio.io/v1.4/docs/reference/config/security/conditions/
https://archive.istio.io/v1.4/docs/concepts/security/#authorization-policy
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters


Chapter 8 | Securing an OpenShift Service Mesh

Guided Exercise

Configuring Service to Service
Authorization

In this exercise, you will restrict service-to-service communication within a project and across

projects.

At the start of the exercise, the lab command deploys the customer, preference, and

recommendation services into your Red Hat OpenShift cluster. The customer service

sends requests to the preference service. The preference service sends requests the

recommendation service.

You will:

• Restrict each service to accept incoming requests from one and only one other service, as

per the service workflow.

• Relax the restriction by enabling the customer service to accept incoming requests from

an external project, to simulate developer environment.

Outcomes
You should be able to configure OpenShift Service Mesh to restrict access to services based

on service parameters, such as namespace or service account.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

On the workstation machine, use the lab command to prepare your system for this

exercise.

The lab command deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository at

https://github.com/RedHatTraining/DO328-apps in the customer, preference, and

recommendation directories.

Each service deployment uses a unique service account. Mutual TLS is enabled and

enforced within the secure-authc project. You can examine the full deployment file

in the ~/DO328/labs/secure-authc/app-deployment.yaml file. In the app-
deployment.yaml file, note that each Deployment resource specifies a unique service

account. Additionally, examine the Policy and DestinationRule resources.

[student@workstation ~]$ lab secure-authc start

DO328-SM1.1-en-2-20200910 309

https://github.com/RedHatTraining/DO328-apps


Chapter 8 | Securing an OpenShift Service Mesh

 1. Log in to OpenShift and verify that the application is ready.

1.1. Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project secure-authc:

[student@workstation ~]$ oc project secure-authc
Now using project "secure-authc" on server ...

1.4. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods
NAME                              READY   STATUS    RESTARTS   AGE
customer-5f9bb4676-2g4f6          2/2     Running   0          11s
preference-748787ff89-fnxt8       2/2     Running   0          11s
recommendation-78588b5ff9-wx52s   2/2     Running   0          11s

1.5. Save the ingress-gateway route host name with the /secure-authc endpoint

into a variable:

[student@workstation ~]$ INGRESS_HOST=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/secure-authc)

1.6. Verify that the service responds using the INGRESS_HOST variable:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11b097f1dd0': 1

 2. Verify that there is no restriction on pod communication. Any pod in the mesh can

communicate with any other pod in the secure-authc project.

2.1. Create a new project named curl:

[student@workstation ~]$ oc new-project curl
Now using project "curl" on server ...
...output omitted...

2.2. Add the curl project into the servicemeshmemberroll resource:

310 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc patch smmr default -n istio-system \
> --type='json' -p='[{"op": "add", "path": "/spec/members/0", "value":"curl"}]'
servicemeshmemberroll.maistra.io/default patched

Alternatively, use the ~/DO328/labs/secure-authc/patch-smmr.sh script.

2.3. Deploy the sleep application into the curl project:

[student@workstation ~]$ oc create -f ~/DO328/labs/secure-authc/sleep.yml
service/sleep created
deployment.apps/sleep created

The sleep pod is a container with the sleep command as its execution command.

You can view the source code in the Git repository at https://github.com/

RedHatTraining/DO328-apps in the sleep directory.

2.4. After the sleep pod changes into the Ready state, issue a request from the sleep
pod to the customer service:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \
> curl -s customer.secure-authc.svc.cluster.local:8080
Defaulting container name to sleep.
Use 'oc describe pod/sleep-556b5fc57c-725w7 -n curl' to see all of the containers
 in this pod.
customer => preference => recommendation v1 from 'f11b097f1dd0': 2

The sleep pod can reach the customer service in a different namespace.

2.5. Change to the secure-authc project:

[student@workstation ~]$ oc project secure-authc
Now using project "secure-authc" on server ...
...output omitted...

2.6. Issue a request from the recommendation pod to the customer pod:

[student@workstation ~]$ oc exec $(oc get pod -l app=recommendation -o name) -- \
> curl -s customer:8080
Defaulting container name to recommendation.
Use 'oc describe pod/recommendation-78588b5ff9-wx52s -n secure-authc' to see all
 of the containers in this pod.
customer => preference => recommendation v1 from 'f11b097f1dd0': 3

 3. Restrict access to the customer pod using the following information:

• The customer pod is accessible only by the istio-ingressgateway-service-
account service account.

• The customer pod is accessible only at the port 8080.

• The customer pod is accessible only using the GET method.

3.1. Prepare the AuthorizationPolicy resource. You can view the prepared policy

customer-policy.yaml in the ~/DO328/solutions/secure-authc directory.

DO328-SM1.1-en-2-20200910 311

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ cat > customer-policy.yaml << EOF
> apiVersion: "security.istio.io/v1beta1"
> kind: "AuthorizationPolicy"
> metadata:
>   name: "get-customer"
> spec:
>   selector:
>     matchLabels:
>       app: customer
>   rules:
>   - from:
>     - source:
>         principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]
>     to:
>     - operation:
>         methods: ["GET"]
>         ports: ["8080"]
> EOF

This policy targets all pods with the label app=customer.

Requests from the istio-ingressgateway-service-account identity are

permitted.

Requests from the permitted source are restricted to method GET on port 8080.

3.2. Create the policy:

[student@workstation ~]$ oc create -f customer-policy.yaml
authorizationpolicy.security.istio.io/get-customer created

3.3. Issue a request from the recommendation pod to the customer pod to test the

policy enforcement:

[student@workstation ~]$ oc exec $(oc get pod -l app=recommendation -o name) -- \
> curl -s customer:8080
Defaulting container name to recommendation.
Use 'oc describe pod/recommendation-78588b5ff9-wx52s -n secure-authc' to see all
 of the containers in this pod.
RBAC: access denied

Note

It takes a couple seconds before the authorization policy settings propagate into

the Envoy proxy of the customer pod.

If the request succeeds, try to issue the same request again after 5-10 seconds.

 4. Repeat the previous step to restrict communication for the preference and

recommendation pods.

4.1. Restrict communication for the preference pod using the following information:

312 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

• The preference pod is accessible only by the customer pod with identity

customer-sa.

• The preference pod is accessible only at the 8080 port.

• The preference pod is accessible only using the GET method.

The solution file is provided at ~/DO328/solutions/secure-authc/
preference-policy.yaml.

4.2. Restrict communication for the recommendation pod using the following

information:

• The recommendation pod is accessible only by the preference pod with

identity preference-sa.

• The recommendation pod is accessible only at the 8080 port.

• The recommendation pod is accessible only using the GET method.

The solution file is provided at ~/DO328/solutions/secure-authc/
recommendation-policy.yaml.

 5. For development and testing, make the customer pod accessible from any other pod in

the curl project.

5.1. Change into the curl project:

[student@workstation ~]$ oc project curl
Now using project "curl" on server ...
...output omitted

5.2. Verify that pods in the curl project cannot communicate with the customer pod.

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \
> curl -s customer.secure-authc.svc.cluster.local:8080
Defaulting container name to sleep.
Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers
 in this pod.
RBAC: access denied

5.3. Prepare the AuthorizationPolicy resource:

[student@workstation ~]$ cat > curl-customer-policy.yaml << EOF
> apiVersion: "security.istio.io/v1beta1"
> kind: "AuthorizationPolicy"
> metadata:
>   name: "curl-get-customer"
>   namespace: "secure-authc"
> spec:
>   selector:
>     matchLabels:
>       app: customer
>   rules:

DO328-SM1.1-en-2-20200910 313



Chapter 8 | Securing an OpenShift Service Mesh

>   - from:
>     - source:
>         namespaces: ["curl"]

The curl-customer-policy.yaml file is available in the ~/DO328/solutions/
secure-authc directory.

5.4. Create the policy:

[student@workstation ~]$ oc create -f curl-customer-policy.yaml
authorizationpolicy.security.istio.io/curl-get-customer created

5.5. Verify that pods in the curl project can now communicate with the customer pod:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \
> curl -s customer.secure-authc.svc.cluster.local:8080
Defaulting container name to sleep.
Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers
 in this pod.
customer => preference => recommendation v1 from 'f11b097f1dd0': 4

5.6. Verify that pods in the curl project cannot communicate with other pods in the

secure-authc project:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \
> curl -s preference.secure-authc.svc.cluster.local:8080
Defaulting container name to sleep.
Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers
 in this pod.
RBAC: access denied

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-authc finish

This concludes the guided exercise.

314 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Lab

Securing an OpenShift Service Mesh

Performance Checklist
In this lab, you will secure the provided application using the OpenShift Service Mesh

authorization policies.

Outcomes
You should be able to:

• Enable and verify mutual TLS.

• Configure authorization policies based on service identity.

• Restrict service communication using authorization policies based on HTTP attributes,

such as HTTP verbs, ports, and endpoints.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.

The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps

in the exchange-application directory.

The exchange application consists of the following services:

• Frontend

• Currency

• Exchange

• History

You can examine the services in the secure-mesh project. The application is available using

the istio-ingressgateway route at the /frontend endpoint.

Additionally, the lab command also deploys the dashboard application into your Red Hat

OpenShift cluster. The dashboard application provides information about availability of the

exchange application services in the service mesh.

The dashboard source code is in the Git repository at https://github.com/RedHatTraining/

DO328-apps in the dashboard directory.

The dashboard application consists of the following services:

• Frontend

DO328-SM1.1-en-2-20200910 315

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 8 | Securing an OpenShift Service Mesh

• Backend

You can examine the services in the dashboard project. The application is available using

the istio-ingressgateway route at the /dashboard endpoint.

[student@workstation ~]$ lab secure-mesh start

Secure the exchange application according to the following specifications:

• The frontend service is accessible only from the istio-ingressgateway service, using only

GET requests on port 3000.

• The exchange service is accessible only from the istio-ingressgateway service on port

8080 on the following endpoints:

– POST /currencies

– POST /exchangeRate/singleCurrency

– POST /exchangeRate/historicalData

• The currency and history services are accessible only from the secure-mesh project.

After you secure the exchange application, it should be accessible on the /frontend endpoint of

the istio-ingressgateway route. However, it should not be accessible to any other services

in the service mesh. Consequently, the dashboard application should mark all services with status

Down, and unavailable.

1. Log in to OpenShift and verify that the application is ready.

2. Configure prerequisites for identity-based service-to-service restriction.

3. Restrict access to the frontend service.

4. Restrict access to the exchange service.

5. Restrict access to the currency and history services.

Evaluation

Grade your work by running the lab secure-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab secure-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mesh finish

This concludes the lab.

316 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Solution

Securing an OpenShift Service Mesh

Performance Checklist
In this lab, you will secure the provided application using the OpenShift Service Mesh

authorization policies.

Outcomes
You should be able to:

• Enable and verify mutual TLS.

• Configure authorization policies based on service identity.

• Restrict service communication using authorization policies based on HTTP attributes,

such as HTTP verbs, ports, and endpoints.

Before You Begin
To perform this exercise, ensure you have:

• A configured and running OpenShift cluster.

• A installed and running OpenShift Service Mesh in the OpenShift cluster.

As the student user on the workstation machine, use the lab command to prepare your

system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.

The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps

in the exchange-application directory.

The exchange application consists of the following services:

• Frontend

• Currency

• Exchange

• History

You can examine the services in the secure-mesh project. The application is available using

the istio-ingressgateway route at the /frontend endpoint.

Additionally, the lab command also deploys the dashboard application into your Red Hat

OpenShift cluster. The dashboard application provides information about availability of the

exchange application services in the service mesh.

The dashboard source code is in the Git repository at https://github.com/RedHatTraining/

DO328-apps in the dashboard directory.

The dashboard application consists of the following services:

DO328-SM1.1-en-2-20200910 317

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps


Chapter 8 | Securing an OpenShift Service Mesh

• Frontend

• Backend

You can examine the services in the dashboard project. The application is available using

the istio-ingressgateway route at the /dashboard endpoint.

[student@workstation ~]$ lab secure-mesh start

Secure the exchange application according to the following specifications:

• The frontend service is accessible only from the istio-ingressgateway service, using only

GET requests on port 3000.

• The exchange service is accessible only from the istio-ingressgateway service on port

8080 on the following endpoints:

– POST /currencies

– POST /exchangeRate/singleCurrency

– POST /exchangeRate/historicalData

• The currency and history services are accessible only from the secure-mesh project.

After you secure the exchange application, it should be accessible on the /frontend endpoint of

the istio-ingressgateway route. However, it should not be accessible to any other services

in the service mesh. Consequently, the dashboard application should mark all services with status

Down, and unavailable.

1. Log in to OpenShift and verify that the application is ready.

1.1. Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. Change to project secure-mesh:

[student@workstation ~]$ oc project secure-mesh
Now using project "secure-mesh" on server ...

1.4. Verify that pods are in the Running state:

318 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get pods
NAME                        READY   STATUS    RESTARTS   AGE
currency-566cddc8c6-jtd5g   2/2     Running   0          13s
exchange-66b78bf65c-s72gv   2/2     Running   0          13s
frontend-5648fbb85f-td5dg   2/2     Running   0          13s
history-54b5c9d476-rk4pd    2/2     Running   0          13s

1.5. Save the ingress-gateway route host name with the /frontend endpoint into a

variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

1.7. Save the ingress-gateway route hostname with the /dashboard endpoint into a

variable:

[student@workstation ~]$ DASHBOARD=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/dashboard)

1.8. Verify that all the services are accessible using the DASHBOARD variable:

[student@workstation ~]$ firefox $DASHBOARD

2. Configure prerequisites for identity-based service-to-service restriction.

2.1. Enable mutual TLS:

[student@workstation ~]$ oc patch smcp basic-install -n istio-system  \
> --type merge -p '{"spec":{"istio":{"global":{"mtls":{"enabled": true}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

3. Restrict access to the frontend service.

3.1. Prepare the authorization policy. You can view the complete get-frontend.yaml file

in the ~/DO328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > get-frontend.yaml << EOF
> apiVersion: "security.istio.io/v1beta1"
> kind: "AuthorizationPolicy"
> metadata:
>   name: "get-frontend"
> spec:
>   selector:
>     matchLabels:
>       app: frontend

DO328-SM1.1-en-2-20200910 319



Chapter 8 | Securing an OpenShift Service Mesh

>   rules:
>   - from:
>     - source:
>         principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]
>     - to:
>       - operation:
>           methods: ["GET"]
>           ports: ["3000"]
> EOF

3.2. Apply the authorization policy:

[student@workstation ~]$ oc create -f get-frontend.yaml
authorizationpolicy.security.istio.io/get-frontend created

3.3. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

3.4. Verify that the Frontend Service service is unavailable in the dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

4. Restrict access to the exchange service.

4.1. Prepare the authorization policy. You can view the complete exchange.yaml file in

the ~/DO328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > exchange.yaml << EOF
> apiVersion: "security.istio.io/v1beta1"
> kind: "AuthorizationPolicy"
> metadata:
>   name: "exchange"
> spec:
>   selector:
>     matchLabels:
>       app: exchange
>   rules:
>   - from:
>     - source:
>         principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]
>     - to:
>       - operation:
>           methods: ["POST"]
>           ports: ["8080"]
>           paths: ["/currencies", "/exchangeRate/singleCurrency", "/exchangeRate/
historicalData"]
> EOF

4.2. Apply the authorization policy:

320 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc create -f exchange.yaml
authorizationpolicy.security.istio.io/exchange created

4.3. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history

On the Historical Data page, click Submit.

4.4. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

4.5. Verify that the Gateway Service service is unavailable in the dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

5. Restrict access to the currency and history services.

5.1. Add a new label, ns-restricted, to each of the service deployments. Alternatively,

you can use the add-labels.sh script in the ~/DO328/solutions/secure-mesh
directory.

[student@workstation ~]$ oc patch deployment history --type='json' \
>  -p='[{"op": "add", "path": "/spec/template/metadata/labels/ns-restricted",
 "value":"true"}]'
deployment.apps/history patched
[student@workstation ~]$ oc patch deployment currency --type='json' \
>  -p='[{"op": "add", "path": "/spec/template/metadata/labels/ns-restricted",
 "value":"true"}]'
deployment.apps/currency patched

5.2. Verify that both currency and history pods are labeled using the ns-restricted
label, and are in the Running state:

[student@workstation ~]$ oc get pods -l ns-restricted
NAME                        READY   STATUS    RESTARTS   AGE
currency-65b7dbdc75-2smhv   2/2     Running   0          28s
history-64bf7cf7d5-mnmr6    2/2     Running   0          44s

5.3. Prepare the authorization policy. You can view the complete ns-restricted.yaml
file in the ~/DO328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > ns-restricted.yaml << EOF
> apiVersion: "security.istio.io/v1beta1"
> kind: "AuthorizationPolicy"
> metadata:
>   name: "ns-restricted"
> spec:

DO328-SM1.1-en-2-20200910 321



Chapter 8 | Securing an OpenShift Service Mesh

>   selector:
>     matchLabels:
>       "ns-restricted": "true"
>   rules:
>   - from:
>     - source:
>         namespaces: ["secure-mesh"]
> EOF

5.4. Apply the authorization policy:

[student@workstation ~]$ oc create -f ns-restricted.yaml
authorizationpolicy.security.istio.io/ns-restricted created

5.5. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history

On the Historical Data page, click Submit.

5.6. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

5.7. Verify that the History Service and Currency Service services are unavailable in the

dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

Evaluation

Grade your work by running the lab secure-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab secure-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mesh finish

This concludes the lab.

322 DO328-SM1.1-en-2-20200910



Chapter 8 | Securing an OpenShift Service Mesh

Summary

In this chapter, you learned:

• How OpenShift Service Mesh enables you to adopt DevSecOps practices.

• Configuring and troubleshooting mutual TLS (mTLS).

• Securing microservices by restricting service-to-service communication using the deny-by-

default pattern.

DO328-SM1.1-en-2-20200910 323



324 DO328-SM1.1-en-2-20200910



Chapter 9

Comprehensive Review

Goal Review tasks from  Building Resilient Microservices
with Istio and Red Hat OpenShift Service Mesh

Objectives • Review tasks from  Building Resilient
Microservices with Istio and Red Hat OpenShift
Service Mesh

Sections • Comprehensive Review of Red Hat OpenShift
Service Mesh (and Lab)

Lab Building Resilient Microservices

DO328-SM1.1-en-2-20200910 325



Chapter 9 | Comprehensive Review

Comprehensive Review

Objectives
After completing this section, you should be able to demonstrate knowledge and skills learned in 

Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh .

Reviewing Building Resilient Microservices with Istio
and Red Hat OpenShift Service Mesh
Before beginning the comprehensive review for this course, you should be comfortable with the

topics covered in each chapter.

You can refer to earlier sections in the textbook for extra study.

Chapter 1, Introducing Red Hat OpenShift Service Mesh

Describe the basic concepts of microservice architecture and Red Hat OpenShift Service Mesh.

• Describe the basic concepts behind a distributed architecture and Red Hat OpenShift Service

Mesh.

• Describe the fundamental architecture of OpenShift Service Mesh components.

Chapter 2, Installing Red Hat OpenShift Service Mesh

Deploy Red Hat OpenShift Service Mesh on OpenShift Container Platform.

Install Red Hat OpenShift Service Mesh on Red Hat OpenShift Container Platform.

Chapter 3, Observing a Service Mesh

Trace and visualize an OpenShift Service Mesh with Jaeger and Kiali.

• Configure distributed tracing to track service traffic.

• Collect and inspect critical metrics with Prometheus and Grafana.

• Monitor and visualize service interactions with Kiali.

Chapter 4, Controlling Service Traffic

Manage and route traffic with Red Hat OpenShift Service Mesh

• Manage and route traffic with Red Hat OpenShift Service Mesh.

• Route traffic to services in a mesh, based on request headers.

• Control egress traffic to access external services.

Chapter 5, Releasing Applications with OpenShift Service
Mesh

Release applications with canary and mirroring release strategies.

326 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

• Release application services with a safe canary rollout.

• Deploy a "mirror" service to test a new service with a realistic load.

Chapter 6, Testing Service Resilience with Chaos Testing

Test the resiliency of an OpenShift Service Mesh with Chaos Testing.

• Create test errors to identify weaknesses in your application.

• Create a delay in your services to test for weaknesses in your application.

Chapter 7, Building Resilient Services

Leverage OpenShift Service Mesh strategies for creating resilient services.

• Describe the strategies for creating resilient services with Service Mesh.

• Configure time-outs to maintain service reliability.

• Configure a service retry to maintain service reliability.

• Configure a circuit breaker pattern to maintain service reliability.

Chapter 8, Securing an OpenShift Service Mesh

Secure and encrypt services in your application with Red Hat OpenShift Service Mesh.

• Describe how Citadel manages identities.

• Configure Mutual TLS to secure intra-service communication.

• Configure restriction on services communication in OpenShift Service Mesh.

DO328-SM1.1-en-2-20200910 327



Chapter 9 | Comprehensive Review

Lab

Building Resilient Microservices

Performance Checklist
In this review, you will deploy the "Adopt a Pup" application to OpenShift and configure

Red Hat OpenShift Service Mesh to manage the traffic and security aspects of the

application. You will also configure the service mesh to be more resilient against delays,

timeouts, and failures.

Outcomes
You should be able to:

• Deploy the "Adopt a Pup" application to OpenShift and enable Red Hat OpenShift Service

Mesh to control the incoming and outgoing traffic.

• Secure the application by configuring access control and allowing only encrypted

communication between microservices.

• Configure the service mesh to perform canary releases and dark launches for testing new

features of the application.

• Configure the service mesh to make the application more resilient using timeouts, retries,

and circuit breakers.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

• The Istio CLI (istioctl).

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise, and prepare the lab:

[student@workstation ~]$ lab comprehensive-review start

Instructions

The start script creates a new project named adoptapup and deploys all services except the

adoption service. The news service deploys in a separate project named adoptapup-news.

The architecture of the "Adopt a Pup" application is as follows:

328 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

Figure 9.1: Adopt a Pup

The application consists of the following microservices:

animal
Manages a set of pups that can be adopted. Each pup belongs to a particular animal shelter.

shelter
Manages several animal shelters that take care of pups until they are adopted. A shelter can

have one or more pups.

notification
Manages notifications that are sent to potential owners of pups. The notification service

handles multiple notifications, such as emails and text messages. Currently, only notifications

by email are supported.

email
Sends emails to users. The service mesh does not manage this service.

adoption
This service processes user requests for adoption. It is responsible for data validation and

verifying that the user is eligible to adopt a pup.

news
This service periodically informs users about news regarding shelters and animals. This service

is deployed in a separate project. The service mesh does not manage this service.

frontend
This service provides the web user interface for the application.

mongodb
The details for pups, shelters, and adoptions are stored in this MongoDB database.

DO328-SM1.1-en-2-20200910 329



Chapter 9 | Comprehensive Review

The start script deployed these services using YAML files located in the /home/student/
DO328/labs/comprehensive-review folder.

The start script deployed the MongoDB database and preloaded shelter and animal data into the

database.

Note

Name all virtual service resources created in the adoptapup project as service-vs,

where service is the service name, for example, adoption-vs and animal-vs.

Name all destination rule resources created in the adoptapup project as service-dr,

where service is the service name, for example adoption-dr and animal-dr.

Name all service accounts created in the adoptapup project as service-sa, where

service is the service name, for example adoption-sa and animal-sa.

Perform the following tasks:

1. Log in to OpenShift as the developer user and inspect the deployed microservices in the

adoptapup and adoptapup-news projects. Verify that all the microservices, except the

adoption microservice, are deployed and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

2. Verify that the data has been successfully loaded into MongoDB using the check-
mongo.sh script in the /home/student/DO328/labs/comprehensive-review folder.

If data is successfully loaded, you will see the raw JSON data from the database as follows:

[student@workstation ~]$ sh ~/DO328/labs/comprehensive-review/check-mongo.sh
Login successful.

You have access to the following projects ...output omitted...

  * adoptapup
...output omitted...
Checking if animal data is loaded into MongoDB...

{ "_id" : "d52a8d58-9024-49dd-92b6-d443c6049ffe", "animalName" : "Gus" ...output
 omitted...
...output omitted...

Checking if shelter data is loaded into MongoDB...

{ "_id" : "e038ae3c-592f-403e-9233-4b6eeab30e3c", "shelterName" : "Denver
 Doggos" ...output omitted...
...output omitted...

If the data is not loaded, then run the load-mongo.sh script in the /home/student/
DO328/labs/comprehensive-review folder, and then rerun the check-mongo.sh
script to verify success.

3. Create a service mesh gateway named adoptapup-gateway to allow external traffic to flow

into the service mesh. Configure the gateway to listen for HTTP requests on port 80.

4. Deploy the adoption service in the adoptapup project. Ensure that it is managed by

Red Hat OpenShift Service Mesh.

330 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

The container image for the adoption service is available at quay.io/redhattraining/
ossm-adoption-service:1.0. The container serves requests on port 8080.

Name the OpenShift deployment and service resource as adoption, and then add a label

app: adoption to the relevant resources. This service listens on port 8080.

Name the virtual service as adoption-vs. Configure the virtual service so that all requests

to the /adoption endpoint, relative to the service mesh gateway URL, are routed to the

adoption service.

Using a web browser, access the front end user interface at the /frontend endpoint relative

to the gateway URL. Verify that you can browse shelters and animals from the navigation

pane.

Warning

If you have restarted your classroom VMs, or redeployed the MongoDB database

pod after running the start script, then you must run the load-mongo.sh script

as discussed in a previous step. You must do this because the MongoDB pod uses

ephemeral storage and it does not persist data between restarts.

5. Click News in the navigation panel. The front end fails to fetch data from the news service

(external to the service mesh).

Configure the service mesh to allow the front end service to fetch the latest news from the

news service.

6. Version 2 of the frontend service introduces some user interface changes. The container

image for version 2 is available at quay.io/redhattraining/ossm-adopt-a-pup-
webapp:2.0.

Deploy version 2 of the frontend service as follows:

• Configure service mesh to route 80% of traffic to version 1 and the remainder to version 2.

• The container name and deployment name should be called frontend-v2. Add the label

version: v2 to the relevant resources.

Verify that the navigation panel background color is red in version 2, but not in version 1.

Note

You might have to refresh your browser several times before you can see the user

interface changes. It can take some time for the page from version 2 to render as it

loads the static assets (CSS and JavaScript files) for the first time.

7. Version 2 of the animal service focuses on improving performance. The container image for

version 2 is available at quay.io/RedHatTraining/ossm-animal-service:2.0.

Deploy version 2 of the animal service as follows:

• The container name and deployment name should be called animal-v2. Add the label

version: v2 to the relevant resources.

• Configure service mesh to mirror traffic from version 1 to version 2. Version 2 is not yet

ready for production deployment, so responses to clients must still be sent exclusively from

version 1.

• Verify that traffic is mirrored and that you see the output from version 2 in the generated

logs.

DO328-SM1.1-en-2-20200910 331



Chapter 9 | Comprehensive Review

8. Introduce a 3-second delay for all responses from the shelter service. Verify that you see

delayed responses when you click Our Shelters in the navigation panel.

9. Configure network connections for the adoption service to retry failed requests consistent

with the following policies:

• Configure the service mesh to allow 3 retry attempts. Each retry waits at most 5 seconds
before timing out.

• Retries must be triggered only when the response contains an HTTP status code of 500

and above.

10. Configure a circuit breaker for the adoption service as follows:

• Allow 3 consecutive errors within 10 seconds before breaking the circuit.

• Allow 1 minute of recovery after the circuit breaks before activating the service to receive

requests.

11. Configure connection pooling for the notification service as follows:

• Allow only 5 concurrent connections at any given time to prevent overloading this service.

• Allow only 1 request per connection.

12. Secure the services in the service mesh as follows:

• Ensure that traffic sent from the animal and shelter services to the MongoDB

database is encrypted. Enable mutual authentication between these services and the

MongoDB database.

• Configure the service mesh so that only the shelter service and version 1 of the animal
service are authorized to communicate with the MongoDB database.

Name your resource mongodb-auth-policy.

Evaluation

Grade your work by running the lab comprehensive-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab comprehensive-review grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

332 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

Solution

Building Resilient Microservices

Performance Checklist
In this review, you will deploy the "Adopt a Pup" application to OpenShift and configure

Red Hat OpenShift Service Mesh to manage the traffic and security aspects of the

application. You will also configure the service mesh to be more resilient against delays,

timeouts, and failures.

Outcomes
You should be able to:

• Deploy the "Adopt a Pup" application to OpenShift and enable Red Hat OpenShift Service

Mesh to control the incoming and outgoing traffic.

• Secure the application by configuring access control and allowing only encrypted

communication between microservices.

• Configure the service mesh to perform canary releases and dark launches for testing new

features of the application.

• Configure the service mesh to make the application more resilient using timeouts, retries,

and circuit breakers.

Before You Begin
To perform this exercise, ensure you have access to:

• A configured and running OpenShift cluster.

• An installed and running OpenShift Service Mesh in the OpenShift cluster.

• The OpenShift CLI (/usr/local/bin/oc).

• The Istio CLI (istioctl).

As the student user on the workstation machine, use the lab command to validate the

prerequisites for this exercise, and prepare the lab:

[student@workstation ~]$ lab comprehensive-review start

Instructions

The start script creates a new project named adoptapup and deploys all services except the

adoption service. The news service deploys in a separate project named adoptapup-news.

The architecture of the "Adopt a Pup" application is as follows:

DO328-SM1.1-en-2-20200910 333



Chapter 9 | Comprehensive Review

Figure Error.1: Adopt a Pup

The application consists of the following microservices:

animal
Manages a set of pups that can be adopted. Each pup belongs to a particular animal shelter.

shelter
Manages several animal shelters that take care of pups until they are adopted. A shelter can

have one or more pups.

notification
Manages notifications that are sent to potential owners of pups. The notification service

handles multiple notifications, such as emails and text messages. Currently, only notifications

by email are supported.

email
Sends emails to users. The service mesh does not manage this service.

adoption
This service processes user requests for adoption. It is responsible for data validation and

verifying that the user is eligible to adopt a pup.

news
This service periodically informs users about news regarding shelters and animals. This service

is deployed in a separate project. The service mesh does not manage this service.

frontend
This service provides the web user interface for the application.

mongodb
The details for pups, shelters, and adoptions are stored in this MongoDB database.

334 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

The start script deployed these services using YAML files located in the /home/student/
DO328/labs/comprehensive-review folder.

The start script deployed the MongoDB database and preloaded shelter and animal data into the

database.

Note

Name all virtual service resources created in the adoptapup project as service-vs,

where service is the service name, for example, adoption-vs and animal-vs.

Name all destination rule resources created in the adoptapup project as service-dr,

where service is the service name, for example adoption-dr and animal-dr.

Name all service accounts created in the adoptapup project as service-sa, where

service is the service name, for example adoption-sa and animal-sa.

Perform the following tasks:

1. Log in to OpenShift as the developer user and inspect the deployed microservices in the

adoptapup and adoptapup-news projects. Verify that all the microservices, except the

adoption microservice, are deployed and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

1.1. Run the following command to load the environment variables in the /usr/local/
etc/ocp4.config file:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
>  -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.
...output omitted...

1.3. If you are working with a different OpenShift project, set the current project to

adoptapup:

[student@workstation ~]$ oc project adoptapup
Now using project "adoptapup" on server ...output omitted...

1.4. Verify that the pods for the microservices deployed by the start script are Running:

[student@workstation ~]$ oc get pods
NAME                            READY   STATUS    RESTARTS   AGE
animal-v1-588956cfb5-88k9r      2/2     Running   0          30m
email-65bbdb599b-f75k8          1/1     Running   0          30m
frontend-v1-5f4965ff7d-ngfjz    2/2     Running   0          30m
mongodb-574f8ccb9c-98fpq        2/2     Running   0          30m
notification-5c7fd8bccf-nwndv   2/2     Running   0          30m
shelter-76dccc9cbc-rws47        2/2     Running   0          30m

DO328-SM1.1-en-2-20200910 335



Chapter 9 | Comprehensive Review

1.5. Verify that the pod for the news microservice in the adoptapup-news project is

Running:

[student@workstation ~]$ oc get pods -n adoptapup-news
NAME                    READY   STATUS    RESTARTS   AGE
news-6f7c8d4486-sn2pb   1/1     Running   0          32m

2. Verify that the data has been successfully loaded into MongoDB using the check-
mongo.sh script in the /home/student/DO328/labs/comprehensive-review folder.

If data is successfully loaded, you will see the raw JSON data from the database as follows:

[student@workstation ~]$ sh ~/DO328/labs/comprehensive-review/check-mongo.sh
Login successful.

You have access to the following projects ...output omitted...

  * adoptapup
...output omitted...
Checking if animal data is loaded into MongoDB...

{ "_id" : "d52a8d58-9024-49dd-92b6-d443c6049ffe", "animalName" : "Gus" ...output
 omitted...
...output omitted...

Checking if shelter data is loaded into MongoDB...

{ "_id" : "e038ae3c-592f-403e-9233-4b6eeab30e3c", "shelterName" : "Denver
 Doggos" ...output omitted...
...output omitted...

If the data is not loaded, then run the load-mongo.sh script in the /home/student/
DO328/labs/comprehensive-review folder, and then rerun the check-mongo.sh
script to verify success.

3. Create a service mesh gateway named adoptapup-gateway to allow external traffic to flow

into the service mesh. Configure the gateway to listen for HTTP requests on port 80.

3.1. Create a gateway.yaml file with the following contents. You can also copy the

content from the /home/student/DO328/solutions/comprehensive-review/
gateway.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: adoptapup-gateway
spec:
  selector:
    istio: ingressgateway
  servers:
    - port:
        number: 80
        name: http

336 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

        protocol: HTTP
      hosts:
        - "*"

3.2. Create the gateway using the oc create command.

[student@workstation ~]$ oc create -f gateway.yaml
gateway.networking.istio.io/adoptapup-gateway created

4. Deploy the adoption service in the adoptapup project. Ensure that it is managed by

Red Hat OpenShift Service Mesh.

The container image for the adoption service is available at quay.io/redhattraining/
ossm-adoption-service:1.0. The container serves requests on port 8080.

Name the OpenShift deployment and service resource as adoption, and then add a label

app: adoption to the relevant resources. This service listens on port 8080.

Name the virtual service as adoption-vs. Configure the virtual service so that all requests

to the /adoption endpoint, relative to the service mesh gateway URL, are routed to the

adoption service.

Using a web browser, access the front end user interface at the /frontend endpoint relative

to the gateway URL. Verify that you can browse shelters and animals from the navigation

pane.

Warning

If you have restarted your classroom VMs, or redeployed the MongoDB database

pod after running the start script, then you must run the load-mongo.sh script

as discussed in a previous step. You must do this because the MongoDB pod uses

ephemeral storage and it does not persist data between restarts.

4.1. Create a YAML file named adoption-service.yaml with the following contents.

You can also copy the YAML snippets from the /home/student/DO328/
solutions/comprehensive-review/adoption-service.yaml file.

Start by creating the deployment resource:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: adoption
spec:
  selector:
    matchLabels:
      app: adoption
  replicas: 1
  template:
    metadata:
      labels:
        app: adoption
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: adoption

DO328-SM1.1-en-2-20200910 337



Chapter 9 | Comprehensive Review

          image: quay.io/redhattraining/ossm-adoption-service:1.0
          imagePullPolicy: Always
          ports:
            - containerPort: 8080
---

Add the YAML snippet for creating a service:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: adoption
  name: adoption
spec:
  ports:
    - port: 8080
      protocol: TCP
      targetPort: 8080
  selector:
    app: adoption
---

Finally, create the virtual service as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: adoption-vs
spec:
  hosts:
    - "*"
  gateways:
    - adoptapup-gateway
  http:
    - match:
        - uri:
            prefix: /adoption
      route:
        - destination:
            host: adoption
            port:
              number: 8080

Save your changes.

4.2. Create deployment, service, and virtual service resources.

[student@workstation ~]$ oc create -f adoption-service.yaml
deployment.apps/adoption created
service/adoption created
virtualservice.networking.istio.io/adoption-vs created

4.3. Before continuing to the next step, verify that the adoption service pod is Running.

338 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

[student@workstation ~]$ oc get pods
NAME                            READY   STATUS    RESTARTS   AGE
adoption-658c6fbcb4-jnnrm       2/2     Running   0          15m
...output omitted...

4.4. Run the oc get route command to get the service mesh gateway URL.

[student@workstation ~]$ GW_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

4.5. Access the front end for the "Adopt a Pup" application using the Firefox browser.

[student@workstation ~]$ firefox http://${GW_URL}/frontend &

4.6. Click Adoptable Animals to see a list of pups that are available for adoption.

Click Our Shelters to see a list of shelters. Click Details on the Our Shelters page to

see details about the shelter, and to view the list of pups available in the shelter.

DO328-SM1.1-en-2-20200910 339



Chapter 9 | Comprehensive Review

5. Click News in the navigation panel. The front end fails to fetch data from the news service

(external to the service mesh).

Configure the service mesh to allow the front end service to fetch the latest news from the

news service.

5.1. Get the route URL for the news service.

[student@workstation ~]$ oc get route news -n adoptapup-news
NAME   HOST/PORT                                   ...output omitted...
news   news-adoptapup-news.apps.ocp4.example.com   ...output omitted...

5.2. The front end is unable to fetch news items from the news service, which runs outside

the service mesh in a separate project. Create a service entry resource named news to

allow service mesh to fetch data from the external news service.

Create a file named news-serviceentry.yaml with the following content. Add the

host name that you gathered from the oc get route command in the previous step.

You can also copy the YAML content from the /home/student/DO328/solutions/
comprehensive-review/news-serviceentry.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: news
spec:
  hosts:
  - news-adoptapup-news.apps.ocp4.example.com
  ports:
  - name: http-80
    number: 80
    protocol: http

5.3. Create a service entry resource.

[student@workstation ~]$ oc create -f news-serviceentry.yaml
serviceentry.networking.istio.io/news created

340 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

5.4. Wait for a few seconds for the configuration to propagate. Refresh the News page

from the navigation panel. You should now see news items fetched from the news
service.

Note

The news items are displayed randomly. Your list of items may differ from the

example.

6. Version 2 of the frontend service introduces some user interface changes. The container

image for version 2 is available at quay.io/redhattraining/ossm-adopt-a-pup-
webapp:2.0.

Deploy version 2 of the frontend service as follows:

• Configure service mesh to route 80% of traffic to version 1 and the remainder to version 2.

• The container name and deployment name should be called frontend-v2. Add the label

version: v2 to the relevant resources.

Verify that the navigation panel background color is red in version 2, but not in version 1.

Note

You might have to refresh your browser several times before you can see the user

interface changes. It can take some time for the page from version 2 to render as it

loads the static assets (CSS and JavaScript files) for the first time.

6.1. Make a copy of the /home/student/DO328/labs/comprehensive-review/
frontend-service-v1.yaml file.

[student@workstation ~]$ cp ~/DO328/labs/comprehensive-review/frontend-service-
v1.yaml \
> ~/frontend-service-v2.yaml

6.2. Delete the Service and VirtualService resource definitions (lines 41-73) from

the frontend-service-v2.yaml file. Version 2 includes only the Deployment
resource.

6.3. Change the frontend-service-v2.yaml file for deploying version 2 as follows:

DO328-SM1.1-en-2-20200910 341



Chapter 9 | Comprehensive Review

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: frontend
    version: v2
  name: frontend-v2
spec:
  selector:
    matchLabels:
      app: frontend
      version: v2
  replicas: 1
  template:
    metadata:
      labels:
        app: frontend
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: frontend-v2
          image: quay.io/redhattraining/ossm-adopt-a-pup-webapp:2.0
...output omitted...

6.4. Deploy version 2 of the frontend service.

[student@workstation ~]$ oc create -f frontend-service-v2.yaml
deployment.apps/frontend-v2 created

6.5. Verify that the pod for version 2 is Running before continuing to the next step.

[student@workstation ~]$ oc get pods
NAME                            READY   STATUS    RESTARTS   AGE
...output omitted...
frontend-v1-5f4965ff7d-ngfjz    2/2     Running   0          2h
frontend-v2-5449f5d8bc-c2fl8    2/2     Running   0          74s
...output omitted...

6.6. Create the destination rule resource for the frontend service. Create a file named

frontend-dest-rule.yaml with YAML content as follows. You can also copy the

YAML from the /home/student/DO328/solutions/comprehensive-review/
frontend-dest-rule.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: frontend-dr
spec:
  host: frontend
  subsets:

342 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

6.7. Create the destination rule resource.

[student@workstation ~]$ oc create -f frontend-dest-rule.yaml
destinationrule.networking.istio.io/frontend-dr created

6.8. Edit the virtual service resource for the frontend service.

[student@workstation ~]$ oc edit vs frontend-vs

Configure weighted routing as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: frontend-vs
  namespace: adoptapup
spec:
  gateways:
  - adoptapup-gateway
  hosts:
  - '*'
  http:
  - match:
    - uri:
        prefix: /frontend
    route:
    - destination:
        host: frontend
        subset: v1
        port:
          number: 3000
      weight: 80
    - destination:
        host: frontend
        subset: v2
        port:
          number: 3000
      weight: 20

Save your changes to the virtual service. Wait approximately 30 seconds while the

deployment changes propagate through the service mesh.

6.9. Click Home in the navigation panel, and then refresh the page multiple times until you

see the background color change to red.

DO328-SM1.1-en-2-20200910 343



Chapter 9 | Comprehensive Review

7. Version 2 of the animal service focuses on improving performance. The container image for

version 2 is available at quay.io/RedHatTraining/ossm-animal-service:2.0.

Deploy version 2 of the animal service as follows:

• The container name and deployment name should be called animal-v2. Add the label

version: v2 to the relevant resources.

• Configure service mesh to mirror traffic from version 1 to version 2. Version 2 is not yet

ready for production deployment, so responses to clients must still be sent exclusively from

version 1.

• Verify that traffic is mirrored and that you see the output from version 2 in the generated

logs.

7.1. Make a copy of the /home/student/DO328/labs/comprehensive-review/
animal-service-v1.yaml file.

[student@workstation ~]$ cp ~/DO328/labs/comprehensive-review/animal-service-
v1.yaml \
> ~/animal-service-v2.yaml

7.2. Delete the Service and VirtualService resource definitions (lines 28-60) from

the animal-service-v2.yaml file. Version 2 includes only the Deployment
resource.

344 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

7.3. Make changes to the animal-service-v2.yaml file for deploying version 2 as

follows:

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: animal
    version: v2
  name: animal-v2
spec:
  selector:
    matchLabels:
      app: animal
      version: v2
  replicas: 1
  template:
    metadata:
      labels:
        app: animal
        version: v2
      annotations:
        sidecar.istio.io/inject: "true"
    spec:
      containers:
        - name: animal-v2
          image: quay.io/redhattraining/ossm-animal-service:2.0
...output omitted...

7.4. Deploy version 2 of the animal service.

[student@workstation ~]$ oc create -f animal-service-v2.yaml
deployment.apps/animal-v2 created

7.5. Verify that the pod for version 2 is Running before continuing to the next step.

[student@workstation ~]$ oc get pods
NAME                            READY   STATUS    RESTARTS   AGE
...output omitted...
animal-v1-588956cfb5-88k9r      2/2     Running   0          3h
animal-v2-7c8fff7686-zlhfs      2/2     Running   0          10m
...output omitted...
...output omitted...

7.6. Create the destination rule resource for the animal service. Create a file named

animal-dest-rule.yaml with YAML content as follows. You can also copy the

YAML from the /home/student/DO328/solutions/comprehensive-review/
animal-dest-rule.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: animal-dr

DO328-SM1.1-en-2-20200910 345



Chapter 9 | Comprehensive Review

spec:
  host: animal
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2

7.7. Create the destination rule resource.

[student@workstation ~]$ oc create -f animal-dest-rule.yaml
destinationrule.networking.istio.io/animal-dr created

7.8. Edit the virtual service resource for the animal service.

[student@workstation ~]$ oc edit vs animal-vs

Configure mirroring for the animal service as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: animal-vs
  namespace: adoptapup
spec:
  gateways:
  - adoptapup-gateway
  hosts:
  - '*'
  http:
  - match:
    - uri:
        prefix: /animals
    route:
    - destination:
        host: animal
        subset: v1
        port:
          number: 8080
      weight: 100
    mirror:
      host: animal
      subset: v2

Save your changes to the virtual service. Wait approximately 30 seconds while the

deployment changes propagate through the service mesh.

7.9. Click Adoptable Animals in the navigation panel, and then refresh the page multiple

times to verify that the list of adoptable animals displays without errors.

7.10. Inspect the logs for version 2 and verify that requests sent to version 1 of the animal
service are mirrored. You should see logs for incoming requests.

346 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

[student@workstation ~]$ oc logs animal-v2-7c8fff7686-zlhfs \
> -c animal-v2
...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
 through animal-v2...
...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
 through animal-v2...
...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
 through animal-v2...
...output omitted...

8. Introduce a 3-second delay for all responses from the shelter service. Verify that you see

delayed responses when you click Our Shelters in the navigation panel.

8.1. Edit the virtual service resource for the shelter microservice.

[student@workstation ~]$ oc edit vs shelter-vs

8.2. Add a 3-second delay to all responses as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  annotations:
  name: shelter-vs
  namespace: adoptapup
spec:
  gateways:
  - adoptapup-gateway
  hosts:
  - '*'
  http:
  - match:
    - uri:
        prefix: /shelters
    route:
    - destination:
        host: shelter
        port:
          number: 8080
    fault:
      delay:
        percentage:
          value: 100
        fixedDelay: 3000ms

Save your changes. Wait approximately 30 seconds for the service mesh to propagate

the changes.

8.3. Click Our Shelters in the navigation panel, and then refresh the page multiple times.

Verify that the list of shelters displays after a 3-second delay.

Click Details next to one of the shelters. Verify that shelter details display after a 3-

second delay.

DO328-SM1.1-en-2-20200910 347



Chapter 9 | Comprehensive Review

9. Configure network connections for the adoption service to retry failed requests consistent

with the following policies:

• Configure the service mesh to allow 3 retry attempts. Each retry waits at most 5 seconds
before timing out.

• Retries must be triggered only when the response contains an HTTP status code of 500

and above.

9.1. Edit the virtual service resource for the adoption microservice.

[student@workstation ~]$ oc edit vs adoption-vs

9.2. Add configuration for retries as follows:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: adoption-vs
  namespace: adoptapup
spec:
  gateways:
  - adoptapup-gateway
  hosts:
  - '*'
  http:
  - match:
    - uri:
        prefix: /adoption
    route:
    - destination:
        host: adoption
        port:
          number: 8080
    retries:
      attempts: 3
      perTryTimeout: 5s
      retryOn: 5xx

Save your changes.

10. Configure a circuit breaker for the adoption service as follows:

• Allow 3 consecutive errors within 10 seconds before breaking the circuit.

• Allow 1 minute of recovery after the circuit breaks before activating the service to receive

requests.

10.1. Create the destination rule resource for the adoption microservice in a file named

adoption-cb.yaml as follows. You can also copy the YAML snippet from the /home/
student/DO328/solutions/comprehensive-review/adoption-cb.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:

348 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

  name: adoption-dr
spec:
  host: adoption
  trafficPolicy:
    outlierDetection:
      consecutiveErrors: 3
      interval: 10s
      baseEjectionTime: 1m

Save your changes.

10.2. Create the destination rule resource.

[student@workstation ~]$ oc create -f adoption-cb.yaml
destinationrule.networking.istio.io/adoption-dr created

11. Configure connection pooling for the notification service as follows:

• Allow only 5 concurrent connections at any given time to prevent overloading this service.

• Allow only 1 request per connection.

11.1. Create the destination rule resource for the notification microservice in a file

named notification-pool.yaml as follows. You can also copy the YAML snippet

from the /home/student/DO328/solutions/comprehensive-review/
notification-pool.yaml file.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: notification-dr
spec:
  host: notification
  trafficPolicy:
    connectionPool:
      tcp:
        maxConnections: 5
      http:
        maxRequestsPerConnection: 1

Save your changes.

11.2. Create the destination rule resource.

[student@workstation ~]$ oc create -f notification-pool.yaml
destinationrule.networking.istio.io/notification-dr created

12. Secure the services in the service mesh as follows:

• Ensure that traffic sent from the animal and shelter services to the MongoDB

database is encrypted. Enable mutual authentication between these services and the

MongoDB database.

• Configure the service mesh so that only the shelter service and version 1 of the animal
service are authorized to communicate with the MongoDB database.

DO328-SM1.1-en-2-20200910 349



Chapter 9 | Comprehensive Review

Name your resource mongodb-auth-policy.

12.1. Create service accounts for the shelter and animal services.

[student@workstation ~]$ oc create serviceaccount animal-sa
serviceaccount/animal-sa created
[student@workstation ~]$ oc create serviceaccount shelter-sa
serviceaccount/shelter-sa created

12.2. Assign the service accounts to pod deployments.

[student@workstation ~]$ oc set serviceaccount deployment animal-v1 animal-sa
deployment.apps/animal-v1 serviceaccount updated
[student@workstation ~]$ oc set serviceaccount deployment shelter shelter-sa
deployment.apps/shelter serviceaccount updated

12.3. Assigning a service account to a deployment terminates the current pod and creates a

new pod. Verify that the pods for the shelter and animal services are Running.

[student@workstation ~]$ oc get pods
NAME                            READY   STATUS    RESTARTS   AGE
...output omitted...
animal-v1-7b6487966f-d5gdb      2/2     Running   0          54s
...output omitted...
shelter-84fcc987c9-n8n5t        2/2     Running   0          21s

12.4. Enable mutual authentication for the mongodb service.

Create a file named mongodb-dr.yaml with the following content. You can

also copy the YAML content from the /home/student/DO328/solutions/
comprehensive-review/mongodb-dr.yaml file.

apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
  name: "mongodb-dr"
  namespace: "adoptapup"
spec:
  host: "mongodb.adoptapup.svc.cluster.local"
  trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL

12.5. Create the destination rule resource for the mongodb service:

[student@workstation ~]$ oc create -f mongodb-dr.yaml
destinationrule.networking.istio.io/mongodb-dr created

12.6. Enable mutual authentication for the shelter service.

Create a file named shelter-dr.yaml with the following content. You can

also copy the YAML content from the /home/student/DO328/solutions/
comprehensive-review/shelter-dr.yaml file.

350 DO328-SM1.1-en-2-20200910



Chapter 9 | Comprehensive Review

apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
  name: "shelter-dr"
  namespace: "adoptapup"
spec:
  host: "shelter.adoptapup.svc.cluster.local"
  trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL

12.7. Create the destination rule resource for the shelter service:

[student@workstation ~]$ oc create -f shelter-dr.yaml
destinationrule.networking.istio.io/shelter-dr created

12.8. Edit the destination rule resource for the animal service and enable mutual

authentication.

[student@workstation ~]$ oc edit dr animal-dr

Add the following trafficPolicy attribute:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: animal-dr
  namespace: adoptapup
...output omitted...
spec:
  host: animal
  subsets:
  ...output omitted...
  trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL

12.9. Configure authorization policies to allow only the animal and shelter services to

communicate with MongoDB.

Create a file named mongodb-security-policy.yaml with the following contents.

You can also copy the YAML content from the /home/student/DO328/solutions/
comprehensive-review/mongodb-security-policy.yaml file.

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "mongodb-auth-policy"
spec:
  selector:
    matchLabels:
      app: mongodb

DO328-SM1.1-en-2-20200910 351



Chapter 9 | Comprehensive Review

  rules:
  - from:
    - source:
        principals: ["cluster.local/ns/adoptapup/sa/animal-sa"]
    - source:
        principals: ["cluster.local/ns/adoptapup/sa/shelter-sa"]
    to:
    - operation:
        ports: ["27017"]

12.10. Create the authorization policy resources.

[student@workstation ~]$ oc create -f mongodb-security-policy.yaml
authorizationpolicy.security.istio.io/mongodb-auth-policy created

12.11. Verify that the animal and shelter services can fetch data from MongoDB. Click

Adoptable Animals and Our Shelters in the navigation pane and verify that the list

of animals and shelters is displayed.

Evaluation

Grade your work by running the lab comprehensive-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab comprehensive-review grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

352 DO328-SM1.1-en-2-20200910



Appendix A

Appendix

Goal Describe how to create a Quay.io account,
installing Red Hat OpenShift Service Mesh using
the CLI, and troubleshooting tips

Sections • Installing Red Hat OpenShift Service Mesh with
the CLI

• Creating a Quay Account

• Troubleshooting Tips

DO328-SM1.1-en-2-20200910 353



Appendix A | Appendix

Installing Red Hat OpenShift Service
Mesh with the CLI

Objectives
After completing this section, you should be able to install OpenShift Service Mesh on Red Hat

OpenShift Container Platform with the CLI

Installing OpenShift Service Mesh Using the CLI
You can also install OpenShift Service Mesh using the oc CLI. To install operators, you must have

cluster-admin privileges.

Log in Red Hat OpenShift using an account with cluster-admin privileges.

[user@host ~]$ oc login -u USER -p PASSWORD OCP4_API

Installing the Elasticsearch Operator

The installation of the Elasticsearch Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace

to the Elasticsearch Operator, for example, elasticsearch.yaml.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: elasticsearch-operator
  namespace: openshift-operators
spec:
  channel: "4.3"
  name: elasticsearch-operator
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  installPlanApproval: Automatic

Namespace used to install the operator.

Stream of operator versions.

Name of the operator to subscribe.

Source that provides the operator.

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f elasticsearch.yaml
subscription.operators.coreos.com/elasticsearch-operator created

3. Check the status of the Operator installation.

354 DO328-SM1.1-en-2-20200910



Appendix A | Appendix

[user@host ~]$ oc describe sub elasticsearch-operator \
> -n openshift-operators
Name:         elasticsearch-operator
Namespace:    openshift-operators
...output omitted...
Message:               all available catalogsources are healthy
...output omitted...

Installing the Jaeger Operator

Installing the Jaeger Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace

to the Jaeger Operator, for example, jaeger.yaml.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: jaeger-product
  namespace: openshift-operators
spec:
  name: jaeger-product
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  channel: "stable"
  installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f jaeger.yaml
subscription.operators.coreos.com/jaeger-product created

3. Check the status of the Operator installation.

[user@host ~]$ oc describe sub jaeger-product \
> -n openshift-operators
Name:         jaeger-product
Namespace:    openshift-operators
...output omitted...
Message:               all available catalogsources are healthy
...output omitted...

Installing the Kiali Operator

Installing the Kiali Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace

to the Kiali Operator, for example, kiali.yaml.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:

DO328-SM1.1-en-2-20200910 355



Appendix A | Appendix

  name: kiali-ossm
  namespace: openshift-operators
spec:
  name: kiali-ossm
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  channel: "stable"
  installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f kiali.yaml
subscription.operators.coreos.com/kiali-ossm created

3. Check the status of the Operator installation.

[user@host ~]$ oc describe sub kiali-ossm \
> -n openshift-operators
Name:         kiali-ossm
Namespace:    openshift-operators
...output omitted...
Message:               all available catalogsources are healthy
...output omitted...

Installing the OpenShift Service Mesh Operator

Installing the OpenShift Service Mesh Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators
namespace to the Red Hat OpenShift Service Mesh Operator, for example, service-mesh-

subscription.yaml.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: servicemeshoperator
  namespace: openshift-operators
spec:
  channel: '1.0'
  name: servicemeshoperator
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f service-mesh-subscription.yaml
subscription.operators.coreos.com/servicemeshoperator created

3. Check the status of the Operator installation.

356 DO328-SM1.1-en-2-20200910



Appendix A | Appendix

[user@host ~]$ oc describe sub servicemeshoperator \
> -n openshift-operators
Name:         servicemeshoperator
Namespace:    openshift-operators
...output omitted...
  Message:               all available catalogsources are healthy
...output omitted...

Creating the OpenShift Service Mesh Control Plane

Red Hat recommends that you deploy the control plan in a separate project. The following

describes how to deploy the control plane using the CLI.

1. Log in Red Hat OpenShift as a developer user.

[user@host ~]$ oc login -u USER -p PASSWORD RHT_OCP4_API

2. Create a project, for example, istio-system.

[user@host ~]$ oc new-project istio-system
Now using project "istio-system" on server "https://api.ocp4.example.com:6443".
...output omitted...

3. Create a ServiceMeshControlPlane object YAML file, for example, istio-basic-

installation.yaml.

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
  name: basic-install 
  namespace: istio-system 
spec:
  istio:
    gateways: 
      istio-egressgateway:
        autoscaleEnabled: false
      istio-ingressgateway:
        autoscaleEnabled: false
  mixer:
    policy:
      autoscaleEnabled: false
    telemetry:
      autoscaleEnabled: false
  pilot: 
    autoscaleEnabled: false
    traceSampling: 100
  kiali: 
    enabled: true
  grafana: 
    enabled: true
  tracing: 

DO328-SM1.1-en-2-20200910 357



Appendix A | Appendix

    enabled: true
    jaeger:
      template: all-in-one

Name assigned to the Control Plane.

Namespace where the Control Plane is deployed.

Istio gateways configuration. Disables autoscaling on the ingress and egress gateways.

Pilot configuration. Disables autoscaling and sets the percentage of trace sampling.

Kiali configuration. Enables Kiali to visualize traffic in the Service Mesh.

Grafana configuration. Enables Grafana to analyze and monitor the Service Mesh.

Jaeger configuration. Enables Jaeger to trace traffic in the Service Mesh.

4. Deploy the control plane.

[user@host ~]$ oc create -n istio-system \
> -f istio-basic-installation.yaml
servicemeshcontrolplane.maistra.io/basic-install created

5. Check the status of the control plane installation.

[user@host ~]$ oc get smcp -n istio-system
NAME            READY
basic-install   True

You must create a new ServiceMeshMemberRoll for each new control plane installation. To

create a new ServiceMeshMemberRoll:

1. Create a ServiceMeshControlPlane object YAML file, for example, service-mesh-

member-roll.yaml.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
  name: default
  namespace: istio-system
spec:
  members:
    - a-project

The control plane manages projects listed as members.

2. Deploy the ServiceMeshMemberRoll.

[user@host ~]$ oc create -n istio-system \
> -f service-mesh-member-roll.yaml
servicemeshmemberroll.maistra.io/default created

Adding or Removing a Project from the Control Plane

Only projects listed on the ServiceMeshMemberRoll are managed by the service mesh. To add

or remove a project from the control plane:

1. Log in Red Hat OpenShift Container.

358 DO328-SM1.1-en-2-20200910



Appendix A | Appendix

2. Edit the ServiceMeshMemberRoll resource.

[user@host ~]$ oc edit smmr -n istio-system

3. Modify the YAML to add or remove project members and save the changes.

DO328-SM1.1-en-2-20200910 359



Appendix A | Appendix

Creating a Quay Account

Objectives
After completing this section, you should be able to describe how to create a Quay account, and

public container image repositories for labs in the course

Creating a Quay Account
You need a Quay account to create one or more public container image repositories for the labs

in this course. If you already have a Quay account, you can skip the steps to create a new account

listed in this appendix.

Important

If you already have a Quay account, ensure that you only create public container

image repositories for the labs in this course. The lab grading scripts and

instructions require unauthenticated access to pull container images from the

repository.

To create a new Quay account, perform the following steps:

1. Navigate to https://quay.io using a web browser.

2. Click Sign in in the upper-right corner (next to the search bar).

3. On the Sign in page, you can log in using your Google or GitHub credentials (created in

Appendix A).

Figure A.1: Sign in using Google or GitHub credentials.

Alternatively, click Create Account to create a new account.

360 DO328-SM1.1-en-2-20200910

https://quay.io


Appendix A | Appendix

Figure A.2: Creating a new account

4. If you chose to skip the Google or GitHub log-in method and instead opted to create a new

account, you will receive an email with instructions on how to activate your Quay account.

Verify your email address and then sign in to the Quay website with the username and

password you provided during account creation.

5. After you have logged in to Quay you can create new image repositories by clicking Create
New Repository on the Repositories page.

Figure A.3: Creating a new image repository

Alternatively, click the plus icon (+) in the upper-right corner (to the left of the bell icon), and

then click New Repository.

DO328-SM1.1-en-2-20200910 361



Appendix A | Appendix

Figure A.4: Creating a new image repository

6. Enter a name for the repository as per your lab instructions. Ensure that you select the

Public, and Empty Repository options.

Figure A.5: Creating a new image repository

Click Create Public Repository to create the repository.

 

References

Getting Started with Quay.io

https://docs.quay.io/solution/getting-started.html

362 DO328-SM1.1-en-2-20200910

https://docs.quay.io/solution/getting-started.html


Appendix A | Appendix

Troubleshooting Tips

Objectives
After completing this section, you should be able to troubleshoot and resolve general issues for

labs in the course

OpenShift Log In Failure
Logging in as the OpenShift developer or admin user may sometimes fail with the following

errors:

• error: EOF

• error: net/http: TLS handshake timeout

• Error from server (InternalError): Internal error occurred: unexpected
response: 503

You may also see a lab start script printing a FAIL message when it tries to log in to OpenShift.

• If you experience this issue after you started your VMs, then wait a few minutes until all the

OpenShift services are started and ready, and then try logging in again.

• Log in to the utility VM as the lab user, and inspect the status of your OpenShift nodes

using the oc get nodes command.

[student@workstation ~]$ ssh lab@utility
[lab@utility ~]$ oc get nodes
NAME       STATUS   ROLES           AGE   VERSION
master01   Ready    master,worker   28d   v1.17.1+3f6f40d
master02   Ready    master,worker   28d   v1.17.1+3f6f40d
master03   Ready    master,worker   28d   v1.17.1+3f6f40d
worker01   Ready    worker          28d   v1.17.1+3f6f40d
worker02   Ready    worker          28d   v1.17.1+3f6f40d
worker03   Ready    worker          28d   v1.17.1+3f6f40d

All your nodes should be in Ready state.

Service Mesh Installation Issues
Your Red Hat OpenShift Service Mesh installation may fail due to transient network issues, or

timeouts.

• Run the lab uninstall-mesh start script to clean up the failed install, and retry your

installation. You can also run the lab install-mesh solve script to perform an automated

install of service mesh.

• Verify that a service mesh control plane named basic-install is created by running the oc
get smcp -n istio-system command.

DO328-SM1.1-en-2-20200910 363



Appendix A | Appendix

NAME            READY   STATUS             ...output omitted...
basic-install   9/9     InstallSuccessful  ...output omitted...

• Verify that a service mesh member roll resource named default is created by running the oc
get smmr -n istio-system command.

NAME      READY   STATUS       AGE
default   0/0     Configured   4m46s

• The oc get pods -n istio-system command should show all pods in running state.

NAME                                      READY   STATUS    RESTARTS   AGE
grafana-5756fc9795-kwbt9                  2/2     Running   0          6m3s
istio-citadel-6d5f6954b-7vt8n             1/1     Running   0          7m57s
istio-egressgateway-686897485c-hbstt      1/1     Running   0          6m23s
istio-galley-7d785cd74-jmv65              1/1     Running   0          7m18s
istio-ingressgateway-69d89fbdfc-z87nh     1/1     Running   0          6m23s
istio-pilot-774dbf49b8-4dvbj              2/2     Running   0          6m36s
istio-policy-548f54dc4f-5whzv             2/2     Running   0          7m
istio-sidecar-injector-55f45f76b5-rm8bx   1/1     Running   0          6m17s
istio-telemetry-85c546dc76-thr7m          2/2     Running   0          7m
jaeger-799ff9bcc7-lrl4r                   2/2     Running   0          7m18s
kiali-5d7f76d45d-pdct2                    1/1     Running   0          5m30s
prometheus-79fb5bf69d-rz7hd               2/2     Running   0          7m38s

Envoy Proxy Sidecar Injection Failures
Run the oc get pods command in your project, and verify that you can see two containers (2/2)

in Running state. If you see only one container for service mesh managed applications, it means

proxy sidecar injection failed.

If you do not see the Envoy proxy sidecar injected into applications deployed on service mesh,

then verify the following:

• You have added your project to the service mesh member roll resource.

Run the oc get smmr default -n istio-system -o yaml command and verify that

your project appears in the member list.

• You have added the sidecar.istio.io/inject annotation in the applications deployment

resource and set its value to "true".

• Run the oc delete pod pod_name to delete the pod. OpenShift will spawn a new pod and

re-inject the sidecar proxy.

Project Deletion Failure in Lab Scripts
You are asked to run the lab finish script after you complete each lab. This script may sometimes

fail to delete the OpenShift project due to timeouts, and you may see a FAIL message being

displayed.

You can safely ignore this message. Verify if the project still exists, and then manually delete the

project using the oc delete project command.

364 DO328-SM1.1-en-2-20200910


	Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh
	Table of Contents
	Document Conventions
	Introduction
	DO328 Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh
	Orientation to the Classroom Environment
	Internationalization

	Chapter 1. Introducing Red Hat OpenShift Service Mesh
	Guided Exercise: Creating a Lab Environment
	Describing OpenShift Service Mesh Concepts
	Quiz: Introducing OpenShift Service Mesh
	Describing the OpenShift Service Mesh Architecture
	Quiz: Describing the OpenShift Service Mesh Architecture
	Guided Exercise: Verifying OpenShift Credentials
	Summary

	Chapter 2. Installing Red Hat OpenShift Service Mesh
	Installing Red Hat OpenShift Service Mesh
	Guided Exercise: Install OpenShift Service Mesh
	Summary

	Chapter 3. Observing a Service Mesh
	Tracing Services with Jaeger
	Guided Exercise: Tracing Services with Jaeger
	Collecting Service Metrics
	Guided Exercise: Collecting Service Metrics
	Observing Service Interactions with Kiali
	Guided Exercise: Observing Service Interactions with Kiali
	Lab: Observing an OpenShift Service Mesh
	Summary

	Chapter 4. Controlling Service Traffic
	Managing Service Connections with Envoy and Pilot
	Guided Exercise: Exposing a Service
	Routing Traffic Based on Request Headers
	Guided Exercise: Routing Traffic Based on Request Headers
	Accessing External Services
	Guided Exercise: Accessing External Services
	Lab: Controlling Service Traffic
	Summary

	Chapter 5. Releasing Applications with OpenShift Service Mesh
	Deploying an Application with Canary Releases
	Guided Exercise: Deploying an Application with Canary Releases
	Deploying an Application with a Mirror Launch
	Guided Exercise: Deploying an Application with a Mirror Launch
	Lab: Releasing Applications with OpenShift Service Mesh
	Summary

	Chapter 6. Testing Service Resilience with Chaos Testing
	Throwing HTTP Errors
	Guided Exercise: Throwing HTTP Errors
	Creating Delays in Services
	Guided Exercise: Creating Service Delays
	Lab: Testing Service Resilience with Chaos Testing
	Summary

	Chapter 7. Building Resilient Services
	Describing Strategies for Resilient Services with OpenShift Service Mesh
	Quiz: Describing Strategies for Resilient Services with OpenShift Service Mesh
	Configuring Time-outs
	Guided Exercise: Configuring Time-outs
	Configuring Retry
	Guided Exercise: Configuring Retry
	Configuring a Circuit Breaker
	Guided Exercise: Configuring a Circuit Breaker
	Lab: Building Resilient Services
	Summary

	Chapter 8. Securing an OpenShift Service Mesh
	Describing the Role of Citadel in OpenShift Service Mesh
	Quiz: Describing the Role of Citadel in OpenShift Service Mesh
	Configuring Mutual TLS
	Guided Exercise: Configuring Mutual TLS
	Defining Service to Service Authorization
	Guided Exercise: Configuring Service to Service Authorization
	Lab: Securing an OpenShift Service Mesh
	Summary

	Chapter 9. Comprehensive Review
	Comprehensive Review
	Lab: Building Resilient Microservices

	Appendix A. Appendix
	Installing Red Hat OpenShift Service Mesh with the CLI
	Creating a Quay Account
	Troubleshooting Tips


