‘ Red Hat

Training and Certification

Student Workbook (ROLE)

SM11D0O328
Building Resilient Microservices with Istio and Red

Hat OpenShift Service Mesh
Edition 2

B -

|
H
i
E 7
=
o
E 1
E
E=
|
F
|
F

D0O328-5SM1.1-en-2-20200910

Copyright ©2020 Red Hat, Inc.

For use by Jamie Longmuir jlongmui jlongmui@redhat.com Copyright © 2020 Red Hat, Inc.

[518
(] [

SM11D0O328

Building Resilient Microservices with Istio and Red Hat
OpenShift Service Mesh

Edition 2220200910

Publication date 20200910

Authors: Jordi Sola Alaball, Pablo Solar Vilarino, Marek Czernek, Ravi Srinivasan,
Eduardo Ramirez Ronco, Jaime Ramirez Castillo
Editor: Nicole Muller

Copyright © 2020 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are
Copyright © 2020 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but
not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of
Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,
Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details
contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send
email to training@redhat.com or phone toll-free (USA) +1(866) 626-2994 or +1(919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, Hibernate, Fedora, the Infinity logo, and RHCE are
trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or
other countries.

The OpenStack® word mark and the Square O Design, together or apart, are trademarks or registered trademarks
of OpenStack Foundation in the United States and other countries, and are used with the OpenStack Foundation's
permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the
OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: David Sacco, Sajith Sugathan, Zachary Gutterman, Richard Allred, Sam Ffrench

Document Conventions vii

Introduction ix
DO328 Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh iX
Orientation to the Classroom EnVIironmentooooiiiiiiiiii X
INternatioNaliZationo Xiii

1. Introducing Red Hat OpenShift Service Mesh 1
Guided Exercise: Creating a Lab Environment ... 2
Describing OpenShift Service Mesh ConCeptSoivviiiiiiiiii e 4
Quiz: Introducing OpenShift Service Mesh ... 9
Describing the OpenShift Service Mesh Architecturecooviiiiiiiiiiiiii e 1
Quiz: Describing the OpenShift Service Mesh Architectureccoooiiiiiiiiiiiiii 14
Guided Exercise: Verifying OpenShift Credentialscooiiiiiiiiiiiiiiieec 18
SUMMIAIY <ot 22

2. Installing Red Hat OpenShift Service Mesh 23
Installing Red Hat OpenShift Service Meshooiiiiiiiiii e 24
Guided Exercise: Install OpenShift Service Meshccooiiiiiiiiiiiii 29
T 0 0] 0= 1Y/ PP 34

3. Observing a Service Mesh 35
Tracing Services With JABQETiieiii e 36
Guided Exercise: Tracing Services With Jaegercoiiiiiiiiiii e, 47
Collecting SEIVICE METTICSuii i 60
Guided Exercise: Collecting Service MetriCSvvviiniiiiiiee e 70
Observing Service Interactions with Kialiccooiiiiiiiii e, 90
Guided Exercise: Observing Service Interactions with Kialiccooiiiiiiiiiiiin, 94
Lab: Observing an OpenShift Service Meshccocoiiiiiiiiiiii e 104
T T 0= Y/ 121

4. Controlling Service Traffic 123
Managing Service Connections with Envoy and Pilot ... 24
Guided Exercise: EXPOSING @ SEIVICEunitieiiie e 132
Routing Traffic Based on Request Headerscooiiiiiiiiiiiiiieee e 138
Guided Exercise: Routing Traffic Based on Request Headersoccoeiviiieiiiniinnn. 142
Accessing EXTErNal SEIVICESouiii e 151
Guided Exercise: Accessing External SErviCesooviiiiiiiiiiee e 154
Lab: Controlling Service TraffiC ..o 159
T8 1 0= Y/ PSP 168

5. Releasing Applications with OpenShift Service Mesh 169
Deploying an Application with Canary Releasescoooviiiiiiiiiiiiiiii 170
Guided Exercise: Deploying an Application with Canary Releasescccooviiiiinin. 181
Deploying an Application with a Mirror Launch ... 194
Guided Exercise: Deploying an Application with a Mirror Launch ..., 198
Lab: Releasing Applications with OpenShift Service Meshccooiiiiiii 205
SU I A ettt ettt e et e e e e 217

6. Testing Service Resilience with Chaos Testing 219
TRrOWING HTTP EFTOIS .. onieii e 220
Guided Exercise: Throwing HTTP ErTOrsovniiiiiie e 222
Creating Delays iN SEIVICES ... e 225
Guided Exercise: Creating Service Delayscouiiniiiiiiiie e 227
Lab: Testing Service Resilience with Chaos TeStiNGvvniiiiiiiiie e 230
T 0 0] 0= Y/ PP 238

7. Building Resilient Services 239
Describing Strategies for Resilient Services with OpenShift Service Mesh 240

Quiz: Describing Strategies for Resilient Services with OpenShift Service Mesh
ConfigUIING TIME=0ULS ...ttt e
Guided Exercise: Configuring TiMeE=-0ULSoiviiiiiiiiiieie e
CONTIGUIING RELIY .ot
Guided Exercise: Configuring RETIYcovviiiiii e
Configuring @ CirCUIt BreaKerovvii e
Guided Exercise: Configuring a Circuit Breakercooooviiiiiiiiiiiiiiee e
Lab: Building ReSIlient SEIMVICESvniiie e
T 0 0] 0= 1Y PP

8. Securing an OpenShift Service Mesh
Describing the Role of Citadel in OpenShift Service Meshoocooiiviiiiiiiiiii
Quiz: Describing the Role of Citadel in OpenShift Service Meshcoocoiiiiiiiiiinn.
Configuring MUTUAI TLS L. ou i e
Guided Exercise: Configuring Mutual TLS ...t
Defining Service to Service AUthorizationcooviiiiii i
Guided Exercise: Configuring Service to Service Authorizationcooovviininn.
Lab: Securing an OpenShift Service Meshcooiiiiiiiiiiii e
T 0 0] 0= 1Y/ PP

9. Comprehensive Review
ComMPrenenSIVE REVIEWt
Lab: Building Resilient MICrOSEIVICESuieeiieie e

A. Appendix
Installing Red Hat OpenShift Service Mesh withthe CLI............ocooiiiiiiiiiii,
Creating @ QUAY ACCOUNTu it e e e e e ae e
o180 =t aTeT o u aTe I T o LS U

Document Conventions

]

¥4

References
"References" describe where to find external documentation relevant to a subject.

Note

"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

"Important" boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled "Important” will not cause data loss, but may cause
irritation and frustration.

AN\

Warning
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

For use by |Jamie Longmuir jlongmui jlongmui@redhat.com

-
1
L L)

oyright © 2020 Red Hat, Inc.

D0O328-SM1.1-en-2-20200910

Introduction

DO328 Building Resilient Microservices with Istio
and Red Hat OpenShift Service Mesh

The Red Hat OpenShift Service Mesh platform facilitates managing service
interaction, provides service tracing, and creates a visual representation

of communication pathways between microservices deployed on Red Hat
OpenShift Container Platform.

Building Resilient Microservices with Istio and Red Hat OpenShift Service
Mesh (DO328) is a hands-on, lab-based course that teaches students how
to install, configure, and manage Red Hat® OpenShift® Service Mesh. In
this course, students learn about service monitoring, service management,
distributed tracing, load balancing, and service resilience.

“ \
w= Course
- Objectives

Audience

Prerequisites

7

Install, configure, and manage Red Hat
OpenShift Service Mesh.

This course, together with Introduction to
Containers, Kubernetes, and Red Hat OpenShift
(DO180) and Red Hat OpenShift Developer I:
Containerizing Applications (DO288), prepares
the student to take the Red Hat Certified
Specialist in Building Resilient Microservices
exam (EX328).

System and Software Architects

Software Developers

The courses Introduction to Containers,
Kubernetes, and Red Hat OpenShift
(DO180) and Red Hat OpenShift Developer
I: Containerizing Applications (DO288),

or demonstrate equivalent experience

with containers and Kubernetes is strongly
recommended, but not required.

The course Implementing Microservice
Architectures (DO283), or demonstrate
equivalent experience creating microservice
applications is strongly recommended, but not
required.

D0O328-5SM1.1-en-2-20200910

Introduction

Orientation to the Classroom
Environment

172.25.250.0/24 utility

internet bastlon Student Network I
192.168.50.0/24
(g« [EEma)
Z==ee s Z DHCP Network
classroom Classroom Network

172.25.252.0/24

content workstation

materials

))
))
) 1
))
! .- je—7—>[-] !
) 1
! — — !
)

H ‘_ ’ 1
))
H — — H
) 4——’)
! !
))
! !
))
])
1)
))
) 1
))
1)
))
))
]

control plane compute nodes

OpenShift cluster

Figure 0.1: Classroom environment

In this course, the main computer system used for hands-on learning activities is workstation.
The system called bastion must always be running. These two systems are in the
lab.example.com DNS domain.

All student computer systems have a standard user account, student, which has the password
student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

workstation.lab.example.com 172.25.250.9 Graphical workstation used by
students

bastion.lab.example.com 172.25.250.254 Router linking student's VMs to

classroom servers

classroom.lab.example.com 172.25.252.254 Server hosting the classroom
materials required by the course

utility.lab.example.com 172.25.250.253 Server providing supporting
services required by the OCP
cluster including DHCP and NFS
and routing to the OCP servers.

masterOl.ocp4.example.com 192168.50.10 OpenShift control plane.

' D0O328-5SM1.1-en-2-20200910

Introduction

Machine name IP addresses Role
master02.ocp4.example.com 192168.50.11 OpenShift control plane.
masterO3.ocp4.example.com 192.168.50.12 OpenShift control plane.
workerOl.ocp4.example.com 192.168.50.13 OpenShift compute node.
workerO2.ocp4.example.com 192168.50.14 OpenShift compute node.
workerO3.ocp4.example.com 192.168.50.15 OpenShift compute node.

The bastion system acts as a router between the network that connects the student machines
and the classroom network. If bastion is down, other student machines may not function
properly or may even hang during boot.

The utility system acts as a router between the network that connects the OpenShift cluster
machines and the student network. If utility is down, the OpenShift cluster will not function
properly or may even hang during boot.

Several systems in the classroom provide supporting services. Two servers,
content.example.comand materials.example.com, are sources for software and lab
materials used in hands-on activities. Information on how to use these servers is provided in the
instructions for those activities.

Students use the workstation machine to access a dedicated OpenShift cluster, for which they
have cluster administrator privileges.

Controlling Your Systems

You are assigned a remote computer in a Red Hat Online Learning classroom, which is accessed
through a web application hosted athttp://rol.redhat.com/. Students should log in to this
site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state
of each virtual machine in the classroom is displayed on the page under the Lab Environment
tab.

Machine States

Virtual Machine Description

State

active The virtual machine is running and available (or, when booting, soon
will be).

stopped The virtual machine is completely shut down.

building The initial creation of the virtual machine is being performed.

Depending on the state of a machine, a selection of the following actions is available.

Introduction

Classroom/Machine Actions

Button or Action Description

CREATE Create the ROL classroom. Creates all of the virtual machines needed
for the classroom and starts them. Can take several minutes to
complete.

DELETE Delete the ROL classroom. Destroys all virtual machines in the

classroom. Caution: Any work generated on the disks is lost.
START Start all virtual machines in the classroom.
STOP Stop all virtual machines in the classroom.

OPEN CONSOLE Open a new tab in the browser and connect to the console of the
virtual machine. Students can log in directly to the virtual machine and
run commands. In most cases, you should log in to the workstation
virtual machine and use ssh to connect to the other virtual machines.

ACTION - Start Start (power on) the virtual machine.

ACTION - Gracefully shut down the virtual machine, preserving the contents of
Shutdown its disk.

ACTION - Power Forcefully shut down the virtual machine, preserving the contents of its
Ooff disk. This is equivalent to removing the power from a physical machine.
ACTION - Reset Forcefully shut down the virtual machine and reset the disk to its initial

state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION —
Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION — Reset

If you want to return the classroom environment to its original state at the start of the course, you
can click DELETE to remove the entire classroom environment. After the lab has been deleted,
you can click CREATE to provision a new set of classroom systems.

Warning
The DELETE operation cannot be undone. Any work you have completed in the
classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.
To help conserve allotted computer time, the ROL classroom has an associated countdown timer,
which shuts down the classroom environment when the timer expires.

To adjust the timer, click + to add one hour to the timer. Note that there is a maximum time of
twelve hours.

Introduction

Internationalization

Per-user Language Selection

Your users might prefer to use a different language for their desktop environment than the
system-wide default. They might also want to use a different keyboard layout or input method for
their account.

Language Settings

In the GNOME desktop environment, the user might be prompted to set their preferred language
and input method on first login. If not, then the easiest way for an individual user to adjust their
preferred language and input method settings is to use the Region & Language application.

You can start this application in two ways. You can run the command gnome -control-center
region from a terminal window, or on the top bar, from the system menu in the right corner,
select the settings button (which has a crossed screwdriver and wrench for an icon) from the
bottom left of the menu.

In the window that opens, select Region & Language. Click the Language box and select the
preferred language from the list that appears. This also updates the Formats setting to the
default for that language. The next time you log in, these changes will take full effect.

These settings affect the GNOME desktop environment and any applications such as gnome -
terminal that are started inside it. However, by default they do not apply to that account if
accessed through an ssh login from a remote system or a text-based login on a virtual console
(such as tty5).

E Note
You can make your shell environment use the same LANG setting as your graphical
environment, even when you log in through a text-based virtual console or over
ssh. One way to do this is to place code similar to the following in your ~/ . bashrc
file. This example code will set the language used on a text login to match the one
currently set for the user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountsService/users/${USER} \
| sed 's/Language=//")
if ["$i" 1= ""]; then
export LANG=$i
fi

Japanese, Korean, Chinese, and other languages with a non-Latin character set
might not display properly on text-based virtual consoles.

Individual commands can be made to use another language by setting the LANG variable on the
command line:

Introduction

[user@host ~]$ LANG=fr_FR.utf8 date
jeu. avril 25 17:55:01 CET 2019

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to determine the current value of LANG and other related environment
variables.

Input Method Settings

GNOME 3 in Red Hat Enterprise Linux 7 or later automatically uses the IBus input method
selection system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the
Region & Language application window, the Input Sources box shows what input methods are
currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.
An Add an Input Source window displays. Select your language, and then your preferred input
method or keyboard layout.

When more than one input method is configured, the user can switch between them quickly by
typing Super+Space (sometimes called Windows+Space). A status indicator will also appear in
the GNOME top bar, which has two functions: It indicates which input method is active, and acts
as a menu that can be used to switch between input methods or select advanced features of more
complex input methods.

Some of the methods are marked with gear icons, which indicate that those methods have
advanced configuration options and capabilities. For example, the Japanese Japanese (Kana
Kaniji) input method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow
keys to select the correct characters to use.

US English speakers may also find this useful. For example, under English (United States) is the
keyboard layout English (international AItGr dead keys), which treats ALtGr (or the right Alt)
on a PC 104/105-key keyboard as a "secondary shift" modifier key and dead key activation key for
typing additional characters. There are also Dvorak and other alternative layouts available.

Note

E Any Unicode character can be entered in the GNOME desktop environment if
you know the character's Unicode code point. Type Ctr1+Shift+U, followed by
the code point. After Ctr1+Shift+U has been typed, an underlined u character
displays, indicating that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+0O3BB, and
can be entered by typing Ctr 1+Shift+U, then 03BB, then Enter.

System-wide Default Language Settings

The system's default language is set to US English, using the UTF-8 encoding of Unicode as its
character set (en_US.utf8), but this can be changed during or after installation.

From the command line, the root user can change the system-wide locale settings with the
localect1l command. If Llocalectlis run with no arguments, it displays the current system-
wide locale settings.

Introduction

To set the system-wide default language, run the command localectl set-locale
LANG=1ocale, where locale is the appropriate value for the LANG environment variable from the
"Language Codes Reference" table in this chapter. The change will take effect for users on their
next login, and is stored in /etc/locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language by clicking
the Login Screen button at the upper-right corner of the window. Changing the Language of
the graphical login screen will also adjust the system-wide default language setting stored in the /
etc/locale.conf configuration file.

i~ | Important

Text-based virtual consoles such as tty4 are more limited in the fonts they can
display than terminals in a virtual console running a graphical environment, or
pseudoterminals for ssh sessions. For example, Japanese, Korean, and Chinese
characters may not display as expected on a text-based virtual console. For
this reason, you should consider using English or another language with a Latin
character set for the system-wide default.

Likewise, text-based virtual consoles are more limited in the input methods they
support, and this is managed separately from the graphical desktop environment.
The available global input settings can be configured through localect1 for both
text-based virtual consoles and the graphical environment. See the localect (1)
and veconsole.conf(5) man pages for more information.

Language Packs

Special RPM packages called langpacks install language packages that add support for specific
languages. These langpacks use dependencies to automatically install additional RPM packages
containing localizations, dictionaries, and translations for other software packages on your system.

To list the langpacks that are installed and that may be installed, use yum list langpacks-*:

[root@host ~]# yum list langpacks-*

Updating Subscription Management repositories.
Updating Subscription Management repositories.
Installed Packages

langpacks-en.noarch 1.0-12.e18 @AppStream
Available Packages

langpacks-af.noarch 1.0-12.e18 rhel-8-for-x86_64-appstream-rpms
langpacks-am.noarch 1.0-12.e18 rhel-8-for-x86_64-appstream-rpms
langpacks-ar.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-as.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-ast.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms

...output omitted. ..

To add language support, install the appropriate langpacks package. For example, the following
command adds support for French:

[root@host ~]# yum install langpacks-fr

Introduction

Use yum repoquery --whatsupplements to determine what RPM packages may be installed
by a langpack:

[root@host ~]# yum repoquery --whatsupplements langpacks-fr
Updating Subscription Management repositories.

Updating Subscription Management repositories.

Last metadata expiration check: 0:01:33 ago on Wed 06 Feb 2019 10:47:24 AM CST.
glibc-langpack-fr-0:2.28-18.e18.x86_64
gnome-getting-started-docs-fr-0:3.28.2-1.el8.noarch
hunspell-fr-0:6.2-1.el8.noarch

hyphen-fr-0:3.0-1.el8.noarch
libreoffice-langpack-fr-1:6.0.6.1-9.e18.x86_64
man-pages-fr-0:3.70-16.el8.noarch
mythes-fr-0:2.3-10.el8.noarch

i~ | Important
Langpacks packages use RPM weak dependencies in order to install supplementary
packages only when the core package that needs it is also installed.

For example, when installing langpacks-fr as shown in the preceding examples, the
mythes-fr package will only be installed if the mythes thesaurus is also installed on
the system.

If mythes is subsequently installed on that system, the mythes-fr package will also
automatically be installed due to the weak dependency from the already installed
langpacks-fr package.

D References
locale(7), localect(l), locale.conf(5), vconsole.conf(5), unicode(7),
and utf-8(7) man pages

Conversions between the names of the graphical desktop environment's X11 layouts
and their names in localect1 can be found in the file /usr/share/X11/xkb/
rules/base. lst.

Language Codes Reference

Note
E This table might not reflect all langpacks available on your system. Use yum info
langpacks-SUFFIX to get more information about any particular langpacks

package.
Language Codes
Language Langpacks Suffix $LANG value
English (US) en en_US.utf8

Introduction

Language Langpacks Suffix $LANG value
Assamese as as_IN.utf8
Bengali bn bn_IN.utf8
Chinese (Simplified) zh_CN zh_CN.utf8
Chinese (Traditional) zh_ TW zh_TW.utf8
French fr fr_FR.utf8
German de de_DE.utf8
Guijarati gu gu_IN.utf8
Hindi hi hi_IN.utf8
[talian it it_IT.utf8
Japanese ja ja_JP.utf8
Kannada kn kn_IN.utf8
Korean ko ko_KR.utf8
Malayalam ml ml_IN.utf8
Marathi mr mr_IN.utf8
Odia or or_IN.utf8
Portuguese (Brazilian) pt_BR pt_BR.utf8
Punjabi pa pa_IN.utf8
Russian ru ru_RU.utf8
Spanish es es ES.utf8
Tamil ta ta_IN.utf8
Telugu te te_IN.utf8

D0O328-5SM1.1-en-2-20200910

For use by |Jamie Longmuir jlongmui jlongmui@redhat.com

-
1
L L)

oyright © 2020 Red Hat, Inc.

D0O328-SM1.1-en-2-20200910

Chapter1

Introducing Red Hat OpenShift
Service Mesh

Goal Describe the basic concepts of microservice
architecture and Red Hat OpenShift Service Mesh.

Objectives * Describe the basic concepts behind a
distributed architecture and Red Hat OpenShift
Service Mesh.

Describe the fundamental architecture of
OpenShift Service Mesh components.

‘“ \
p= Sections + Creating a Lab Environment (Guided Exercise)
= Describing OpenShift Service Mesh Concepts
. (and Quiz)
+ Describing the OpenShift Service Mesh
Architecture (and Quiz)
+ Verifying OpenShift Credentials (Guided
Exercise)

r/

D0O328-5SM1.1-en-2-20200910

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

» Guided Exercise

Creating a Lab Environment

In this exercise, you will start the provisioning process of a dedicated OpenShift cluster using
the Red Hat Online Learning Environment (ROL). You will also create a new account for
using the Quay.io public container image registry.

Outcomes

You should be able to provision a dedicated Red Hat OpenShift cluster that you will use for
all exercises in this course.

You will also create a new account for using the Quay.io container image registry.

Before You Begin

To perform this exercise, ensure you have access to the Red Hat Online Learning
Environment (ROL).

The following procedure describes how to provision an OpenShift cluster from the Red Hat Online
Learning platform. You must complete the following procedure before attempting any of the
course activities.

E Note
The provisioning of the cluster takes approximately 10-15 minutes.

P 1. Open a browser and navigate to the Red Hat Online Learning (ROL) platform at https://
rol.redhat.com. Log in with your credentials. If you do not have access to ROL, visit
Red Hat Learning Subscription [https://www.redhat.com/en/services/training/learning-
subscription].

P 2. Access the Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh —
DO328 course and click ONLINE TRAINING.

P 3. Click the Lab Environment tab, and then click CREATE to start provisioning the
OpenShift cluster.

Once the cluster is provisioned, you should see a list of virtual machines in the classroom.
The status of all the virtual machines should be active.

' D0O328-5SM1.1-en-2-20200910

https://www.redhat.com/en/services/training/learning-subscription
https://www.redhat.com/en/services/training/learning-subscription
https://www.redhat.com/en/services/training/learning-subscription

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

DELETE STOP

Auto-stop in an hour. -

Auto-destroy in a month.

Figure 1.1: Provisioning a cluster

From this page, you can also control the environment, such as deleting the cluster, and
stopping or restarting the cluster.

Warning
By default, The cluster is configured to automatically stop after one hour. Click

the green plus icon at the bottom to increase the duration. You can increase the
duration up to a maximum of 12 hours.

P 4. While the OpenShift cluster is being provisioned, create a new account in Quay.io. If you
already have an account in Quay.io, then you can skip this step.

If you do not have an account in Quay.io, create a new account to store container images for
applications that you will build in this course.

Refer to the detailed steps in the appendix Creating a Quay Account.

Finish
This exercise has no command to finish it. Provisioning the cluster takes some time. Continue to
the next section in this chapter while you wait for the cluster to become ready.

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910 ‘

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Describing OpenShift Service Mesh
Concepts

Objectives

After completing this section, you should be able to describe the basic concepts behind a
distributed architecture and Red Hat OpenShift Service Mesh.

Describing the Challenges of Microservice
Architectures

Microservice architectures are a method of dividing traditional, monolithic enterprise applications
into a set of small, modular services. Using a microservice approach to application development
means that each part of your application can scale more easily, is more maintainable, and is ideal
for deployment on a cloud platform. This approach has been successfull in recent years, including
at large companies such as Netflix and Amazon.

Despite introducing many benefits, microservices create several architectural challenges
that administrators and developers must understand in order to build a robust and resilient
microservices application.

Some of these challenges are related to the development of the microservices themselves.

Development challenges
An early issue developers run into is service discovery. Because services are often changing
their IP address, each service needs to be easily discoverable and referred to by a static name.
Another issue developers encounter is developing for elasticity, or the ability to scale up or
down in response to demand. To support elasticity, and leverage one of the most critical
benefits of a microservice architecture, developers need to design a system that is scalable as
well as have an orchestration solution that appropriately responds to demand.

Security challenges
Security is critical nowadays, so microservices need to implement authentication techniques
to validate and trust communication peers. Because microservice architectures imply a high
degree of communication, authentication becomes a critical feature. Microservices must
validate communication peers are authorized, and reject unauthorized requests.

Operation challenges
Microservices, like any other software, can fail. In microservice architectures, a failing
microservice or element may cascade the error, causing a massive impact on the whole
application. Microservices must be resilient to failures of peers or dependencies to avoid
service failures and SLA breaks.

As applications grow larger and more complex, monitoring them becomes far more

difficult. In contrast to a monolithic architecture, microservices are by nature distributed,
which can make consolidating information more of a challenge. Monitoring (measuring
microservices performance and usage), centralized logging (capturing and relating logs from
all microservices) and tracing (correlating requests to multiple microservices belonging to
the same user transaction) became desired features for any microservice architecture to be
maintained.

Microservice orchestration platforms such as Red Hat OpenShift provide some of those
capabilities, such as discovering services or elasticity. Some of the other features require more

Chapter1 | Introducing Red Hat OpenShift Service Mesh

specialized solutions. Recently, developers would implement these features such as service
resilience in code, leading them to copy the same code from service to service and creating poor
separation between service code and network management.

When applications consist of only a few microservices, replicating the same code is not a major
problem. When the number of microservices increases, however, maintenance and the ability to
make changes grows exponentially more difficult.

Describing a Service Mesh

Service mesh is a technology designed to address microservice architecture problems. This
technology abstracts developers from many of the microservice architectural problems. Service
mesh technology creates a centralized point to control features for many or all microservices in an
application.

Service mesh technology operates at the network communication level. That is, service mesh
components capture or intercept traffic to and from microservices, either modifying requests,
redirecting them, or creating new requests to other services. Service mesh technology does all of
this without requiring code-level changes.

D0O328-5SM1.1-en-2-20200910 ‘

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

(@ Service C (@ Service A 4@ Service B

Monitoring Monitoring Monitoring
Authentication Authentication Authentication
Tracing Tracing Tracing
Resilience Resilience Resilience

t i

Without Service Mesh

L,(,@ Proxy +—> @_@ Proxy +—> LL® Proxy

t |

Data Plane

Monitoring Authentication Tracing Resilience

Control Plane

With Service Mesh

Microservices Architecture

Figure 1.2: Desired features of microservice architectures

Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh implements the service mesh technology in Red Hat OpenShift
Container Platform. This implementation complements OpenShift Container Platform capabilities,
adding many of the desired features of microservice architectures.

OpenShift Service Mesh incorporates and extends several open source projects and orchestrates
them to provide an improved developer experience:

Istio and Maistra
Istio is the core implementation of the service mesh architecture for the Kubernetes platform.

Istio creates a control plane that centralizes service mesh capabilities and a data plane that
makes up the structure of the mesh. The data plane controls communications between
services by injecting sidecar containers that capture traffic between microservices.

Maistra is a project based on Istio that adapts features to the edge cases of deployment in
OpenShift Container Platform. Maistra also adds extended features to Istio, such as simplified

' D0O328-5SM1.1-en-2-20200910

Chapter1 | Introducing Red Hat OpenShift Service Mesh

multitenancy, explicit sidecar injection, and the use of OpenShift routes instead of Kubernetes
ingress.

Jaeger and ElasticSearch
Jaeger is an open source traceability server that centralizes and displays traces associated
with a single request between multiple services. Maistra is responsible for sending the traces
to Jaeger and Jaeger is responsible for displaying traces. Microservices in the mesh are
responsible for generating request headers needed for other components to generate and
aggregate traces.

Jaeger relies on ElasticSearch for distributed storage and indexing for logging and tracing
data. ElasticSearch is an open source, distributed, JSON-based search and analytics engine.

Kiali and Prometheus
Kiali provides service mesh observability. Kiali discovers microservices in the service mesh
and their interactions and visually represents them. It also captures information about
communication and services, such as the protocols used, service versions, and failure
statistics.

Prometheus is used by OpenShift Service Mesh to store telemetry information from services.
Kiali depends on Prometheus to obtain metrics, health status, and mesh topology.

Grafana
Optionally, Grafana can be used to analyze service mesh metrics. Grafana provides mesh
administrators with advanced query and metrics analysis.

3scale
The 3scale Istio adapter is an optional component that integrates OpenShift Service Mesh
with Red Hat 3scale APl Management solutions. The default OpenShift Service Mesh
installation does not include this component.

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

References

Istio
https://istio.io/

Maistra
https://maistra.io/

Jaeger
https://www.jaegertracing.io/

ElasticSearch
https://www.elastic.co/elasticsearch/

Kiali
https://kiali.io/

Prometheus
https://prometheus.io/

Grafana
https://grafana.com/

For updates and latest product notes, refer to the Service Mesh Release notes
section in the Service Mesh chapter at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

' D0O328-5SM1.1-en-2-20200910

https://istio.io/
https://maistra.io/
https://www.jaegertracing.io/
https://www.elastic.co/elasticsearch/
https://kiali.io/
https://prometheus.io/
https://grafana.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index

Chapter1 | Introducing Red Hat OpenShift Service Mesh

» Quiz

Introducing OpenShift Service Mesh

Choose the correct answers to the following questions:

P 1. Which two of the following features does Red Hat OpenShift Service Mesh add to
applications deployed on an OpenShift cluster? (Choose two.)
a. Scalability. Allows services to adapt the number of replicas to the load requirements.
b. Traceability. Allows services to capture traces of the requests between services.
c. Resiliency. Provides services with tools to tolerate failures in dependent services.

d. Idempotency. Deploying applications multiple times always obtains the same results.

P 2. Which three of the following open source projects are used in Red Hat OpenShift
Service Mesh? (Choose three.)

Git

. Kubernetes

. Maistra

. Kiali

. PostgreSQL

Jaeger

- Do o 0 T o

P 3. Which of the following architectural challenges of microservice architectures is
addressed by Red Hat OpenShift Service Mesh?
a. Authentication
b. API
c. Elasticity
d. Pipeline

P 4. An application consisting of multiple microservices is in production. It is complicated
for architects to clarify which services communicate with others. Which two Red Hat
OpenShift Service Mesh components can you use to clarify those connections?
(Choose two.)

a. Kiali, because visualizing the service mesh clarifies service interactions.

b. Jaeger, because tracing queries shows what services are used.

c. Grafana, because it can display what nodes have a higher level of usage.

d. None of the above. OpenShift Service Mesh needs architects to manually trace all
connections.

D0O328-5SM1.1-en-2-20200910 ‘

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

» Solution

Introducing OpenShift Service Mesh

Choose the correct answers to the following questions:

P 1. Which two of the following features does Red Hat OpenShift Service Mesh add to
applications deployed on an OpenShift cluster? (Choose two.)
a. Scalability. Allows services to adapt the number of replicas to the load requirements.
b. Traceability. Allows services to capture traces of the requests between services.
c. Resiliency. Provides services with tools to tolerate failures in dependent services.

d. Idempotency. Deploying applications multiple times always obtains the same results.

P 2. Which three of the following open source projects are used in Red Hat OpenShift
Service Mesh? (Choose three.)

Git

. Kubernetes

. Maistra

. Kiali

. PostgreSQL

Jaeger

- Do o 0 T o

P 3. Which of the following architectural challenges of microservice architectures is
addressed by Red Hat OpenShift Service Mesh?
a. Authentication
b. API
c. Elasticity
d. Pipeline

P 4. An application consisting of multiple microservices is in production. It is complicated
for architects to clarify which services communicate with others. Which two Red Hat
OpenShift Service Mesh components can you use to clarify those connections?
(Choose two.)

a. Kiali, because visualizing the service mesh clarifies service interactions.

b. Jaeger, because tracing queries shows what services are used.

c¢. Grafana, because it can display what nodes have a higher level of usage.

d. None of the above. OpenShift Service Mesh needs architects to manually trace all

connections.

w D0O328-5SM1.1-en-2-20200910

Chapter1 | Introducing Red Hat OpenShift Service Mesh

Describing the OpenShift Service Mesh
Architecture

Objectives

After completing this section, you should be able to describe the fundamental architecture of
OpenShift Service Mesh components.

Red Hat OpenShift Service Mesh Architecture

Red Hat OpenShift Service Mesh consists of two logical components, a control plane, and a data
plane. The following diagram shows the components in the data plane and the control plane:

Incoming traffic
(Ingress)

Service Mesh

POD l

Envoy Proxy T @)
l@ (Sidecar) Service A

Pilot

Citadel)
ﬁ Configuration Inter-Service

Communication
@ Galley
POD
Envoy Proxy

ice B
Control Plane @ (Sidecar) @ Service

\ 4

Data plane

Outgoing traffic
(Egress)

Figure 1.3: Red Hat OpenShift Service Mesh Architecture

The data plane consists of a set of proxies, which are deployed alongside applications in an
OpenShift cluster. The proxies are deployed as sidecars, an auxiliary container running in the same
pod as the application, and providing some supplementary functionality.

The control plane manages and configures the proxies. It enforces access control and usage
policies and collects metrics from the proxies in the service mesh.

Data Plane Components

The Envoy proxy is the main component in the data plane. It handles all data flowing between the
services in a service mesh. The Envoy proxy also collects all metrics related to the services in the
mesh.

D0O328-5SM1.1-en-2-20200910 ‘

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

& Sidecar Proxy A Service A

: Sidecar Prox Service C
&8 y g

@ Sidecar Proxy A Service B

Data plane

Figure 1.4: Envoy Proxies

The control plane automatically injects an instance of the Envoy proxy as a sidecar to a service
whenever that service is deployed to the OpenShift cluster. All incoming (ingress) and outgoing
(egress) network traffic between services flows through the proxies. The service offloads
functionality such as access control, network routing and rate limiting, ingress and egress traffic
control, and more to the service mesh.

The data plane in a service mesh performs the following tasks:
- Service discovery: Tracks the services deployed in a mesh.
+ Health checks: Track the state (healthy or unhealthy) of the services deployed in a mesh.

- Traffic shaping and routing: Control the flow of network data between services. Includes
tasks such as throttling the amount of traffic, routing based on content, circuit breaking,
controlling the amount of traffic that should be routed among multiple versions of a service,
load balancing and more.

- Security: Perform authentication and authorization, and secure communication using mutual
transport layer security (mTLS) between services in a mesh.

+ Metrics and Telemetry: Gather metrics, logs, and distributed tracing information from services
in the mesh.

w D0O328-5SM1.1-en-2-20200910

Chapter1 | Introducing Red Hat OpenShift Service Mesh

Control Plane Components

The control plane manages the configuration and policies for the service mesh. The control plane
does not directly handle the network traffic in the mesh, but maintains configuration and policies
that are enforced by the data plane.

The control plane consists of the following components:

Pilot
Maintains the configuration data for the service mesh. Pilot provides service discovery for the
Envoy proxy sidecars, traffic management capabilities for intelligent routing (for example, A/B
tests), and resiliency (timeouts, retries, and circuit breakers).

Citadel
Issues and rotates TLS certificates. Citadel provides authentication for inter-service
communication, with built-in identity and credential management. You can enforce policies
based on service identity rather than relying on network details such as IP addresses and host
names.

Galley
Monitors the service mesh configuration and then validates, processes, and distributes the
configuration to the proxies.

References

For more information, refer to the Service Mesh Architecture chapter in the Service
Mesh guide at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-
architecture

Istio Architecture
https://archive.istio.io/v1.4/docs/ops/deployment/architecture

D0O328-5SM1.1-en-2-20200910 “

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#service-mesh-architecture
https://archive.istio.io/v1.4/docs/ops/deployment/architecture

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

» Quiz

Describing the OpenShift Service Mesh
Architecture

Choose the correct answers to the following questions:

P 1. Which component of the control plane is responsible for security and certificate
management?
a. Pilot.
b. Galley.
c. Citadel.
d. None of the above.

P 2. Which two of the following statements about the control plane are correct? (Choose
two.)

. Itinjects an instance of the Envoy proxy as a sidecar to the application pod.

. It handles all the incoming and outgoing traffic in a service mesh.

. It runs as a sidecar alongside all applications in the service mesh.

. Itis responsible for monitoring the health of all services in a service mesh.

. Itis responsible for collecting logging data from all services in a service mesh.

S O O O T W

It is responsible for maintaining the configuration of the service mesh.

P 3. Alarge e-commerce application is deployed on a service mesh, and consists of three
services: an Apache web server to serve static assets such as images; a PHP/Nginx
based front-end service that handles the HTML web user interface; and a Node.js back-
end service to handle ordering, billing, and customer management.

All three services are packaged and deployed as containers; one container per service.
Assuming that the service mesh handles the traffic for all three services, how many
sidecar proxies are injected into the data plane for this application?

a. 1

I
O A WN

w D0O328-5SM1.1-en-2-20200910

Chapter1 | Introducing Red Hat OpenShift Service Mesh

P 4. Which two of the following statements about the Pilot component in the control plane
are correct? (Choose two.)

. Pilot handles all the incoming and outgoing traffic in a service mesh.

. Pilot runs as a sidecar alongside all applications in the service mesh.

. Pilot provides service discovery functionality in the service mesh.

. Pilot provides circuit breaker functionality in a service mesh.

. Pilot enforces access control and usage policies in a service mesh.

-S> 0O O O T o

Pilot validates the service mesh configuration and distributes the configuration to the
proxies.

D0O328-5SM1.1-en-2-20200910 “

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

» Solution

Describing the OpenShift Service Mesh
Architecture

Choose the correct answers to the following questions:

P 1. Which component of the control plane is responsible for security and certificate
management?
a. Pilot.
b. Galley.
c. Citadel.

d. None of the above.

P 2. Which two of the following statements about the control plane are correct? (Choose
two.)

. Itinjects an instance of the Envoy proxy as a sidecar to the application pod.

. It handles all the incoming and outgoing traffic in a service mesh.

. It runs as a sidecar alongside all applications in the service mesh.

. Itis responsible for monitoring the health of all services in a service mesh.

. Itis responsible for collecting logging data from all services in a service mesh.

S O O O T W

It is responsible for maintaining the configuration of the service mesh.

P 3. Alarge e-commerce application is deployed on a service mesh, and consists of three
services: an Apache web server to serve static assets such as images; a PHP/Nginx
based front-end service that handles the HTML web user interface; and a Node.js back-
end service to handle ordering, billing, and customer management.

All three services are packaged and deployed as containers; one container per service.
Assuming that the service mesh handles the traffic for all three services, how many
sidecar proxies are injected into the data plane for this application?

a. |

® a0 T
[O) I GO RN

W D0O328-5SM1.1-en-2-20200910

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

P 4. Which two of the following statements about the Pilot component in the control plane
are correct? (Choose two.)

. Pilot handles all the incoming and outgoing traffic in a service mesh.

. Pilot runs as a sidecar alongside all applications in the service mesh.

. Pilot provides service discovery functionality in the service mesh.

. Pilot provides circuit breaker functionality in a service mesh.

. Pilot enforces access control and usage policies in a service mesh.

-S> 0O O O T o

Pilot validates the service mesh configuration and distributes the configuration to the

proxies.

D0O328-5SM1.1-en-2-20200910 ‘

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

» Guided Exercise

Verifying OpenShift Credentials

In this exercise, you will configure the lab environment to access the dedicated OpenShift
cluster that Red Hat Online Learning (ROL) provides for each student.

Outcomes

You should be able to access your dedicated OpenShift cluster from your lab environment.

Before You Begin

To perform this exercise, ensure you have access to:

+ The Red Hat Online Learning Environment (ROL).

+ The access credentials of your dedicated cluster.

+ Afree user account in the Quay.io public container registry.

V4

Important

The following activity requires that you provision a dedicated OpenShift
cluster in Guided Exercise: Creating a Lab Environment. Refer to this activity
to create a new OpenShift cluster.

You also need to create new Quay.io account before starting this activity.
Refer to the appendix Creating a Quay Account.

The lab-configure command saves the connection information of your
OpenShift cluster in a configuration file. If you made a mistake, or if you want
to change any values, rerun the command to modify the configuration.

Note

To avoid problems while pasting text into the workstation machine, open the
Firefox browser on workstation and navigate to https://rol.redhat.com. Copy
the necessary values from Firefox and paste them into the GNOME Terminal
window.

P 1. Runthe lab-configure command to configure your workstation environment to connect
to your OpenShift cluster, which you provisioned from ROL in an earlier exercise.

The lab-configure command provides interactive prompts. It provides a set of defaults
for all the prompts except the username for your Quay.io account. Accept these default
values and enter your Quay.io username when prompted.

11

Run the lab-configure command. The OpenShift API URL is automatically filled
in. Accept the default value by pressing the Enter key.

https://rol.redhat.com

Chapter1 | Introducing Red Hat OpenShift Service Mesh

[student@workstation ~]$ lab-configure

This script configures the connection parameters to access the OpenShift cluster
for your lab scripts

- Enter the OpenShift API URL: https://api.ocp4.example.com:6443

1.2. The script attempts to determine the correct wildcard domain for your cluster, as
displayed in the following output. If the domain is incorrect, make the necessary
changes.

- Enter the Wildcard Domain: apps.ocp4.example.com

1.3. The script attempts to determine the correct web console URL for your cluster,
as displayed in the following output. If the URL is incorrect, make the necessary
changes. Ensure you include https:// if itis not part of the web console URL
provided to you.

- Enter the Web Console URL: https://console-openshift-
console.apps.ocp4.example.com: 6443

14. You will need a unprivileged developer user account for running the labs in the course.
Accept the default user account named developer.

- Enter the Developer User name: developer

15. Accept the default password for the developer user account (developer).

- Enter the Developer User Password: developer

1.6. You will also need a user with cluster administrator permissions to install the service
mesh. Accept the default administrator account named admin.

- Enter the Cluster Administrator User name: admin

1.7. Accept the default password for the administrator user account (redhat).

- Enter the Cluster Administrator User Password: redhat

1.8. Do not press Enter to accept the default value. Enter your Quay.io user account
name:

- Enter the Quay.io Account User Name: quayuser

P 2. The lab-configure command displays all the values that you provided and does not wait
for you to confirm them. It then verifies that it can access your cluster.

21. Verify that you provided the correct values for your OpenShift cluster to the lab-
configure command.

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

You entered:

- OpenShift API URL: https://api.ocp4.example.com: 6443

+ Wildcard Domain: apps.ocp4.example.com

. Web Console URL: https://console-openshift-
console.apps.ocp4.example.com:6443

. Developer User Name: developer

. Developer User Password: developer

. Cluster Administrator User Name: admin

- Cluster Administrator User Password: redhat

. Quay.io Account User Name: quayuser

2.2. Wait until the lab-configure command verifies that it can connect to your
OpenShift cluster and saves your configuration to the /usr/local/etc/
ocp4.configfile.

Verifying your OpenShift API URL...

Verifying your OpenShift developer user credentials...
Verifying your OpenShift admin user credentials...
Verifying your Quay.io account user name...

Verifying your cluster configuration...

Saving your lab configuration file...

All fine, lab config saved. You can now proceed with your exercises.

2.3. If the lab-configure command finds any issues then it displays an error message
and exits. You must verify the information you entered and run the lab-configure
command again. The following listing shows an example of a verification error:

...output omitted...
Verifying your OpenShift API URL...

ERROR:

Cannot connect to an OpenShift 4 API using your URL.

Please verify your network connectivity and that the URL does not point to an
Openshift 3.x nor to a non-OpenShift Kubernetes API.

No changes made to your lab configuration.

Note

You may see this error when you run the lab-configure script immediately after
cluster provisioning. Wait for a few minutes for the cluster to be fully started and the
OpenShift API to be available, and re-run the lab-configure script.

Chapter1 | Introducing Red Hat OpenShift Service Mesh

If your configuration saved without errors, then you are ready to start any of the
exercises for this course. If there were any errors, then do not start any exercise until
you can execute the lab-configure command successfully.

Finish
This exercise has no command to finish it. You should now be set up to perform any exercise in this
course.

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910 “

Chapter 1 | Introducing Red Hat OpenShift Service Mesh

Summary

In this section, you learned:

+ OpenShift Service Mesh addresses challenges in microservice architectures, like tracing,
authentication, elasticity, traceability or resiliency. A service mesh works at the network level,
that is, it intercepts and alters network communication between services to include the desired
features.

+ Red Hat OpenShift Service Mesh uses many open source projects, such as Istio, Kiali, Jaeger,
ElasticSearch, and Grafana.

« lIstio (the core of OpenShift Service Mesh technology) defines the control plane, for controlling
service mesh behavior, and the data plane, for enabling features at the service level.

+ The data plane injects Envoy proxy sidecars to microservices to enable service mesh features.
Control plane components includes Pilot for service discovery, Citadel for authentication, and
Galley for configuration.

w D0O328-5SM1.1-en-2-20200910

Chapter 2

Installing Red Hat OpenShift
Service Mesh

Goal Deploy Red Hat OpenShift Service Mesh on ¢
OpenShift Container Platform.

Objectives Install Red Hat OpenShift Service Mesh on .
Red Hat OpenShift Container Platform. - a

Sections Installing Red Hat OpenShift Service Mesh (and n-

Guided Exercise)

I
l

‘ﬂ
—

i

D0O328-5SM1.1-en-2-20200910

w

Chapter 2 | Installing Red Hat OpenShift Service Mesh

Installing Red Hat OpenShift Service
Mesh

Objectives

After completing this section, you should be able to install Red Hat OpenShift Service Mesh on
Red Hat OpenShift Container Platform.

Describing Custom Resource Definitions

Red Hat OpenShift is a distribution of Kubernetes focused on the developer experience. Red Hat
OpenShift is easily adapted to various projects using available Kubernetes components.

A resource is a Kubernetes APl endpoint that stores objects of the same kind.

A Custom Resource Definition (CRD) describes a custom resource used to extend the Kubernetes
API. This feature supports custom object definitions, using them as native Kubernetes objects.

Custom Resource Definitions are used to install software in Kubernetes and Red Hat OpenShift.

The following example shows a CRD definition:

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: crontabs.stable.example.com o
spec:
group: stable.example.com (2]
version: vi
scope: Namespaced (3]
names:
plural: crontabs o
singular: crontab (5]
kind: CronTab o
shortNames: (7]
- ct

A crontab is a list of commands to be executed at a specified time. The preceding example
implements the crontab concept using Custom Resource Definitions.

Custom Resource Definition name. Must be in the form plural. group.

Name to use in the REST API.

Defines the scope of the CRD.

Plural name of the CRD. Used in the REST API and to form the CRD name.

Singular name of the CRD. Used as an alias in the command-line interface (CLI) and for
display.

Type of objects managed by the CRD.

Short string alias to use in the CLI.

0 00000

After a CRD is created, Kubernetes enables a new RESTful APl endpoint to manage it. The
endpoint created for the preceded example is:

Chapter 2 | Installing Red Hat OpenShift Service Mesh

/apis/stable.example.com/v1l/namespaces/*/crontabs/. ..

The API URL associated with the CRD supports creating and managing custom objects.

Defining Kubernetes Operators

A Kubernetes operator packages a Kubernetes application to automate installation, updates, and
management. Operators rely on Custom Resource Definitions to extend the Kubernetes API.

Operators run on a pod, and monitor the application to ensure it performs as expected. If the
application fails to properly execute, then the operator automatically acts to correct it.

There are two types of operators available to choose in Red Hat OpenShift.

Certified Operators
Operators verified on Red Hat OpenShift by Red Hat or its partners.

Community Operators
Operators not vetted or verified by Red Hat, so their stability is unknown.

Installing Red Hat OpenShift Service Mesh

OpenShift Service Mesh is installed using the Web Console, or CLI, and a Kubernetes operator.
The installation process requires first installing the required operators, then deploying the Control
Plane, and finally creating a Service Mesh Member Roll.

Installing the OpenShift Service Mesh Operator

OpenShift Service Mesh relies on the following operators:

Jaeger
Provides tracing features to monitor and troubleshoot your distributed application.

Elasticsearch
Stores traces and logs generated by Jaeger.

Kiali
Provides observability to the service mesh through a web user interface (Ul).

You can find all the required operators and the Red Hat OpenShift Service Mesh operator in the
OperatorHub page.

D0O328-5SM1.1-en-2-20200910 “

Chapter 2 | Installing Red Hat OpenShift Service Mesh

— Red Hat
— OpenShift = O e admin ~
Container Platform

Project: default +
& Administrator

Home OperatorHub

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. Operators can
be installed on your clusters to provide optional add-ons and shared services to your developers. Once installed

Operators

OperatorHub the capabilities provided by the Operator appear in the Developer Cataleg, providing a self-service experience.

Installed Cperators

All ltems
= Iat £} - : 2 items
| Hat OpenShift Service

Al/Machine Learning iy PRSIty
Application Runtime
Big Data
Cloud Provider l % Community
Database

Red Hat OpenShift Service Red Hat OpenShift Service
Developer Toals Mesh Mesh
Integration & Delivery I |
Legging & Tracing The OpenShift Service Mesh The Maistra Operator enables
Manitoring QOperator enables you to you to install, configure, and

nstall, configure, anc manage an instance
Metworking

OpenShift Optional

Figure 2.1: Result page in the OperatorHub for Red Hat OpenShift Service Mesh

The installation process of the operators requires first finding the operator in the OperatorHub
page, then reviewing and configuring installation parameters, and finally subscribing the operator
to an updates channel.

i ; Note
Red Hat recommends to install certified operators.

Deploying the OpenShift Service Mesh Control Plane

The control plane manages the configuration and policies for the service mesh. The OpenShift
Service Mesh Operator installation makes the operator available in all namespaces, so you can
install the control plane in any project.

To deploy a control plane in a project with the web Ul, first navigate to the Installed
Operators page, then to the Istio Service Mesh Control Plane page, and finally review
and configure deployment parameters.

S Note
Red Hat recommends to deploy the control plane in a separate project.

Creating a Service Mesh Member Roll

The ServiceMeshMemberRo 11 custom resource defines the projects belonging to a control
plane. Any number of projects can be added to a ServiceMeshMemberRo11, however a project
can be added only to one control plane.

Chapter 2 | Installing Red Hat OpenShift Service Mesh

To create or edit a Service Mesh Member Roll, first navigate to the project where Red Hat
OpenShift Service Mesh is installed, then navigate to the Istio Service Mesh Member Roll
page, and finally review and configure installation parameters.

RedHat

OpenShift developer ~
Container Platform

Project: istio-system

Red Hat OpenShilt Service Mesh » Create SenviceMeshMemberRol Edit Form

Create ServiceMeshMemberRoll
@ ly ente ISON definitions y dragging Irappin

WU s W

(]

Figure 2.2: List of projects belonging to the control plane

Only projects listed in the ServiceMeshMemberRo1l1l are managed by the Service Mesh.

Installing OpenShift Service Mesh using CLI

You can install OpenShift Service Mesh using CLI instead of the OpenShift Web Console. The
CLl installation method is useful for, for example, automated installation and management of
OpenShift Service Mesh.

For more information about installing OpenShift Service Mesh using CLI, refer to Installing Red Hat
OpenShift Service Mesh with the CLI.

Upgrading Red Hat OpenShift Service Mesh

If you selected the automatic update stream during installation, then OpenShift Service Mesh is
going to be updated automatically, so any extra steps are not required.

If you choose to update manually during installation, the Operator Lifecycle Manager (OLM)
controls the upgrade.

For more information, refer to the Operator Lifecycle Manager documentation at https:/
access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/
operators/#olm-overview_olm-understanding-olm.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/operators/#olm-overview_olm-understanding-olm

Chapter 2 | Installing Red Hat OpenShift Service Mesh

Removing Red Hat OpenShift Service Mesh

To remove OpenShift Service Mesh from an existing Red Hat OpenShift Container Platform
instance, complete the following tasks:

1. Remove the OpenShift Service Mesh control plane.
2. Remove the installed operators.

a. Red Hat OpenShift Service Mesh Operator

b. Jaeger Operator

c. Kiali Operator

d. Elasticsearch Operator
3. Clean up operator resources.

For more information, refer to the Removing Red Hat OpenShift Service Mesh section in the
OpenShift Container Platform Service Mesh documentation at https://access.redhat.com/
documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index.

D References

For more information, refer to the Service Mesh Installation section in the OpenShift
Container Platform Service Mesh documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

Operators in Red Hat OpenShift
https://www.openshift.com/learn/topics/operators

Operator Hub
https://operatorhub.io/

W D0O328-5SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://www.openshift.com/learn/topics/operators
https://operatorhub.io/

Chapter 2 | Installing Red Hat OpenShift Service Mesh

» Guided Exercise

Install OpenShift Service Mesh

In this exercise, you will deploy Red Hat OpenShift Service Mesh on Red Hat OpenShift.

Outcomes
You should be able to deploy OpenShift Service Mesh on Red Hat OpenShift.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise:

[student@workstation ~]$ lab install-mesh start

P 1. Loginasthe admin userin the OpenShift web console.
11 Navigate to https://console-openshift-

console.apps.ocp4.example.com to access the OpenShift web console. If
certificate errors appear, then accept the self-signed certificates.

[student@workstation ~]$ firefox https://console-openshift-
console.apps.ocp4.example.com

1.2. Use the following credentials:
+ Username: admin
- Password: redhat
Then, click Log in.
) 2. |Install the Elasticsearch operator.
21. Inthe Administrator panel, click Operators — OperatorHub.

2.2. Type Elasticsearch into the filter box. Click Elasticsearch Operator, and then
click Install.

Chapter 2 | Installing Red Hat OpenShift Service Mesh

RedHat

= OpenShift i admin »
Container Platform

Project: default «

OperatorHub

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through
Red Hat Marketplace . You can install Operators on your clusters to provide optional add-ons and shared services to your developers. After installation,
the Operator capabilities will appear in the Developer Catalog providing a self-service experience.

All ltems All ltems
Integration & Delivery .

Elasticsearch litems
Logging & Tracing -

Monitaring

OpenShift Optional

Custom

[

Install State 4

Installed (0) Elasticsearch Operator

Mot Installed (1)

Provider Type The Elasticsearch Operator for

Custom (1) OKD provides a means for
configuring and managing an

Provider

Figure 2.3: Elasticsearch operator

Note

S All the required operators for this course are packaged in a custom OperatorHub.
For that reason, all the operators included in the custom OperatorHub display a
Custom tag.

2.3. Inthe Create Operator Subscription page, examine the default settings. Then,
click Subscribe.

P 3. Install the Jaeger operator.
3.1 Inthe Administrator panel, click Operators — OperatorHub.

3.2. Type Jaeger into the filter box. Click Red Hat OpenShift Jaeger, and then click
Install.

3.3. The Create Operator Subscription page displays. Examine the default settings,
and select 1.17-stable as the Update Channel. Then, click Subscribe.

P 4. Install the Kiali operator.
41. Inthe Administrator pane, click Operators — OperatorHub.
4.2. TypeKiali into the filter box. Click Kiali Operator, and then click Install.

43. The Create Operator Subscription page displays. Examine the default settings,
and then click Subscribe.

P 5. Installthe Red Hat OpenShift Service Mesh operator.

51. Inthe Administrator pane, click Operators — OperatorHub.

Chapter 2 | Installing Red Hat OpenShift Service Mesh

5.2. TypeOpenShift Service Mesh into the filter box. Click Red Hat OpenShift
Service Mesh, and then click Install.

5.3. Inthe Create Operator Subscription page, examine the default settings and select
1.0 as the Update Channel. Then, click Subscribe.

RedHat

Openshift
Container Platform

OperatorHub Operator Subscription
Create Operator Subscription

nstall your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic
updates.

Installation Mode * ‘ Red Hat OpenShift Service Mesh

#) All namespaces on the cluster (default)
Provided APIs

A specific namespace on the cluster
@ Istio Service Mesh Control
Plane

Installed Namespace * . .
An Istio control plane installation

@ openshift-operators -

Update Channel *

G Istio Serviee Mesh Member

stable
Marks the containing namespace as a

Approval Strategy * member of the referenced Service
Mesh

Figure 2.4: OpenShift Service Mesh subscription options

5.4. Inthe Installed Operators page, wait until you see Succeeded in the Status
column of all the operators.

P 6. Loginasthe Developer user. Then, create the istio-system project.

6. Inthe OpenShift web console, click admin — Log out. Then, log in as the
developer user.

6.2. Inthe OpenShift web console, click Home — Projects, and then click Create
Project.

6.3. Type istio-systeminto the Name field, and then click Create.
P 7. Deploy the OpenShift Service Mesh control plane.
71. Onthe Administrator pane, click Operators — Installed Operators.

7.2. Ensure that the project istio-systemis selected in the Project list. Then, click
Red Hat OpenShift Service Mesh.

Chapter 2 | Installing Red Hat OpenShift Service Mesh

RedHat
ift

[+] [7] developer +

tai

Project istio-system ¥

Installed Operators

o Administrator

Mame T Mamespace Status Deployment Provided APls

Operators. 5 EI;:;[;sDerarch B istio-system Elasticsearch

@ Succeeded ® =t

Installed Operators

Red Hat istio-system
OpenShift
Jaeger

@ Succeeded ® jaeger-operator Jaeger

& Succeeded @® kiali-operator Kiali
Monitoring Dashboard

‘) Kiali Operator (B istio-system

Administraticn Red Hat @D istio-system @ succeeded @ istio-operator
OpenShift
Service Mesh

Figure 2.5: Project selection in OperatorHub

Note
{; If Red Hat OpenShift Service Mesh Operator does not display, the operator
installation into the istio-system projectis still in progress.

The operator displays after a few seconds.

7.3. Click the Istio Service Mesh Control Plane tab. Then, click Create
ServiceMeshControlPlane.

7.4. Examine the default options of the Service Mesh Control Plane installation. Then,
click Create.

75. Click the Istio Service Mesh Member Roll tab. Then, click Create
ServiceMeshMemberRoll.

7.6. Examine the default options of the ServiceMeshMemberRoll custom resource and
remove the sample members. Then, click Create.

w D0O328-5SM1.1-en-2-20200910

Chapter 2 | Installing Red Hat OpenShift Service Mesh

—_— RedHat
= OpenShift o e
Container Platform

Project: istio-system =
95 Administrator

Red Hat OpenShift Service Mesh Create ServiceMeshMemberRoll Edit Form

Create ServiceMeshMemberRoll

e by manually entering YAML or JSON definitions, or by dragging and dropping a file into the editor

© View shortcuts

Operators

[T S VR

Installed Operators

@~

Figure 2.6: Project selection in OperatorHub

P 8. Verify that the Service Mesh Control Plane installation was successful.
81. Click the Istio Service Mesh Control Plane tab.
8.2. Click basic-install to see the details of your Service Mesh Control Plane installation.
8.3. Scroll down to see the Conditions panel of the page.
8.4. Wait until the Ready row status changes to true.

8.5. Asthe student user on the workstation machine, use the lab command to verify
the successful installation:

[student@workstation ~]$ lab install-mesh grade

Note
B To remove OpenShift Service Mesh from your OpenShift cluster, execute lab
uninstall-mesh start.

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab install-mesh finish

This concludes the guided exercise.

Chapter 2 | Installing Red Hat OpenShift Service Mesh

Summary

In this chapter, you learned:

+ Therole of the ServiceMeshMemberRol1l and ServiceMeshControlPlane resources in
Red Hat OpenShift Service Mesh.

+ Installing Red Hat OpenShift Service Mesh using the OpenShift web console.
+ Installing Red Hat OpenShift Service Mesh using the OpenShift command-line client.

+ Configure Red Hat OpenShift Service Mesh to manage projects with the
ServiceMeshMemberRol1l resource.

Chapter 3

Observing a Service Mesh

Goal Trace and visualize an OpenShift Service Mesh ¢
with Jaeger and Kiali.
Objectives + Configure distributed tracing to track service .
traffic. “
Collect and inspect critical metrics with ‘
Prometheus and Grafana. '.
- Monitor and visualize service interactions with
‘ Kiali.
e
" Sections + Tracing Services with Jaeger (and Guided
. Exercise).

Collecting Service Metrics (and Guided
Exercise).

Observing Service Interactions with Kiali (and
Guided Exercise).

Lab Observing an OpenShift Service Mesh.

r/

D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

Tracing Services with Jaeger

Objectives

After completing this section, you should be able to configure distributed tracing to track service
traffic.

Describing Distributed Tracing

Distributed Tracing is the process of tracking the performance of individual services in an
application by tracing the path of the service calls in the application. Each time a user takes action
in an application, a request is executed that might require many services to interact to produce a
response. The path of this request is called a distributed transaction.

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

A

User
Service 1 > Service 2 > Service 3
| I |
l | Service 5
Service 4 l
Service 8 Service 9
v
Service 6 l l
Service 7 Service 10
No Distributed Tracing
User
Service 1 > Service 2 > Service 3
[I
l Service5 ——
Service 4 l
A A 4
Service 8 Service 9
v
Service 6 l
A 4
Service 7 Service 10
With Distributed Tracing

Figure 3.1: Distributed Tracing

In a microservices enabled architecture with a large number of individual microservices, a single
client request that achieves a certain business requirement might involve calling multiple individual
microservices in a particular sequence. An important aspect of maintaining and developing a
distributed system is troubleshooting performance issues. Because a single client call can interact

Chapter 3 | Observing a Service Mesh

with multiple services, analyzing the debugging logs of an individual service might not help
troubleshooting performance issues.

Distributed tracing allows developers to visualize call flows in a microservices application.
Understanding the sequence of calls (how many calls occur in a serial fashion versus how many
occur in parallel), and sources of latency is useful when maintaining a distributed system.

For example, if a request takes too long, causing performance issues, then identify the service or
services causing the slowdown and examine the network latency between service calls.

Distributed tracing is useful for monitoring, network profiling, and troubleshooting the interaction
between services in modern, cloud-native, microservices-based applications.

Traces and Spans in Distributed Tracing

In the context of distributed tracing, it is important to understand two terms:

Span
A Span represents a logical unit of work, which has a unique name, a start time, and the
duration of execution. To model the service call flow in a service mesh, spans are nested and
executed in a particular order.

Trace
A Trace is an execution path of services in the service mesh. A trace is comprised of one or
more spans.

Consider an application with the following microservices:

User

v

Service C

Service A —> Service B

v

Service D

Service E

v

Figure 3.2: Request Call Path
In this example:

+ Service Aisthe request entry point for the application.

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

+ Because Service A is the entry point for the application, it is called the parent span. As shown
in Figure 3.2, Service A makes two service calls: one to Service Band one to Service E.
Thus, Service Band Service E are child spans of Service A

+ Service BinturncallsService CandService D before returning the response to
Service A.Service Bisa parentspan.Service CandService D are child spans.

The following is a line graph representation of a single trace and its constituent spans:

Span A

SpanB

A
Trace
\ 4

SpanC Span D

SpanE

v

Time
—» Request ——P Response

Figure 3.3: Traces and Spans

Introducing Jaeger

Jaeger is a distributed tracing platform. Jaeger allows developers to configure their services to
enable gathering runtime statistics about their performance.

Jaeger is installed by default as part of Red Hat OpenShift Service Mesh.

Jaeger is made up of several components that work together to collect, store, and display tracing
data.

Jaeger Components

Jaeger Client
Jaeger clients are language specific implementations of the OpenTracing API. They are used
to configure applications for distributed tracing. The OpenTracing API defines standard APIs
for instrumentation and distributed tracing of microservices applications.

Jaeger Agent

The Jaeger agent is a network daemon that listens for span data sent over User Datagram
Protocol (UDP), which it batches and sends to the collector. The agent is meant to be placed

Chapter 3 | Observing a Service Mesh

on the same host as the application being traced. This is accomplished by the Envoy proxy
sidecar in container environments like OpenShift.

Jaeger Collector
The Collector receives runtime statistics from the agent and places them in an internal queue
for processing. This allows the collector to return a response immediately to the agent.

Storage
Collectors require a persistent storage back end. Jaeger has a pluggable mechanism
for storage. For Red Hat OpenShift Service Mesh, the only supported storage is
Elasticsearch, which is a distributed search and analytics engine for all types of data.

Query
Query is a service that retrieves runtime statistics from storage.

Jaeger Console
Jaeger provides a web based console that lets you visualize your distributed tracing data. The
Jaeger web console is tightly integrated with the OpenShift web console. Using the console,
you can trace the path of requests as they flow through the services in a mesh.

Trace Context Propagation

A system with a large number of microservices interact in numerous ways and cannot be planned
upfront, these services typically receive and send multiple requests concurrently. Trace context
propagation is a process which tracks unique requests throughout the call paths in the service
mesh.

A new span is generated for each logical service call in the request. This span contains the same
request id, a new span id, and the parent span id (which points to the span id of the parent
span). Spans are placed on a timeline, and visualized using graphical representations, based on
timestamps and durations.

Red Hat OpenShift Service Mesh uses a standard set of HTTP headers for trace context
propagation. The Envoy proxy sidecar tracks these headers and forwards them to Jaeger for
storage and analysis. A service needs to collect and propagate the following headers from the
incoming request to any outgoing requests:

+ x-request-id

+ X-b3-traceid

+ x-b3-spanid

+ x-b3-parentspanid
+ x-b3-sampled

+ x-b3-flags

* X-ot-span-context

Enabling Distributed Tracing in Quarkus Applications

Envoy proxies are configured by default to propagate tracing related headers for traffic flowing
into the service mesh. You must explicitly enable tracing in your applications to generate traces
and spans and to propagate context information.

Enabling tracing for Quarkus based applications is very simple. Quarkus supports tracing with
minimum source code changes.

Chapter 3 | Observing a Service Mesh

For example, to enable tracing in applications based on the Quarkus framework, the following
steps are required:

+ Include the quarkus-smallrye-opentracing dependency in the project Maven pom.xm1l
file. This dependency implements the OpenTracing API, an open standard based on Jaeger for
distributed tracing.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

+ Enable tracing related properties in the Quarkus application.properties file. This file is
used to externalize configuration for Quarkus applications.

quarkus.jaeger.service-name=myservice (1]

quarkus.jaeger.sampler-type=const (2]

quarkus.jaeger.sampler-param=1
quarkus.jaeger.endpoint=http://jaeger-collector.istio-system.svc:14268/api/
traces @

quarkus.jaeger.propagation=b3 (=)

quarkus.jaeger.reporter-log-spans=true o

© A unique service name to identify traces and spans sent to Jaeger. You will be able to
identify traces and spans using this name in the Jaeger web console.

© Indicates the rate at which traces and spans should be collected from this application.
Options include; const (collect all samples), probabilistic (random sampling),
ratelimiting (collect samples at a configurable rate per second), and remote (control
sampling from a central Jaeger backend). Refer to https://www.jaegertracing.io/docs/117/
sampling/ for more details.

© Indicates the percentage of requests for which spans should be collected. It should value
between O and 1. For const sampling type O indicates no sample collection, while a1
indicates collecting all samples (100%). This value should not be set to 1in production
environments with a large number of requests. This is usually set to 1in development and
QA environments to debug and troubleshoot inter-service latency and performance issues.

O The URL of the Jaeger collector. In Red Hat OpenShift Service Mesh, the Jaeger collector
URLishttp://jaeger-collector.istio-system.svc:14268/api/traces.

© Indicates Jaeger to propagate all x-b3- * related headers. This is required to construct the
parent-child relationships in the call graph. Failure to set this will not show the parent-child
relationships between spans in the Jaeger web console.

O Log span information for all incoming and outgoing traffic from the application.

+ The first two steps are enough to enable tracing for all classes and methods in the application.
However, for more complex applications you can control which classes and methods must be
enabled for tracing.

Annotate classes with @Traced annotation to enable tracing for the entire class. You can also
add this annotation at a method level to enable tracing for specific methods and exclude the
rest.

https://www.jaegertracing.io/docs/1.17/sampling/
https://www.jaegertracing.io/docs/1.17/sampling/

Chapter 3 | Observing a Service Mesh

E Note
The above steps are enough to enable distributed tracing for Quarkus applications.
All incoming and outgoing traffic is traced and the context propagation of relevant
headers is taken care of automatically.

To customize the tracing (for example, add more contextual information to traces
and spans using tags and other metadata), you can use the OpenTracing API. Refer
to the OpenTracing documentation at https://opentracing.io/guides/java/ for more
details.

Enabling Distributed Tracing in Node.js Applications

To enable distributed tracing for Node.js based applications, you should use the jaeger-client
and opentracing NPM packages.

You must add code to your application to start traces and spans. You must manually control the
context propagation by manipulating the HTTP headers of incoming and outgoing traffic in an
application. Parent child relationships are explicitly controlled by the developer.

To enable distributed tracing for Node.js applications, do the following:

+ Install the jaeger-client and opentracing NPM packages.

[user@demo ~]$ npm install --save \
> jaeger-client opentracing

+ Import the Jaeger client library.

const initJaegerTracer = require("jaeger-client").initTracer;

« Configure and initialize the Jaeger tracer

const config = {
serviceName: myservice,
sampler: {
type: "const",
param: 1,
H
reporter: {
collectorEndpoint: 'http://jaeger-collector.istio-system.svc:14268/api/
traces',
logSpans: true
H
3
const options = { } ;
const tracer = initJaegerTracer(config, options);

https://opentracing.io/guides/java/

Chapter 3 | Observing a Service Mesh

E Note
The configuration options are similar to the ones outlined in the previous section
about configuring Quarkus applications using the application.properties file.
Refer to the call out list in the previous section for details about the configuration
parameters.

+ Start a new span, for example at the start of a function. Pass in a suitable string identifier as
argument. The Jaeger web console displays spans and will show the corresponding identifier for
each span.

const span = tracer.startSpan("mymethod");

You can add contextual information to this span using the setTag() method. You can pass
any relevant object as an argument, which will help you troubleshoot issues as the request flows
across services in the mesh. You can add multiple tags to a span.

span.setTag("mymethod", "some-message");

+ Once the function finishes executing, invoke the span. finish() function to end the span.

span.finish();

Context Propagation and Child Spans

When you create a new span using the startSpan() method, it creates a new root span by
default. A request can call multiple services in a certain order. You must link these different calls
using parent child relationships so that the Jaeger web console can display the appropriate service
call graph, and help you trace the call flow.

To declare a span as a child of another span, add the childOf property with a value of the parent
span to the startSpan() method.

const childSpan = tracer.startSpan("another-method", { childof: span });

For any non-trivial Node.js application, with code organized in modules spread across multiple
files, a side effect of the above code is the need to keep passing the span object around. This is
required to keep building the call flow and maintain parent child relationships between spans.

A better approach is to create a context object and encapsulate the span inside it. You can then
pass the context object around, and use it to store other application related data as well.

const ctx = { span };
ctx = {

span: tracer.startSpan("mymethod", { childOof: ctx.span }),
}

Note that context propagation as outlined previously will work only between method calls running
in the same Node.js runtime process.

Chapter 3 | Observing a Service Mesh

Passing contextual information between completely isolated microservices connected by a
network brings more challenges. The OpenTracing API provides some helper methods to solve this
problem.

You can inject the contextual information using HTTP headers to outgoing traffic, and then extract
contextual information from requests coming into the application. The following code illustrates
this:

const { Tags, FORMAT_HTTP_HEADERS } = require('opentracing');
...code omitted. ..

const method = 'GET';
const headers = {};
const url = "some-remote-URL"

span.setTag(Tags.HTTP_URL, url);
span.setTag(Tags.HTTP_METHOD, method);
span.setTag(Tags.SPAN_KIND, Tags.SPAN_KIND_RPC_CLIENT);

tracer.inject(span, FORMAT_HTTP_HEADERS, headers);

You can then invoke other remote services, for example, using the NPM request -promise
module and pass on the HTTP headers.

request({url, method, headers})
.then(data => {
span.finish();
return data;

}oe=>{
span.finish();
throw e;

1)

For incoming traffic, you can extract the contextual information using the tracer.extract()
method as per the following.

const { Tags, FORMAT_HTTP_HEADERS } = require('opentracing');
...code omitted. ..

const parentSpanContext = tracer.extract(FORMAT_HTTP_HEADERS, req.headers);
const span = tracer.startSpan('another-method', {
childof: parentSpanContext,
tags: {[Tags.SPAN_KIND]: Tags.SPAN_KIND_RPC_SERVER}
¥

With this approach, trace, span and context information is maintained across service calls in a
service mesh.

Chapter 3 | Observing a Service Mesh

E Note
You can also configure Jaeger using environment variables. Support for
configuration through environment variables differs based on the client
implementation. See https:;//www.jaegertracing.io/docs/1.17/client-features/ for
more details.

You can declare these environment variables in Dockerfiles, but it is recommended
to use configuration maps or secrets to inject these variables to comply with the 12-
factor methodology.

Viewing Traces and Spans Using the Jaeger Web Console

The Jaeger web console is installed by default with Red Hat OpenShift Service Mesh and is tightly
integrated with the OpenShift web console. To view details about traces and spans in the Jaeger
console, do the following:

1. Inthe OpenShift web console, navigate to Networking — Routes and search for the jaeger
route, which is the URL listed in the Location column.

2. Login using the same user name and password that is used to access the OpenShift web
console. You should see the Jaeger web console home page.

3. Inthe left pane of the Jaeger console, from the Service menuy, select your application and
click Find Traces at the bottom of the pane. A list of traces gathered for the application are
displayed.

About Jaeger

Find Traces
senvice

productpage

Operation

all

Tags
17 Traces Sort: Most Recent

Lookback myproject.sve.cluster. 47.17ms

== o5y [B0 Tl | Today 12:49:33 pm
Min Duration
e
. 5 Spans W cesis ()| [itoingressgtenay 1) | (] producpage @ Today
T Blset e cLa
Limit Results
0 B s 8 T
TovE oimct ave chiet 21.26m

Figure 3.4: List of Traces

4. Click one of the traces in the list to open a detailed view of that trace.

https://www.jaegertracing.io/docs/1.17/client-features/

Chapter 3 | Observing a Service Mesh

v istio-ingressgateway: productpage.myproject.svc.cluster.local:9080/productpage £ few Opt
August 13, 2018 12:49 P 2628 7. Depihi 10 19
190
Service & Operation oms 653.94ms 131s 1.965 2625

+ | istio-ingressgateway rocicinse s
+ | productpage
| productpage
© | details detais myprojectsve.custeciocaisos '
| detals - — !
| istio-policy
| isto-mixer
~ | productpage
© | reviews
| reviews wsnc cusoun
+ | istio-policy
« | istio-mixer e ercre i
R R — i
© | reviews rsings mypoect
+ | ratings atingsiratings myproject s custerlocaL9080r | 5.32ms |
+ | ratings '
| isto-policy crec
« | istio-mixer e i

T — '

Figure 3.5: Trace Details

D References

For more information, refer to the Understanding Jaeger section in the Red Hat
Service Mesh Guide at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger

Istio Distributed Tracing
https://archive.istio.io/v1.4/docs/tasks/observability/distributed-tracing/

w D0O328-5SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-jaeger
https://archive.istio.io/v1.4/docs/tasks/observability/distributed-tracing/

Chapter 3 | Observing a Service Mesh

» Guided Exercise

Tracing Services with Jaeger

In this exercise, you will deploy two microservices on OpenShift Service Mesh, and trace the
service communication using Jaeger.

+ servicea: written in JavaScript using the Node.js runtime.

+ serviceb: written in Java using the Quarkus framework.

Traffic enters the service mesh through servicea. servicea calls serviceb and returns a
response.

You will do the following in this exercise:

1.

Enable distributed tracing in both microservices using Jaeger.

2. Build container images locally for both microservices using podman.

3. Push the built container images to the Quay . io public container registry.

4. Deploy both microservices to the service mesh, and trace the service calls between the
two microservices.

Outcomes

You should be able to deploy applications to OpenShift Service Mesh, and trace the path of
the service calls for requests entering the service mesh.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

+ An account with the Quay . 10 container registry, and podman installed locally on your

workstation.

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise:

[student@workstation ~]$ lab observe-jaeger start

b1

Clone the source code for the microservices from GitHub. Inspect the source code for both
microservices.

Use a text editor like VSCodium, which supports syntax highlighting for editing JavaScript
and Java source files.

11. Open a new terminal window on your workstation. From the home directory, clone the
source code for the microservices from GitHub.

Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ git clone https://github.com/RedHatTraining/D0328-apps
...output omitted...

Cloning into 'D0328-apps'...

...output omitted...

12. Copy the contents of the /home/student/D0328-apps/tracing-ge folder from
your local Git repository to the /home/student/D0328/labs/observe-jaeger
folder.

[student@workstation ~]$ cp -Rv ~/D0328-apps/tracing-ge/* \
> ~/D0328/labs/observe-jaeger/

You should now see two folders called servicea and serviceb in the /home/
student/D0328/labs/observe-jaeger/ folder.

You should also see shell scripts and service mesh related YAML files in the same
folder. These were created by the lab start script.

1.3. Review the source code for servicea in the /home/student/D0328/labs/
observe-jaeger/servicea/index. js file.

This microservice exposes a single HTTP GET endpoint, which calls serviceb and
returns a response to the client.

...output omitted. ..
server.get("/", async (request) => {
const { rootSpan } = request;
const msg = await serviceb.callServiceB(rootSpan);

return 'Hello from ServiceA!.\nResponse from ServiceB => ' + msg + '\n';

1)
...output omitted. ..

14. Review the source code for serviceb in the /home/student/D0328/labs/
observe-jaeger/serviceb/src/main/java/com/redhat/training/
serviceb/ServiceB. java file.

This microservice contains a single HTTP GET endpoint that returns a string.
...output omitted. ..
String message = "Hello from ServiceB!";
@GET

@Produces(MediaType.TEXT_PLAIN)
public String sayHello() {
return message;

}

...output omitted...

P 2. Enable tracing for servicea using the Jaeger and OpenTracing libraries.

2]. Navigate to the /home/student/D0328/labs/observe-jaeger/servicea
folder on the command line terminal. All references to file paths in this step are
relative to this folder.

Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ cd ~/D0328/labs/observe-jaeger/servicea

2.2. Inspect the package. json file, which declares all the NPM packages required for
running this microservice.

Install the packages declared in package . json, followed by installing the
opentracing and jaeger-client dependencies.

[student@workstation serviceal]$ npm install
[student@workstation servicea]$ npm install --save \
> jaeger-client@®3.17.2 opentracing@0.14.4

...output omitted...

+ opentracing@0.14.4

+ jaeger-client@3.17.2

...output omitted...

2.3. Editthe index. js file.

Add the default value for the TRACE_COLLECTOR_URL variable. This should be the
URL of the Jaeger collector that is running in the service mesh.

const TRACE_COLLECTOR_URL = ...output omitted... || "http://jaeger-
collector.istio-system.svc:14268/api/traces";

Note how the collector URL is used to initialize the tracer.

const tracer = Tracer.create("servicea", TRACE_COLLECTOR_URL, logger);

The service name servicea is also passed to the Tracer .create() method,
which indicates the starting point of the trace.

2.4. Editthe Tracer. js file, which configures the tracer properties for this microservice.

Add the parameters for the config and reporter properties in the create
function as follows

const config = {
serviceName: serviceName,

sampler: {
type: "const",
param: 1,

}

reporter: {
logSpans: true,
collectorEndpoint

i

You can also copy the code from the solution file /home/student/D0328/
solutions/observe-jaeger/servicea/Tracer.js.

Note the use of HTTP headers to propagate the trace context using the
tracer.registerInjector() and tracer.registerExtractor () methods.

Chapter 3 | Observing a Service Mesh

tracer.registerInjector (FORMAT_HTTP_HEADERS, codec);
tracer.registerExtractor (FORMAT_HTTP_HEADERS, codec);

2.5.

Edit the HttpServer. js file. Note the callback methods, traceRequest and
traceResponse registered as hooks to the server. These methods are called after
every HTTP request to the microservice, and before sending the response to the
client respectively.

Edit the traceRequest method and add code to create a new root span with a
unique string id. Add Opentracing tags to the span to identify the original URL of the
request and the HTTP method (GET, POST, PUT, DELETE and more).

const span = tracer.startSpan(${method}:servicea’);
span.setTag(Opentracing.Tags.HTTP_URL, originalUrl);
span.setTag(Opentracing.Tags.HTTP_METHOD, method);

2.6.

You can also copy the code from the solution file /home/student/D0328/
solutions/observe-jaeger/servicea/HttpServer.js.

Briefly review the Services/ServiceB. js file. Do not make any changes to
this file. The get () method is invoked on every request to the root URL of the
microservice ("/").

The implementation is inherited from the parent RestClient class. Edit the
Services/RestClient. js file.

Create a new span for the get () method, which is a child span of the root span. Add
Tags to indicate which endpoint is being called, as well as the caller URL, the HTTP
method, and the type of span.

const span = this.tracer.startSpan(spanName, { childOf: rootSpan.context() });
span.setTag(Tags.PEER_HOSTNAME, this.baseURL);

span.setTag(Tags.HTTP_URL, url);

span.setTag(Tags.HTTP_METHOD, "GET");

span.setTag(Tags.SPAN_KIND, Tags.SPAN_KIND_RPC_CLIENT);

Inject the span data as HTTP headers to propagate the span context. Add the
following code to the _buildAxiosRequestConfig() method.

const headers = {};
this.tracer.inject(span, FORMAT_HTTP_HEADERS, headers);
return { headers };

2.7.

You can also copy the code from the solution file /home/student/D0328/
solutions/observe-jaeger/servicea/Services/RestClient.js.

Save your changes. To ensure that there are no syntax errors, run npm start and
ensure that the microservice starts without any errors.

If there are errors, then compare your changes with the solution files in the /home/
student/D0328/solutions/observe-jaeger/servicea folder.

Chapter 3 | Observing a Service Mesh

[student@workstation servicea]$ npm start

> servicea@l1.0.0 start ...output omitted...
> node index.js

...output omitted...: "Initializing Jaeger Tracer ...output omitted...
...output omitted...: "Server listening at http://0.0.0.0:8080"}

Press Ctr1+C to stop the server.

P 3. Enable tracing for serviceb using the quarkus-smallrye-opentracing library.

31 Change to the /home/student/D0328/labs/observe-jaeger/serviceb
folder. All references to file paths in this step are relative to this folder.

[student@workstation ~]$ cd ~/D0328/1labs/observe-jaeger/serviceb

3.2. Inspect the maven pom.xm1 file, which declares the dependencies for this
microservice.

Include the quarkus-smallrye-opentracing dependency for enabling tracing.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-opentracing</artifactId>
</dependency>

You can also copy the code from the solution file /home/student/D0328/
solutions/observe-jaeger/serviceb/pom.xml.

3.3. Briefly review the code in the src/main/java/com/redhat/training/
serviceb/ServiceB. java file. Do not make any changes to this file.

Tracing is automatically enabled by adding the quarkus-smallrye-opentracing
maven dependency, and then enabling some jaeger related environment variables in
the Quarkus application.properties file.

3.4. Editthe src/main/resources/application.properties file and add the
jaeger related properties.

quarkus. jaeger.service-name=serviceb

quarkus. jaeger.sampler-type=const

quarkus. jaeger.sampler-param=1

quarkus. log.console.format=%d{HH:mm:ss} %-5p traceId=%X{traceId}, spanId=
%X{spanId}, sampled=%X{sampled} [%c{2.}] (%t) %s%e%n

quarkus. jaeger.endpoint=http://jaeger-collector.istio-system.svc:14268/api/traces
quarkus. jaeger.propagation=b3

quarkus. jaeger.reporter-log-spans=true

You can also copy the code from the solution file /home/student/D0328/
solutions/observe-jaeger/serviceb/src/main/resources/
application.properties.

3.5. Save your changes. To ensure that there are no syntax errors, run mvn clean
package and ensure that a fat JAR is created in the target folder.

Chapter 3 | Observing a Service Mesh

[student@workstation serviceb]$ mvn clean package

...output omitted...

[INFO] Building serviceb 1.0.0

...output omitted...

...output omitted... Building fat jar: observe-jaeger/serviceb/target/

serviceb-1.0.0-runner.jar

[INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus augmentation completed in
2440ms

...output omitted...

[INFO] BUILD SUCCESS

...output omitted...

3.6. Start the microservice and verify that there are no errors.

[student@workstation serviceb]$ java -jar target/serviceb-1.0.0-runner.jar
...output omitted... (powered by Quarkus 1.3.2.Final) started in 0.747s.
Listening on: http://0.0.0.0:8080

...output omitted. ..

Verify that there are no errors. If there are errors, then compare your changes with
the solution files in the /home/student/D0328/solutions/observe-jaeger/
serviceb folder. Press Ctr 1+C to stop the server.

P 4. Build container images for both microservices using podman.

4]. Load your classroom environment configuration.

Run the following command to load the environment variables:

[student@workstation serviceb]$ source /usr/local/etc/ocp4.config

4.2. Review the Dockerfile for servicea. Use Red Hat Universal Base Images (UBI)
as the base for building your container image. Do not make any changes to the
Dockerfile.

4.3. Build the container image for servicea using podman.

[student@workstation serviceb]$ cd ~/D0328/labs/observe-jaeger/servicea
[student@workstation servicea]$ podman build -t \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-servicea:1.0 .

STEP 1: FROM registry.access.redhat.com/ubi8/nodejs-12

...output omitted...
STEP 13: COMMIT quay.io/youruser/ossm-tracing-servicea:1.0

4.4, Similarly, build the container for serviceb after reviewing the Dockerfile.

[student@workstation servicea]$ cd ~/D0328/labs/observe-jaeger/serviceb
[student@workstation serviceb]$ podman build -t \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-serviceb:1.0 .

STEP 1: FROM registry.access.redhat.com/ubi8:8.1

...output omitted. ..

STEP 15: COMMIT quay.io/youruser/ossm-tracing-serviceb:1.0

Chapter 3 | Observing a Service Mesh

4.5. Verify that the container images for servicea and serviceb are built successfully.

[student@workstation serverb]$ podman images

REPOSITORY TAG ...output omitted...
quay.io/youruser/ossm-tracing-serviceb 1.0 ...output omitted. .
quay.io/youruser/ossm-tracing-servicea 1.0 ...output omitted. .

...output omitted. ..

P 5. Create new public image repositories in Quay.io to store the newly built container images.
Push the container images to Quay . io.

51. Create two new public container image repositories called ossm-tracing-
servicea, and ossm-tracing-serviceb in Quay.io. Refer to the instructions in
Creating a Quay Account for creating public container image repositories.

repositories, then the podman push commands create private container image

Warning
If you skip this step and push the container images without creating public
repositories by default.

5.2. Login to your Quay.io account using podman.

[student@workstation serverb]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io

You will be prompted for your Quay.io password.

5.3. Push the container image for servicea to Quay.io.

[student@workstation serverb]$ podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-tracing-servicea:1.0
...output omitted. ..

Writing manifest to image destination

Storing signatures

5.4. Push the container image for serviceb to Quay.io.

[student@workstation serverb]$ podman push \

> quay.io/${RHT_OCP4_QUAY_ USER}/ossm-tracing-serviceb:1.0
...output omitted. ..

Writing manifest to image destination

Storing signatures

) 6. Create the tracing project and and then add it to the ServiceMeshMemberRo1l
resource.

6.1. Login to OpenShift as the developer user.

[student@workstation serverb]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

Chapter 3 | Observing a Service Mesh
6.2. Create the tracing project.

[student@workstation serverb]$ oc new-project tracing
Now using project "tracing" on server
"https://api.cluster.domain.example.com:6443".
...output omitted...

6.3. Add the tracing project to the list of members in the ServiceMeshMemberRo11l
resource. Edit the default ServiceMeshMemberRoll resource in the OpenShift web
console and add the tracing project to the member list.

apiVersion: maistra.io/vi1i
kind: ServiceMeshMemberRoll
metadata:
...output omitted. ..
spec:

members:

- tracing
...output omitted. ..

You can also run the add-project-to-smmr.sh scriptin the /home/student/
D0328/labs/observe-jaeger folder to add the metrics project to the list of
members in the ServiceMeshMemberRo11 resource.

[student@workstation serverb]$ cd /home/student/D0328/labs/observe-jaeger
[student@workstation observe-jaeger]$ oc patch servicemeshmemberroll/default \
> -n istio-system --type=merge \

> -p '{"spec": {"members": ["tracing"]}}'
servicemeshmemberroll.maistra.io/default patched

Note
S You can also use the oc edit smmr default -n istio-systemcommand
and add the tracing project to the member list.

P 7. Deploy the microservices to OpenShift service mesh.

71. Editthe *-deploy.yaml files in the /home/student/D0328/1labs/observe-
jaeger folder, which describes the necessary resources to deploy both applications.

The deployment files have the sidecar.istio.io/inject: "true" annotation
included to inject the Envoy proxy after deployment.

7.2. Editthe /home/student/D0328/labs/observe-jaeger/servicea-
deploy.yaml file. Edit the spec.template.spec.containers.image attribute
and add the Quay.io URL of the newly built container image.

Chapter 3 | Observing a Service Mesh

...output omitted...
spec:
containers:
- name: servicea
image: quay.io/youruser/ossm-tracing-servicea:1.0
imagePullPolicy: IfNotPresent
...output omitted...

7.3. Edit the /home/student/D0328/labs/observe-jaeger/serviceb-
deploy.yaml file. Add the Quay.io URL of the container image for serverhb.

...output omitted. ..
spec:
containers:
- name: serviceb
image: quay.io/youruser/ossm-tracing-serviceb:1.0
imagePullPolicy: IfNotPresent
...output omitted. ..

74. Runtheoc create command to deploy the applications.

[student@workstation observe-jaeger]$ oc create -f servicea-deploy.yaml
deployment.apps/servicea created

service/servicea created

[student@workstation observe-jaeger]$ oc create -f serviceb-deploy.yaml
deployment.apps/serviceb created

service/serviceb created

75. Runthe oc get pods command and verify that both microservices are deployed
and in Running state.

[student@workstation observe-jaeger]$ oc get pods

NAME READY STATUS RESTARTS AGE
servicea-6c9fffcc58-v699r 2/2 Running 0 10m
serviceb-78489f94bf-z4vdh 2/2 Running 0] 10m

76. Inspect the /home/student/D0328/labs/observe-jaeger/gateway.yaml
file, which describes the ingress gateway for traffic entering the mesh.

Use the oc create command to create the ingress gateway.

[student@workstation observe-jaeger]$ oc create -f gateway.yaml
gateway.networking.istio.io/observe-jaeger-gateway created

77. Create aVirtualService to redirect the ingress traffic to servicea, which acts as
an entry point into the mesh.

Examine the virtual-service.yaml file, which routes the ingress traffic to
servicea.

Use the oc create command to create the virtual service.

Chapter 3 | Observing a Service Mesh

[student@workstation observe-jaeger]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/observe-jaeger-vs created

) 8. Test the microservices.

81 Runtheoc get route command to getthe URL of the Istio gateway.

You can also cut and paste the full command from the get-ingress-gateway -
ur L. shfile.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation observe-jaeger]$ export \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -0 template --template '{{ "http://" }}{{ .spec.host }}')

8.2. Execute the curl command in combination with the GATEWAY_URL variable to
access the application.

[student@workstation observe-jaeger]$ curl ${GATEWAY_URL}/trace
Hello from ServiceA!.
Response from ServiceB => Hello from ServiceB!

P 9. Visualize traces generated by the microservices using the Jaeger web console.

91. Runtheoc get route command to gather the Jaeger web console URL. You can
also copy the commands from the get-jaeger-url. sh file.

[student@workstation observe-jaeger]$ export \
> JAEGER_URL=$(oc get route jaeger -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

9.2. Use Firefox web browser to access the Jaeger web console.

[student@workstation observe-jaeger]$ firefox ${JAEGER_URL} &

9.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the
RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom
configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the
same file.

If you are accessing the Jaeger web console for the first time, then you will be

prompted with a page asking you to authorize service account access to your
account. Click Allow selected permissions to bring up the Jaeger web console.

Chapter 3 | Observing a Service Mesh

Authorize Access
Service account jaeger-ui-proxy in project istio-system is requesting permission to access your account (developer)

Requested permissions
user:info

user:check-access

Allow selected permissions Deny

9.4. Execute the curl command against the URL ${GATEWAY_URL}/trace multiple
times to generate some load and allow the microservices to send traces and span
information to Jaeger.

9.5. Inthe Jaeger web console, refresh the page and then select the servicea in the left
panel. Click Find Traces to retrieve the traces.

Search JSON File

Service ()
I
I

istio-ingressgateway

jaeger-query

servicea

servicea.irac;ng

serviceb

serviceb.tracing

Lookback

Last Hour

Min Duration

Max Duration

Limit Results

20 -

<

D0O328-5SM1.1-en-2-20200910 “

_|I | |L

.I| —l

.':I.L | || ._.I

il

1eH pay

Chapter 3 | Observing a Service Mesh

9.6. You should see a number of traces displayed, corresponding to the number of
requests that you made to the service mesh.

servicea: GET:servicea 4bsacis 6ms
5 Spans . servicea (2) servicea.tracing (1) . serviceb (1) serviceb.tracing (1) Today
2:18:47 pm

a few seconds ago

servicea: GET:servicea 901229 6ms
5 Spans . servicea (2) servicea.tracing (1) . serviceb (1) serviceb.tracing (1) Today
2:18:47 pm

a few seconds ago

servicea: GET:servicea 4660934 6ms
5 Spans . servicea (2) servicea.tracing (1) . serviceb (1) serviceb.tracing (1) Today
2:18:46 pm

a few seconds ago

Click any one trace and observe the spans reported by both microservices. Note how
the spans from serviceb are shown as child spans of servicea.

¢« v servicea: GET:servicea 1901229

Trace Start April 22 2020, 14:18:47.468 Duration 6ms Services 4 Depth5 Total Spans 5
Oms 1.5ms 3ms 4.51

Service & Operation v > ¥ » 0ms 1.5ms 3ms
v | servicea GeTservicea |
v | servicea servicea:serviceB.get |

v servicea.tracing serviceb.irac... 3.3ms
v serviceb.tracing serviceb... 2.87ms
| serviceb GETcom red... 0.59ms T

You can click each of the spans and note the runtime values, which have been
propagated through HTTP headers as the traffic flows from servicea to serviceb.

Service & Operation v > ¥ » Oms 1.5ms 3ms 4.5ms 6ms
VI servicea GET:servicea EEEEEEEEEEEEE———
v | servicea servicea:ServiceB.get s sms
servicea:ServiceB.get Service: servicea = Duration: 5ms | Start Time: Oms

> Tags: http.method=GET http.url=/ internal.span.format = jaeger peer.hostname = http://serviceb:8080 = span.kind =cli...
> Process: client-uuid = 8fb71bd4-6c06-4cb4-a771-1bd3e3da2197 hostname = servicea-6c9fffcc58-v699r ip = 10.128.2.197...
6d6557568689074a ¢
v servicea.tracing serviceb.trac... 3.3ms
v serviceb.tracing serviceb... 2.87ms

| serviceb GET:com.red... 0.59ms T

Expand Tags for the servicea. tracing span to see contextual span information,
which was propagated to services.

w D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

serviceb.tracing.svc.cluster.local:8080/*

servicea.tracing 3.3ms

1.93ms
v Tags

component "proxy"
downstream_cluster

guid:x-request-id "80f3f62a-ad4a5-9897-81e5-288992dd63de"

http.method "GET"
http.protocol "HTTP/1.1"
http.status_code "200"
http.url

"http://serviceb:8080/"
internal.span.format "zipkin"

node_id sidecar~10.128.2.197~servicea-6c9fffcc58-v699r.tracing~tracing.svc.cluster.local"
request_size "o"

response_flags

S Note

You will see extra *. tracing spans in the Jaeger console. These are propagated
by the Envoy proxy as it intercepts traffic bound for the services in the mesh.

P 10. Return to the home directory.

[student@workstation observe-jaeger]$ cd ~
[student@workstation ~]$

Finish

On the workstation machine, use the lab command to complete this exercise. This is important
to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-jaeger finish

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

Collecting Service Metrics

Objectives

After completing this section, you should be able to collect and inspect critical metrics with
Prometheus and Grafana.

Metrics and Service Level Objectives

In any system that has a large number of services, it is important to understand the different types
of metrics to gather, and then decide on a process to measure and evaluate their performance.
Each service, or a set of services with common business functionality can define their own set of
metrics that should be gathered, measured and analyzed.

A common practice is to define a set of service levels that act as a sort of contract, or agreement
between a service provider and a service consumer. Service levels can be broadly classified into
three categories:

Service Level Indicators (SLI)
An SLlis a carefully defined quantitative measure of some aspect of the level of service that
is provided. For example, a common Sl is the response time, thatis, the time taken by a
service to provide a response. Other examples of SLI include error rate (percentage of
responses that were invalid), and availablity (percentage of time that the service was in a
correctly functional state).

Service Level Agreements (SLA)
An SLA is an explicit or implicit contract with your users which includes consequences of
meeting (or missing) the service level objectives (SLO) for a service. Selecting and publishing
an SLA to users sets expectations about how a service will perform. For example, a credit card
payment service for an e-commerce website will have an SLA that declares that "All payment
requests will be processed in less than 5 seconds.”

Service Level Objectives (SLO)
An SLO is a threshold value, or range of values that is measured by an SLI. For example, an
E-commerce website can have an SLO that tries to render a product catalog pagein3to 5
seconds. Another scenario could be for handling a large number of users, for example "The
payment service should be capable of handling 30,000 to 35,000 users concurrently on
weekends."

Selecting Metrics to Measure

You should carefully select a set of metrics for a service that you want to include in your SLI.
Selecting too many metrics wastes monitoring cycles and clutters up your dashboards, while
choosing too few, or the wrong metrics will impede your analysis and reduce the effectiveness of
your response to issues in the field.

Examples of types of systems, and the metrics that are relevant for measuring their performance
are as follows:

Chapter 3 | Observing a Service Mesh

- End user facing systems/HTTP web APIs: Good candidates for SLlIs are system
uptime (availability), response time (latency), and number of requests served per second
(throughput).

- Big Data/Machine Learning: SLls such as data throughput (how many items were
processed) and end-to-end latency (how much time to process all the data) are the preferred
starting points for measurement.

- Database/Storage Systems: These kinds of systems are concerned with latency (how
quickly were items written to disk), availability, and durability (no data corruption).

These are good starting points and not a definitive list of indicators. You must analyze your service
and determine what metrics to gather, ideally a small set of core metrics are preferred over
monitoring a large number of items. Use an iterative approach to add new metrics and learn from
incidents in production.

Service Mesh Metrics (Telemetry)

Red Hat OpenShift Service Mesh gathers detailed metrics (telemetry) for all services within a
service mesh. These metrics allow developers to observe, troubleshoot, and optimize the behavior
of their applications under load. Developers are able to understand how the services communicate
and interact with each other, as well as with the service mesh control plane.

A default installation of Red Hat OpenShift Service Mesh gathers a number service metrics related
to error rates, rate of traffic, HTTP status codes of the response, and more. The service mesh also
gathers detailed metrics for its control plane. A default set of monitoring dashboards using these
metrics is automatically created and provided to developers.

Metrics from Envoy Proxies

The Envoy proxies provide a rich set of metrics about traffic passing through the proxy, both
incoming (ingress) and outgoing (egress). The proxies also provide detailed statistics about the
functioning of the proxy itself (health status and configuration).

You can customize the set of Envoy proxy metrics that will be collected for a given service mesh.
By default, only a small subset of the Envoy proxy metrics are collected. This avoids overloading
the system and reduces the CPU overhead associated with metrics collection.

The References section has a number of links that detail the metrics that are available for
monitoring the Envoy proxies.

Metrics from Application Services

Red Hat OpenShift Service Mesh provides a set of application service metrics for observing the
performance and state of incoming and outgoing service traffic.

A default installation of Red Hat OpenShift Service Mesh gathers the following service metrics:
+ Request Count: The total number of requests sent to a service.

+ Request Duration : The time taken for the service to provide a response.

+ Request Size : The size of the body in the HTTP request.

+ Response Size : The size of the body in the HTTP response.

The References section has a number of links that detail the full list of metrics that are available for
monitoring the application services.

Chapter 3 | Observing a Service Mesh

Metrics from the Service Mesh Control Plane

Each of the service mesh components (Pilot, Citadel, and Galley) also provide a set of metrics
about their health, configuration, and performance.

The References section has a number of links that detail the full list of metrics that are available for
monitoring the components of the service mesh control plane.

Introducing Prometheus and Grafana

Prometheus is an open-source systems monitoring and alerting toolkit which includes a time-
series database for storing metrics. It provides a powerful web based user interface to query and
analyze performance trends from the data it collects.

Red Hat OpenShift Service Mesh provides a default Prometheus server instance which gathers
metrics data from the Envoy proxies, the services in the service mesh, and the components in the
control plane.

Grafana is an open-source graphical visualization tool used for creating operational dashboards for
software systems.

Red Hat OpenShift Service Mesh provides a default Grafana instance with ready made
dashboards for viewing data from the Envoy proxies, the services in the service mesh, and the
components in the control plane. The Grafana instance is tightly integrated with the default
Prometheus instance in the service mesh installation and uses the data stored in Prometheus to
render the graphs in the dashboard.

Collecting Custom Application Metrics

A default Red Hat OpenShift Service Mesh instance automatically collects several useful
metrics for your application. These metrics are useful to get a high-level understanding of the
performance of the service mesh and the applications deployed on it.

However, you might sometimes need to gather custom application specific metrics and display
them in a Grafana dashboard. For example, in an E-commerce application, you might wish to
track how many items of a specific category are sold over a weekend or special holiday sale.
Another example is a financial services application that tracks the number of successful and failed
transactions of a specific type.

You must include the Prometheus client libraries in your application, and then create these custom
metrics. Each metric is categorized into a specific Prometheus metric type. The client libraries

will collect all the custom metrics and then send it to Prometheus for storage. The data stored in
Prometheus can be visualized using custom Grafana dashboards.

Prometheus Metric Types

Prometheus supports four different types of metrics:

Counter
A counter is a cumulative metric that represents a single variable whose value can only
increase, or be reset to zero on restart. For example, you can use a counter to represent the
number of errors, requests served and tasks completed.

Chapter 3 | Observing a Service Mesh

Gauge
A gauge is a metric that represents a single numerical value, which can be incremented or
decremented. For example, you can use a gauge to represent the number of processes, or the
number of concurrent users.

Histogram
A histogram samples values and counts them in configurable buckets. It also provides a sum of
all values. Histograms track the number and the sum of the values, allowing you to calculate
the average of the values.

For example, you can categorize response times in buckets (range of values) of 200
milliseconds with an upper limit of 1000 milliseconds. Prometheus collects the values and
categorizes the values in each of the buckets.

Summary
Similar to a histogram, a summary samples values. However a summary also calculates
configurable values over a sliding time window.

Histograms buckets are categorized on the Prometheus server, while summaries are
calculated on the client side (that is, the service exposing the metrics).

Note

S For a more detailed explanation about the histogram and summary metric type,
refer to https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-
types/.

Creating Custom Metrics for Quarkus Applications

You can enable custom metrics for your Quarkus application by adding the quarkus-smallrye-
metrics extension.

The following are the steps to enable custom metrics for Quarkus applications:

1. Include the quarkus-smallrye-metrics dependency in your application Maven pom.xm1l
file for enabling metrics collection.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

2. Import the required metrics classes in your application from the
org.eclipse.microprofile.metrics.* package. This package has all the standard
Prometheus metric types that you can use to instrument your custom metrics.

3. Add relevant metrics for your application.

Counters can be created by adding the @Counted annotation to methods as follows:

@Counted(name = "card_transactions", description = "count of credit card
transactions")

public void processCreditCardTransaction() {

...output omitted. ..

https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-types/
https://blog.pvincent.io/2017/12/prometheus-blog-series-part-2-metric-types/

Chapter 3 | Observing a Service Mesh
Gauges can be created by adding the @Gauge annotation to methods:

@Gauge(name = "concurrent_users", description = "count of active users")
public void listActiveUsers() {
...output omitted...

You can add different types of metrics to your application. For the complete list of options,
refer to the Microprofile Metrics standard API reference at https://github.com/eclipse/
microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc.

4. By default, Quarkus makes the metrics available at the /metrics endpoint. This endpoint
combines your custom metrics along with other standard metrics for the application, such as
garbage collection information, heap size, and other system level metrics

Quarkus makes only the custom metrics available at the /metrics/application endpoint.
To see only the system level metrics, access the /metrics/base endpoint.

Creating Custom Metrics for Node.js Applications

You can add custom metrics to your Node.js application by importing the prom-client package.
The steps to add custom metrics to your Node.js applications are:

1. Install the prom-client package.

[user@demo product]$ npm install --save prom-client

2. Import the prometheus-client package and initialize it. Add a unique prefix to easily
identify the standard Node.js runtime metrics for this application. This is to help narrow down
the search in the Prometheus web console.

var prometheus = require('prom-client');
const prefix = 'myapp_';
prometheus.collectDefaultMetrics({ prefix });

Note

S You can comment out the prometheus.collectDefaultMetrics() method if
you do not want Node.js runtime system metrics, such as memory usage, garbage
collection, CPU usage, and more.

3. Add code to create new Prometheus metric types for your application. Use a suitable prefix
(usually application name), and description of the custom metric to easily identify this custom
metric in the Prometheus web console.

Create a new counter as follows:

const transactions = new prometheus.Counter ({
name: 'myapp:card_transactions',
help: 'count of credit card transactions'

1)

You can then increment the counter (for example at the start of a function):

https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc
https://github.com/eclipse/microprofile-metrics/blob/master/spec/src/main/asciidoc/app-programming-model.adoc

Chapter 3 | Observing a Service Mesh

transactions.inc();

Similarly, to add a gauge:

const concurrent_users = new prometheus.Gauge({
name: 'myapp:concurrent_users',
help: 'No of concurrent users'

1)
Set the value of the gauge:

concurrent_users.set(some_value);

4. Add code to create a new HTTP GET endpoint called /metrics which will be used by
Prometheus to collect metrics for this microservice. This endpoint will then return the metrics
by calling the register object in the Prometheus client library as follows:

app.get('/metrics', function (req, res) {
res.set('Content-Type', prometheus.register.contentType);
res.send(prometheus.register.metrics());

19

Prometheus client libraries exist for other programming languages. Refer to the Prometheus
documentation for more details.

Enabling Prometheus Metrics Scraping

A default installation of Red Hat OpenShift Service Mesh does not collect metrics from
applications unless it is explicitly enabled in the application deployment resource file.

To enable Prometheus to scrape (collect) metrics from your application, add the following
annotations to the spec.template.metadata.annotations section in the deployment YAML
resource file:

...output omitted...

labels:
app: myapp

annotations:
sidecar.istio.io/inject: "true"
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/scheme: "http"

...output omitted...

Make sure that your prometheus.io/port value matches the port number where the /
metrics endpointis running.

Querying Service Mesh Metrics using Prometheus

To view metrics collected from the service mesh using the Prometheus web console, do the
following:

Chapter 3 | Observing a Service Mesh

1. In the OpenShift web console, navigate to Networking — Routes and search for the
prometheus route, which is the URL listed in the Location column.

2. Login using the same user name and password that you used to access the OpenShift web
console. You should see the Prometheus web console home page.

3. Inthe expression editor, type istio and observe the list of metrics that are available (the
Ul provides auto-completion and prompts you for a list of available metrics). You can query
custom metrics by typing the metric name that you declared in your application source code
when instrumenting the service for metrics. Once you have selected a metric, click Execute
to display the metrics collected.

4. Selectinsert metric at Cursor, and observe the full list of available metrics available
for querying.

Istio service metrics can be queried using the istio_* entries.
Envoy proxy metrics can be queried using the envoy_* entries.

Control plane metrics can be queried using the pilot_*, citadel_*,andgalley_*
entries.

Visualizing Service Mesh Metrics using Grafana

To view the metrics dashboard for a service mesh using the Grafana web console, do the following:

1. Inthe OpenShift web console, navigate to Networking — Routes and search for the
grafana route, which is the URL listed in the Location column.

2. Login using the same user name and password that you used to access the OpenShift web
console. You should see the Grafana web console home page.

3. Select Home in the top left corner and then expand the istio folder to see a list of available
dashboards.

Y Filter by
load Dashboard

m Istio Pilot Dashboard Tags

@ N

?5 Import dashboard

@s Find dast Grafana.com

Figure 3.12: List of Grafana Dashboards

4. ClickIstio Service Dashboard to view details about your application services.

Chapter 3 | Observing a Service Mesh

> Istio Service Dashboard -

All~ oad All ~

SERVICE: details.bookinfo.svc.cluster.local

Client Request Volume Client Success Rate (non-5xx responses) Client Request Duration
0,
0.2 ops 100%

Server Request Volume Server Success Rate (non-5xx responses)

0.2 ops 100%

CLIENT WORKLOADS

Figure 3.13: Application Service Dashboard

5. ClickIstio Mesh Dashboard to view the state of the overall service mesh.

88 istio > Istio Mesh

HTTP/GRPC Workloads

Figure 3.14: Overall Service Mesh Dashboard

Creating Custom Grafana Dashboards

You can create your own custom Grafana dashboards and visualize custom metrics from your
application. To create a custom dashboard, do the following:

1. Click the plus (+) icon in the left navigation panel in Grafana, and click Dashboard to create a
new dashboard.

2. A dashboard consists of one or more panels. A panel can contain one or more metrics of
different graph types (Line Graph, Metered Gauge, Bar Graph, Table, Heatmap, and more).
Click Add Query.

3. You can search for metrics in the query expression editor (Grafana will provide you with auto-
completion options) and select an option.

Chapter 3 | Observing a Service Mesh

default

istio req
istio request bytes bucket

istio request bytes count

istio request bytes sum

istio request duration_seconds_bucket
istio request duration seconds count
istio request duration seconds sum
istio requests total

Figure 3.15: Grafana add query
You can click Add Query to add more metrics to the panel.
4. Click the graphicon in the left navigation panel to select different types of visual
representation for the metrics. Click Visualization to select a graph type.
Visualization

Graph Singlestat Gauge Bar Gauge

LS N -

o il | e | £

Heatmap Alert List Dashboard list Plugin list

Click the gear icon in the left navigation panel to open the General page, and provide a
suitable name for the panel in the Title field.

Figure 3.16: Grafana select graph type

5. Click the left arrow icon in the top left corner (next to New dashboard) to go back to the
dashboard page. You should see the panels you added to the dashboard with the selected

graph types.

6. Click Save dashboard (floppy disk icon) in the top navigation panel to save the dashboard.
Provide a suitable name for your dashboard and click Save.

Chapter 3 | Observing a Service Mesh

]

References

Service Level Objectives
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Prometheus
https://prometheus.io

Grafana
https://grafana.com/

Service Mesh Metrics for Envoy proxy, services and Control Plane
https://archive.istio.io/v1.4/docs/concepts/observability/#metrics

Querying Service Mesh Metrics using Prometheus
https://maistra.io/docs/monitoring_and_tracing/prometheus/

Visualizing Service Mesh Metrics using Grafana
https://maistra.io/docs/monitoring_and_tracing/grafana/

Prometheus client library for Node.js
https://www.npmjs.com/package/prom-client

Prometheus client library for Node.js
https://www.npmjs.com/package/prom-client

Using OpenTracing in Quarkus
https://quarkus.io/guides/opentracing

Types of Prometheus metrics
https://tomgregory.com/the-four-types-of-prometheus-metrics/

D0O328-5SM1.1-en-2-20200910

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://prometheus.io
https://grafana.com/
https://archive.istio.io/v1.4/docs/concepts/observability/#metrics
https://maistra.io/docs/monitoring_and_tracing/prometheus/
https://maistra.io/docs/monitoring_and_tracing/grafana/
https://www.npmjs.com/package/prom-client
https://www.npmjs.com/package/prom-client
https://quarkus.io/guides/opentracing
https://tomgregory.com/the-four-types-of-prometheus-metrics/

Chapter 3 | Observing a Service Mesh

» Guided Exercise

Collecting Service Metrics

In this exercise, you will deploy two microservices on OpenShift Service Mesh, and collect
and inspect critical metrics with Prometheus and Grafana.

You will deploy two microservices in this exercise for a fictional online shopping store:

« product: written in JavaScript using the Node.js runtime. This service renders product
details available for sale in the store.

+ order: written in Java using the Quarkus framework. This service handles orders placed
by customers.

You will do the following in this exercise:

1. Enable standard and custom metrics collection in both microservices. Metrics data is
sent to the Prometheus instance running in the service mesh.

2. Build container images locally for both microservices using podman.
3. Push the built container images to the Quay . io public container registry.

4. Deploy both microservices to the service mesh, and view metrics data using the
Prometheus and Grafana web console.

Outcomes

You should be able to deploy applications to OpenShift Service Mesh, and view custom
metrics data using Prometheus and Grafana.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

+ An account with the Quay . 1o container registry, and podman installed locally on your
workstation.

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise:

[student@workstation ~]$ lab observe-metrics start

P 1. If you have not cloned the source code from the D0328-apps GitHub repository in a
previous exercise, do so now using the git clone command. Inspect the source code for
both microservices in the metrics-ge folder.

Chapter 3 | Observing a Service Mesh

Use a text editor like VSCodium that supports syntax highlighting for editing JavaScript
and Java source files.

11. Open a new terminal window on your workstation. From the home directory, clone the
source code for the microservices from GitHub.

[student@workstation ~]$ git clone https://github.com/RedHatTraining/D0328-apps
...output omitted...

Cloning into 'D0328-apps'...

...output omitted. ..

12. Copy the contents of the /home/student/D0328-apps/metrics-ge folder from
your local Git repository to the /home/student/D0328/1labs/observe-metrics
folder.

[student@workstation ~]$ cp -Rv ~/D0328-apps/metrics-ge/* \
> ~/D0328/labs/observe-metrics/

You should now see two folders called order and product in the /home/student/
D0328/labs/observe-metrics/ folder.

You should also see shell scripts and service mesh related YAML files in the same
folder. These were created by the lab start script.

1.3. Review the source code for the product microservice in the /home/student/
D0328/labs/observe-metrics/product/server. js file.

This microservice exposes an HTTP GET endpoint called /sp150 that renders a 50%
discount offer page to customers. For the sake of simplicity, this just renders a simple
string that enables us to test invoking the endpoint.

14. Review the source code for the order in the /home/student/D0328/labs/
observe-metrics/order/src/main/java/com/redhat/training/order/
OrderService. java file.

This microservice has two HTTP GET endpoints. The /order endpoint handles
orders that are placed after a customer views the special offer page (rendered by
the product microservice). A randomly generated order id is sent to the client as
response.

The /rating endpoint simulates customers submitting feedback about the order
process. For the sake of simplicity, the rating is generated randomly (a number
between 1and 5).

S Note
Code for communication between the product and order service is not
implemented to keep the code simple. The focus for this exercise is to learn how to
generate custom metrics for the microservices.

P 2. Add code to the product microservice to enable the collection of custom metrics.

You have been asked to collect the following metrics for this microservice:

1. Response time to render the response for the /sp150 endpoint. Consistently low
response times for a large majority of customers is very important for the store. The
operations team wants to track the average response time over a set period of time.

Chapter 3 | Observing a Service Mesh

2. Page view count for the /sp150 endpoint. The sales team would like to see data about
the number of people who viewed the offer page, and then went on to place the order.

2J). Navigate to the /home/student/D0328/labs/observe-metrics/product
folder on the command line terminal. All references to file paths in this step are
relative to this folder.

[student@workstation ~]$ cd ~/D0328/labs/observe-metrics/product

2.2. Inspect the package. json file which declares all the NPM packages required for
running this microservice.

Install the NPM prom-client dependency which provides the Prometheus client
library.

[student@workstation product]$ npm install --save \
> prom-client@12.0.0
...output omitted...
+ prom-client@12.0.0
...output omitted...

2.3. Editthe server. js file. The complete source code changes for this file can be
copied from the /home/student/D0328/solutions/observe-metrics/
product/server. js file.

Import the prometheus-client package and initialize it. Add a unique prefix
called product_svc to easily identify the standard Node.js runtime metrics for this
application in the Prometheus web console.

...output omitted...

const express = require('express');

var prometheus = require('prom-client');
const prefix = 'product_svc_';
prometheus.collectDefaultMetrics({ prefix });

2.4. Add code to create a new Prometheus gauge type for tracking response time. Note
the use of the service name as a prefix to easily identify this custom metric in the
Prometheus web console.

...output omitted...
app.listen(8080, function () {
console. log('product-svc started on port 8080');

19

const responseTime = new prometheus.Gauge({
name: 'product_svc:spl50_response_time',
help: 'Time take in seconds to render the 50% special offer page'

1}

...output omitted...

2.5. Add code to create a new Prometheus counter type for tracking the page view count.

Chapter 3 | Observing a Service Mesh

...output omitted...
app.listen(8080, function () {
console. log('product-svc started on port 8080');

19

const responseTime = new prometheus.Gauge({
name: 'product_svc:spl50_response_time',
help: 'Time take in seconds to render the 50% special offer page'

1)

const page_views = new prometheus.Counter({

name: 'product_svc:spl50_page_view_count',

help: 'No of page views for the 50% special offer page'
1);

...output omitted...

2.6. Edit the code for the /sp150 route handler.

Start the timer which measures the response time as soon as the function begins to
execute. Increment the page view counter.

...output omitted...

app.get('/spl50', async function (req, res) {
responseTime.setToCurrentTime();
const end = responseTime.startTimer();
page_views.inc();

...output omitted...

2.7. Before sending the response to the client, end the timer which you started at the
beginning of the function (after the sleep() call).

...output omitted...

await sleep(Math.floor(Math.random() * 200) + 1);
end();

res.send(view_msg);

...output omitted...

2.8. Add code to create a new /metrics endpoint which will be used by Prometheus to
collect metrics for this microservice.

...output omitted. ..

app.get('/metrics', function (req, res) {
res.set('Content-Type', prometheus.register.contentType);
res.send(prometheus.register.metrics());

H

2.9. Save your changes. To ensure that there are no syntax errors, run the code using the
Node. js runtime, and ensure that the microservice starts without any errors.

If there are errors, then compare your changes with the solution files in the /home/
student/D0328/solutions/observe-metrics/product folder.

Chapter 3 | Observing a Service Mesh

[student@workstation product]$ npm install
...output omitted...

[student@workstation product]$ node server.js
product-svc started on port 8080

Press Ctr1+C to stop the server.

) 3. Add code to the order microservice to enable the collection of custom metrics.

You have been asked to collect the following metrics for this microservice:

1.

2.

31

Response time to process an order.

Count of orders placed after viewing the special offer page. The sales team would like
to see data about the number of people who placed an order.

The rate at which orders can be processed. The operations team would like to
understand the average rate of orders that can be processed for certain time intervals.
This data will be used for planning the scalability and capacity estimation for the
system.

Satisfaction rating. The sales team would like to collect the satisfaction rating data
provided by customers after they place an order.

Change to the /home/student/D0328/labs/observe-metrics/order folder.
All references to file paths in this step are relative to this folder.

[student@workstation product]$ cd ~/D0328/labs/observe-metrics/order

3.2

Inspect the maven pom.xm1 file which declares the dependencies for this
microservice.

Include the quarkus-smallrye-metrics dependency for enabling metrics
collection. Add this dependency below the quarkus-smallrye-health
dependency.

You can also copy the code from the solution file at /home/student/D0328/
solutions/observe-metrics/order/pom.xml.

...output omitted. ..
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>
...output omitted. ..

3.3.

Edit the src/main/java/com/redhat/training/order/

OrderService. java file. The complete source code changes for this file can be
copied from the /home/student/D0328/solutions/observe-metrics/
order/src/main/java/com/redhat/training/order/OrderService. java
file.

Edit the annotations for the processOrder () method. Add a counter that tracks
the number of orders placed.

Chapter 3 | Observing a Service Mesh

...output omitted...

@GET

@Path("/order™")

@Counted(name = "order_svc:spl50_orders_placed",
description = "count of spl50 orders placed")

...output omitted...
public String processOrder() {
...output omitted...

3.4. Add atimer to track the response time for processing an order.

...output omitted. ..

@Counted(name = "order_svc:spl50_orders_placed", description = "count of spl50
orders placed")
@SimplyTimed(name = "order_svc:spl50_order_process_time",
description = "A measure of how long it takes to process an order",

unit = MetricUnits.MILLISECONDS)
...output omitted. ..

3.5. AddaMetered metric to track the rate of order processing.

...output omitted...

@Metered(name = "order_svc:orders_processed_rate",
unit = MetricUnits.MINUTES,
description = "Rate at which orders are placed",

absolute = true)
...output omitted. ..

The final processOrder () function should look like the following:

...output omitted. ..

@GET

@Path("/order")

@Counted(name = "order_svc:spl50_orders_placed",
description = "count of spl50 orders placed")

@SimplyTimed(name = "order_svc:spl50_order_process_time",
description = "A measure of how long it takes to process an order",
unit = MetricUnits.MILLISECONDS)

@Metered(name = "order_svc:orders_processed_rate",

unit = MetricUnits.MINUTES,
description = "Rate at which orders are placed",

absolute = true)
@Produces(MediaType.TEXT_PLAIN)
public String processOrder() {
...output omitted. ..

3.6. Add agauge type metric to the generateRandomRating() method to capture the
rating for the order.

Chapter 3 | Observing a Service Mesh

...output omitted...

@Gauge(name = "order_svc:spl50_order_process_rating",
unit = MetricUnits.NONE,
description = "Overall customer rating for the order process")

private Integer generateRandomRating() {
...output omitted...

3.7. Save your changes. To ensure that there are no syntax errors, runmvn clean
package and ensure that a fat JAR is created in the target folder.

[student@workstation order]$ mvn clean package

...output omitted. ..

[INFO] Building order 1.0.0

...output omitted. ..

...output omitted... Building fat jar: observe-metrics/order/target/order-1.0.0-
runner.jar

[INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus augmentation completed in
2440ms

...output omitted. ..

[INFO] BUILD SUCCESS

...output omitted. ..

3.8. Start the microservice and verify that there are no errors.

[student@workstation order]$ java -jar target/order-1.0.0-runner.jar
...output omitted... (powered by Quarkus 1.3.2.Final) started in 0.747s.
Listening on: http://0.0.0.0:8080

...output omitted...

Verify that there are no errors. If there are errors, compare your changes with the
solution files in /home/student/D0328/solutions/observe-metrics/order
folder. Press Ctr1+C to stop the server.

P 4. Build container images for both microservices using podman.

4]. Load your classroom environment configuration.

Run the following command to load the environment variables:

[student@workstation order]$ source /usr/local/etc/ocp4.config

4.2. Briefly review the Dockerfile for the product microservice. You will use Red Hat
Universal Base Images (UBI) as the base for building your container image. Build the
container image using podman.

[student@workstation order]$ cd ~/D0328/labs/observe-metrics/product
[student@workstation product]$ podman build -t \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-product:1.0 .

STEP 1: FROM registry.access.redhat.com/ubi8/nodejs-12:latest
...output omitted. ..

STEP 13: COMMIT quay.io/youruser/ossm-metrics-product:1.0

Chapter 3 | Observing a Service Mesh

4.3. Build the container for the order microservice after reviewing the Dockerfile.

[student@workstation product]$ cd ~/D0328/labs/observe-metrics/order
[student@workstation order]$ podman build -t \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-order:1.0 .

STEP 1: registry.access.redhat.com/ubi8:8.1

...output omitted. ..

STEP 15: COMMIT quay.io/youruser/ossm-metrics-order:1.0

4.4. Verify that the container images for product and order are built successfully.

[student@workstation order]$ podman images

REPOSITORY TAG ...output omitted...
quay.io/youruser/ossm-metrics-product 1.0 ...output omitted...
quay.io/youruser/ossm-metrics-order 1.0 ...output omitted. .

...output omitted...

P 5. Create new public image repositories in Quay.io to store the newly built container images.

Push the container images to Quay . io.

51. Create two new public container image repositories called ossm-metrics-
product, and ossm-metrics-order in Quay.io. Refer to the instructions in
Creating a Quay Account for creating public container image repositories.

repositories, then the podman push commands will create private container image

Warning
If you skip this step and push the container images without creating public
repositories by default.

5.2. Login to your Quay.io account using podman.
[student@workstation order]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io
You will be prompted for your Quay.io password.

5.3. Push the container image for the product microservice to Quay.io.

[student@workstation order]$ podman push \

> quay.io/${RHT_OCP4_ QUAY USER}/ossm-metrics-product:1.0
...output omitted...

Writing manifest to image destination

Storing signatures

5.4. Push the container image for the order microservice to Quay.io.

[student@workstation order]$ podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-metrics-order:1.0
...output omitted...

Writing manifest to image destination

Storing signatures

Chapter 3 | Observing a Service Mesh
) 6. Create the metrics project and then add it to the ServiceMeshMemberRo11 resource.

6.. Login to OpenShift as the developer user.

[student@workstation order]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

6.2. Create the metrics project.

[student@workstation order]$ oc new-project metrics
Now using project "metrics" on server
"https://api.cluster.domain.example.com:6443".
...output omitted. ..

6.3. Addthe metrics project to the list of members in the ServiceMeshMemberRo11l
resource.

You can also run the add-project-to-smmr. sh script in the /home/student/
D0328/1labs/observe-metrics folder to add the metrics project to the list of
members in the ServiceMeshMemberRo 11 resource.

[student@workstation order]$ cd /home/student/D0328/labs/observe-metrics
[student@workstation observe-metrics]$ oc patch servicemeshmemberroll/default \
> -n istio-system --type=merge \

> -p '"{"spec": {"members": ["metrics"]}}'
servicemeshmemberroll.maistra.io/default patched

P 7. Deploy the microservices to OpenShift service mesh.

71. Editthe *-deploy.yaml files in the /home/student/D0328/1labs/observe-
metrics folder which describes the necessary resources to deploy both applications.

The deployment files have the sidecar.istio.io/inject: "true" annotation
included to inject the Envoy proxy after deployment.

7.2. Editthe /home/student/D0328/labs/observe-metrics/product -
deploy.yaml file. Edit the spec.template.spec.containers.image attribute
and add the Quay.io URL of the container image you created in a previous step.

...output omitted. ..
spec:
containers:
- name: product
image: quay.io/youruser/ossm-metrics-product:1.0
imagePullPolicy: IfNotPresent
...output omitted. ..

Add annotations to allow the Prometheus instance to collect metrics from this
microservice. Add the following annotations below the sidecar.istio.io/
inject: "true" annotation.

Chapter 3 | Observing a Service Mesh

...output omitted...

labels:
app: product
version: vi

annotations:
sidecar.istio.io/inject: "true"
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/scheme: "http"

...output omitted...

7.3. Edit the /home/student/D0328/1labs/obhserve-metrics/order -
deploy.yaml file. Add the Quay.io URL of the container image for order.

...output omitted. ..
spec:
containers:
- name: order
image: quay.io/youruser/ossm-metrics-order:1.0
imagePullPolicy: IfNotPresent
...output omitted. ..

Add annotations to allow the Prometheus instance to collect metrics from this
microservice. Add the following annotations below the sidecar.istio.io/
inject: "true" annotation.

...output omitted. ..

labels:
app: order
version: vi

annotations:
sidecar.istio.io/inject: "true"
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/scheme: "http"

...output omitted. ..

7.4. Runtheoc create command to deploy the applications.

[student@workstation observe-metrics]$ oc create -f product-deploy.yaml
deployment.apps/product created

service/product created

[student@workstation observe-metrics]$ oc create -f order-deploy.yaml
deployment.apps/order created

service/order created

75. Runthe oc get pods command and verify that both microservices are deployed
and in Running state.

Chapter 3 | Observing a Service Mesh

[student@workstation observe-metrics]$ oc get pods

NAME READY STATUS RESTARTS AGE
order-6c89b48d88-b5tgk 2/2 Running 2 1h
product-69dd4f647f-jxwmp 2/2 Running 2 1h

76. Inspect the /home/student/D0328/labs/observe-metrics/gateway.yaml

file which describes the ingress gateway for traffic entering the mesh.

From the command line terminal, use the oc create command to create the ingress
gateway.

[student@workstation observe-metrics]$ oc create -f gateway.yaml
gateway.networking.istio.io/observe-metrics-gateway created

77.

Create aVirtualService to redirect the ingress traffic to the product or order
service based on the URL.

Examine the virtual-service.yaml file which routes the ingress traffic to both
services,

Use the oc create command to create the virtual service.

[student@workstation observe-metrics]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/observe-metrics-vs created

P 8. Test the microservices.

8l

Run the oc get route command to get the URL of the Istio gateway.

You can also cut and paste the full command from the get-ingress-gateway -
url.shfile.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation observe-metrics]$ export \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -0 template --template '{{ "http://" }}{{ .spec.host }}')

8.2. Execute the cur1l command in combination with the GATEWAY_URL variable to

access the application.

View the 50% special offer page.

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/spl50
50% off on purchase of 100 or more items!

Hurry!

Limited stocks...

8.3. Place an order using the order service.

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/order
Thank you for your order! Your order id is 4789

8.4.

The order id is randomly generated and may be different in your case.

Invoke the /rating endpoint for the order service.

Chapter 3 | Observing a Service Mesh

[student@workstation observe-metrics]$ curl ${GATEWAY_URL}/rating
You rated the order process 3 stars. Thank you for your feedback!

The rating score is randomly generated and may be different in your case.
P 9. Query metrics generated by the microservices using the Prometheus web console.

91. Runtheoc get routecommand to gather the Prometheus web console URL. You
can also copy the commands from the get -prometheus-ur1l. sh file.

[student@workstation observe-metrics]$ export \
> PROM_URL=$(oc get route prometheus -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

9.2. USe the Firefox web browser to access the Prometheus web console.

[student@workstation observe-metrics]$ firefox ${PROM_URL} &

9.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the
RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom
configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the
same file.

If you are prompted with a page asking you to authorize service account access to
your account. Click Allow selected permissions to bring up the Prometheus web
console.

9.4. Click Status — Targets to confirm that metrics are being collected from the order
and product services.

Chapter 3 | Observing a Service Mesh

Status -

O Enable query history Runtime & Build Information
Command-Line Flags

Expression (press Shift+Enter for new .
Configuration

Rules
Execute - insert metric at cursorn
Targets

Service Discovery

Graph | Console

Element

no data

Add Graph

You should see the entry for both services in the kubernetes-pods section. You can
identify the services by their labels in the Labels column.

kubernetes-pods (4/4 up)

Endpolint State Labels
http://10.128.0.12:14269/metrics uprP app_kubernetes_io_component="all-in-one™

app_kubernetes_io_managed_by="jaeger-operato
: app_kubernetes_io_name="jaeger"
j™ | instance="10.126.0.12:14269"
pod_name="jaeger-99cd7cabi-phxqr" | pod_template_hash="

http://10.128.0.30:8080/metrics up instance="10.128.0.30:8080" || job="Kubernetes-pods"

pod_name="product-69dd4f647f-jxwmp" | pod_tem|

ate_hash="69dd41647{" [version="v1"

hitp://10.128.0.36-8080/merics up Job="kubarnetes-pods”

pod_name="order-6c89ba8da8-b5tqk" || pod_template]

hash="6ca9b43de8" | version="v1" |
http://10.128.0.81:9090/metrics upP app="kiali" | instance="10.128.0.81:9090" | job="Kubernetes-pods"

espace="istio-system” | pod_name="kiall-c954d5717-lfmn4" || pod_templat
1ash="c854d57{7" | version="1.0.12"

=

@

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

Note
E If you cannot see your services in the Targets page, then ensure that you added
prometheus.io/* annotations to the deployment YAML files for the services.

9.5. Click Graph in the top navigation bar in the Prometheus web console. Click the
Graph tab. An expression editor is available at the top of the page for queries using
the PromQL query language.

9.6. Start by typing product_svc:spl50 to see the metrics gathered for the product
service. Recall that you had provided this string as a prefix for all metrics created for
the product service. The expression editor should provide autocompleted options
based on the metrics it has gathered.

O Enable guery history

product_sve:spl50

product_svc:spl50_page_view_count

i
product_svc:spl50_response_time
Graph Console

- 1h + «“ » O stacked

Add Graph

Select product_svc:spl50_page_view_count in the expression editor, and click
Execute. You should see a graph for the page view count metric.

Jace="metrcs",pod_name="product-690d41647F-jxwmp pod_template_hash="69dd41647r",

Next, select product_svc:spl50_response_time in the expression editor, and
click Execute. You should see a graph for the response time metric.

9.7. Start by typing application_order_svc in the expression editor to view the
metrics for the order service. You should be presented with a list of custom, and
other standard metrics that were collected from the service.

D0O328-5SM1.1-en-2-20200910 “

Chapter 3 | Observing a Service Mesh

O Enable query history

application_order_svc

application_order_svc_orders_processed_rate_fifteen_min_rate_per second
applicatlon_order_svc_orders_processed_rate_five_min_rate_per_second
applicatlon_order_svc_orders_processed_rate_one_min_rate_per_second
application_order_svc_orders_processed_rate_rate_per_second
applicatlon_order_svc_orders_processed_rate_total
application_com_redhat_training_order_OrderService_order_svc_spl50_order_process_time_elapsedTime_seconds
application_com_redhat_training_order_OrderService_order_svc_spl50_order_process_time_total

application_com_redhat_training_order_OrderService_order_svc_spl50_orders_placed_total

Select a metric in the expression editor, and click Execute to see a graph for the
corresponding metric.

E Note
If you do not see any metric data, then use the cur1l command from previous steps
to invoke the /sp150, /order, and /rating endpoints a few times. You may have
to wait for a few seconds until Prometheus scrapes the metrics from the service and
displays the data in the graph.

P 10. Visualize default metrics for the service mesh using the Grafana web console.

10.1. Runthe oc get route command to gather the Grafana web console URL. You can
also copy the commands from the get-grafana-url. shfile.

[student@workstation observe-metrics]$ export \
> GRAFANA URL=$(oc get route grafana -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

10.2. Use the Firefox web browser to access the Grafana web console.

[student@workstation observe-metrics]$ firefox ${GRAFANA_URL} &

10.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the
RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom
configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the
same file.

If you are prompted with a page asking you to authorize service account access to
your account, then you must click Allow selected permissions to bring up the
Grafana web console.

10.4. Grafanais already configured to use Prometheus as a data source. The envoy proxy
sidecars are configured to automatically send metrics to Prometheus. This data is

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

14

) 1.

used to populate a set of pre-created dashboards related to various aspects of the
service mesh.

Click Home in the top left corner of the Grafana web console. The service mesh
dashboards are grouped together under the istio folder. Expand the istio folder,
and select the Istio Mesh Dashboard to view high-level statistics about the overall
service mesh.

Global Request Volume Global Success Rate (non-5xx responses)

100%

HTTP/GRPC Workloads

Note

If you do not see any metric data, then use the cur1l command from previous steps
to invoke endpoints from the product, and order services a few times. You might
have to wait for a few seconds until Prometheus scrapes the metrics from the
service and displays the data in the graph. Adjust the refresh interval (refresh icon in
the top right corner) to a higher value like 5m.

10.5.

Click Istio Workload Dashboard to view details about the product and order
services. You are provided with options to filter data by namespace and workload.
Select the metrics namespace, and then select product or order to view the
statistics for the corresponding service.

> Istio Workload Dashboard -

Namespace

metrics ¥ Workload product v Inb oad Namespace All v Inbour

WORKLOAD: product.metrics

Incoming Request Volume Incoming Success Rate (non-5xx responses) Request Duration

0.4 ops 100%

17:40 17:41

Optional: Briefly select and view other provided dashboards under the istio folder.

Create a custom dashboard for the shopping store. Populate it with the custom metrics
gathered from the product and order services.

1.

Click the plus (+) icon in the left navigation menu of Grafana web console to open the
Create menu. Select Dashboard to create a new dashboard.

Chapter 3 | Observing a Service Mesh

You will see a panel added to the dashboard called New Panel.

28 New dashboard -

thi# NewPanel

® ©@

Add Query Choose Visualization

Convert to row

1.2. Click Add Query in the New Panel panel.

In the query expression editor named A (next to the Metrics label), type
product_svc:spl50_page_view_count. Click the graph icon in the left menu (to
the left of the Query window) to select how you want to visualize the metric.

C'UEF}’ default

product_svc:spl50_page_view_count

Legend o Min step

Min time interval @ Relative time

11.3. In the Visualization panel, expand the Visualization selection, and select Gauge.

Chapter 3 | Observing a Service Mesh

1.4.

1.5.

11.6.

Visualization

Graph Singlestat

e 2.4
11T 1

Display

Show Calculation

Calc Mean

Labels

Markers

Click General (gear icon below Visualize icon in the left menu).
Enter Product Page View Count as the Title.

Click the left arrow icon (top left corner to the left of New dashboard) to go back to
the dashboard page. You will add a panel with a metric from the order service to this
dashboard in the next step. Your dashboard should now show the page view count
metric from the product service.

Click Add panel (graph icon with yellow plus in top right) to add another panel for
displaying metrics from the order service.

Click Add Query in the New Panel, and type orders_placed. Prometheus will
auto-complete a long metric name ending with orders_placed_total. Select the
option.

Click Visualization in the left menu, and select the Graph option.

Click General in the left panel, and change the Title field to Total Orders
Placed. Click the left arrow icon in the top left corner to go back to the New
dashboard page.

Your new dashboard should now show one metric each from both services. You can
add more panels and add custom metrics from your services using the same steps
outlined previously.

Click the Save dashboard icon to save your new dashboard. Enter Shopping
Store Metrics in the Save As dialog.

Chapter 3 | Observing a Service Mesh

(¢ Save As...

New name Shopping Store Met
Folder General

Copy tags

Save Cancel

Your final Grafana dashboard should look like the following.

B8 Shopping Store Metrics -

Total Orders Placed

Product Page View Count

P 12. Return to the home directory.

[student@workstation observe-metrics]$ cd ~
[student@workstation ~]$

Chapter 3 | Observing a Service Mesh

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-metrics finish

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910 “

Chapter 3 | Observing a Service Mesh

Observing Service Interactions with Kiali

Objectives

After completing this section, you should be able to monitor and visualize service interactions with
Kiali.

Introducing Kiali

Kiali is a web based console for viewing the topology of a service mesh. In a microservices
architecture, a large number of discrete services will be interacting with each other in various
complex ways to achieve business goals. Kiali helps you to understand the structure of your service
mesh and how traffic flows between services in the mesh. Kiali also provides intuitive dashboards
with dynamic animation to understand the end-to-end flow of requests as it traverses the service
mesh.

Kiali provides an interactive graphical view of the services in your service mesh in real time. It
provides visibility into features like circuit breakers, request rates, latency, and traffic flows. Kiali
also provides the ability to validate your service mesh configuration. You can configure gateways,
destination rules, virtual services, mesh policies and visually verify the impact of these changes
using Kiali.

A default installation of Red Hat OpenShift Service Mesh includes a fully configured ready to use
instance of Kiali.

Viewing Service Mesh Interactions with Kiali

The Kiali console has different views that provide insights into service mesh components from
various perspectives, such as applications, services, versions, configuration health status, and
more. The following are the steps to use Kiali:

1. Inthe OpenShift web console, navigate to Networking — Routes and search for the kiali
route, which is the URL listed in the Location column.

2. Login using the same user name and password that you used to access the OpenShift
web console. You should see the Kiali web console home page, which shows the OpenShift
projects that are managed by the service mesh, and the count and overall health status of the
services in them.

3. Click a project to see the list of services and their overall health status.

Chapter 3 | Observing a Service Mesh

© kiali

Namespace: bookinfo v

Applications

AL Namespace ~ | |4
Applications
details
@ boakinfa Health: &)
productpage i
@ boakinfa Health: (%)
ratings i
@ boakinfa Health: %)
reviews)
@ boakinfa Health: &

Figure 3.29: Service Health Status in a Project

4. Click 6raph in the left menu to see a dynamic, real-time, animated representation of your
service mesh. In the Graph page, you can view the topology of your service mesh in terms of
services, workloads, and versions.

Select App graph (below the Namespace) to view the topology in terms of the services and
the application containers to which traffic is being sent. This view aggregates all versions of an
application into a single node on the graph. This view does not show the different versions of
an application container that are deployed to the mesh.

Graph @

App graph ~ | [Requests percentage ~ | | isplay v ®

details details.
>

istio-ingressgateway details
(istio-system) Pp
%

productpage ~~

~
~ \reivlews reviews ratings ratings

reviews ratings

Figure 3.30: App Graph View

5. SelectService graph to view the topology in terms of only the services in the mesh.
This view shows a node for each service in your mesh, but excludes all applications and their
versions from the graph.

D0O328-5SM1.1-en-2-20200910 “

Chapter 3 | Observing a Service Mesh

Namespace: bookinfo +
Graph @

Service graph v~ | | Requests percentage v | | Display v (0]

details

¥ productpage /
P! }9
\Iiews ratings

_—

Figure 3.31: Service Graph View

6. SelectVersioned app graph to view the topology in terms of the services and the
different versions of application containers to which traffic is being sent. This view shows a
node in the graph for each version of an application, but all versions of a particular application
are grouped together. Using this view, you can easily identify the amount of traffic that is
being sent to specific versions of your application. This is useful to verify dark launches, A/B
testing and deployments involving multiple versions of applications.

Graph @

Versioned app graph ~ | | Requests percentage | | Display - ®

details vl
100% —0—
details
50.4%
istio-ingressgateway
(istio-system) P productpage vl
" vl
productpage
49:6% A
review! v2 ratings vl
b 33.3%0——>
ratings
33:3% 100%

Nt

reviews

4= 1220 (<151 42| | Legend
rc testinalconsole/overview

Figure 3.32: Versioned App Graph View

7. SelectWorkload graph to view a simplified view of the service mesh topology without any
grouping.

w D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

Graph @
Waklsedgmenidl] PR aard [Dia ®
details details-v1 o
-
¥ productpage produclpgge—vl reviews-vl
reviews reviews-v3

AN
> \ings ratings-v1
>
2/

reviews-v.
~—

Figure 3.33: Workload Graph View

Note

E Click the blue question mark icon next to the Graph page title to understand the
function of the various drop-down boxes,buttons and options available in the Graph
page. You can also click the Legend button at the bottom of the Graph page to get
details about the various colored icons in the graphs.

D References

For more information about Kiali, refer to the Kiali chapter in the Red Hat OpenShift
Service Mesh Guide at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali

Kiali
https://kiali.io/

Visualizing your Service Mesh
https://archive.istio.io/v1.4/docs/tasks/observability/kiali/

D0O328-5SM1.1-en-2-20200910 “

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#ossm-kiali
https://kiali.io/
https://archive.istio.io/v1.4/docs/tasks/observability/kiali/

Chapter 3 | Observing a Service Mesh

» Guided Exercise

Observing Service Interactions with Kiali

In this exercise, you will deploy an application consisting of four microservices and visualize
the service interaction and traffic flow using Kiali.

The application consists of four microservices:

+ The first three microservices are czech, english and spanish, which are simple
microservices that greet the user in Czech, English and Spanish respectively.

- greet-api: An AP| gateway, which acts as the entry point for the application. The API
gateway calls the individual language services in different ways depending on the request.

Outcomes

You can visualize traffic flow and inter-service communication using Kiali.

Before You Begin

To perform this exercise, ensure you have:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

On the workstation machine, use the lab command to prepare your system for this
exercise.

[student@workstation ~]$ lab observe-kiali start

The lab command deploys the czech, english, spanish, and greet -api services
into your Red Hat OpenShift cluster. The source code is in the Git repository at https://
github.com/RedHatTraining/D0O328-apps in the kiali-ge folder.

You can examine the full deployment file in the ~/D0328/labs/observe-kiali/app-
deployment .yaml file. In the app-deployment . yaml file, note that a gateway and a
virtual service is created which exposes the following endpoints:

- /greet: The APl gateway calls each of the individual language services in alphabetical
order:

czech -> english -> spanish.

+ /chained: The API gateway calls only the english service. The english service in turn
calls another service to form a chain as follows:

english -> spanish -> czech.

P 1. Login to OpenShift and verify that the four microservices are deployed.

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 3 | Observing a Service Mesh

11. Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

1.3. Set the current project to observe-kiali:

[student@workstation ~]$ oc project observe-kiali
Now using project "observe-kiali" on server ...output omitted...

1.4. Verify that there are four pods in Running state:

[student@workstation ~]$ oc get pods

AME READY STATUS RESTARTS AGE
czech-84c5754796-cpqgfq 2/2 Running 0 49s
english-v1-684884c897-gk7j2 2/2 Running 0 49s
greet-api-7fb89fdc45-f7gs6 2/2 Running 0 49s
spanish-f8848fc89-c9slw 2/2 Running 0 49s

P 2. Loginto Kiali and verify that the four microservices are in a healthy state.

21. Runtheoc get route command to gather the Kiali web console URL. You can also
copy the commands from the get -kiali-url.sh file in the /home/student/
D0328/1labs/observe-kiali folder.

[student@workstation ~]$ export \
> KIALI_URL=$(oc get route kiali -n istio-system \
> -0 template --template '{{ "http://" }}{{ .spec.host }}')

2.2. Access the Kiali web console using the firefox browser on your workstation.

Warning

A The lab start script updates the ServiceMeshMemberRo11 resource of the service
mesh control plane. This will cause the Kiali pod to be redeployed after some time.
Check the status of the Kiali pod by runningoc get pods -n istio-system,
and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the
Kiali console, verify the Kiali pod status and log in again.

[student@workstation observe-metrics]$ firefox ${KIALI_URL} &

Chapter 3 | Observing a Service Mesh

2.3. Click Log in with OpenShift.

Log in using your developer user account. Your user name is the
RHT_OCP4_DEV_USER variable in the /usr/local/etc/ocp4.config classroom
configuration file. Your password is the RHT_OCP4_DEV_PASSWORD variable in the
same file.

If you are prompted with a page asking you to authorize service account access to
your account, then click Allow selected permissions to bring up the Overview
page of the Kiali web console.

2.4. Click the green tick icon in the observe-kiali namespace to view the Applications
page.

O kiali

Overview Namespaces

Eers Name w Filter by Name Name « 12 Show health for |
Applications
Workloads
Services istio-system observe-kiali

. . 12 Applications 4 Applications
e contie E— T T
Distributed Tracing [Q 12

Istio Config status: @ Istio Config status: @
¥ ® o ¥ W o

Verify that all four microservices are healthy.

Q© kiali

Overview

Namespace: observe-kiali +

Graph

Applications
Applications
Name Namespace Health

Workloads
Services czech observe-kiali (V]
Istio Config

english observe-kiali (]
Distributed Tracing =z

greet-api observe-kiali (V]

spanish observe-kiali (/]

P 3. Invoke the /greet end point, and visualize the traffic flow in Kiali.

Chapter 3 | Observing a Service Mesh

31. Set up Kiali for traffic visualization.

Click Graph in the left navigation panel. Because there is no traffic being sent to the
microservices, the Graph page will be empty.

Click Display, and select the Traffic Animation option to enable Kiali to show you
an animated version of the traffic flow as requests come in to the service mesh.

O kiali

Overview

Namespace: observe-kiali

Graph Graph @
Applications Versionedappgraph v Noedgelabels - Display 7~ Find.
Workloads Show
Compress Hidden
Services
Node Names oty
Istio Config S
There ervice Nodes able
could e . L icer
Distributed Tracing [Traffic Animation
thes equ
nodes Unused Nodes node
trafi
Show Badges
Circuit Breakers T

Missing Sidecars
Virtual Services

Security

Click No edge labels, and select the Requests percentage option to enable Kiali to
show you the percentage of requests sent to different versions of a microservice.

Chapter 3 | Observing a Service Mesh

O kiali

Overview NF
Namespace: observe-kial

Graph Graph @

Aprliesiens Versioned app graph Requests percentage ~ Display 7 v

Workloads No edge labels

) Requests per second
Services

Empty Graph

Requests percentage v

Istio Config _ % ilable for ‘
Response time iph available for name

3 no service mesh avai

Distributed Tracing =

the service mesh has yet to see request traffic
nodes' to displav service mesh nodes that hay

3.2. Runtheoc get route command to getthe URL of the istio gateway.

You can also cut and paste the full command from the get-ingress-gateway-
ur1.sh file in the /home/student/D0328/1abs/observe-kiali folder.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation ~]$ export \
> GATEWAY_URL=$(oc get route istio-ingressgateway -n istio-system \
> -0 template --template '{{ "http://" }}{{ .spec.host }}')

3.3. Use the curl command to keep sending continuous requests to the /greet
endpoint. This command will not return to the prompt, and will continue to run unless
you explicitly stop it with Ctr1+C.

You can also run the invoke-greet. sh scriptin the /home/student/D0328/
labs/observe-kiali folder

[student@workstation observe-metrics]$ while true;do curl ${GATEWAY_URL}/greet; \
> sleep 3;done

Ahoj svéte! | Hello World! | Hola Mundo!

Ahoj svéte! | Hello World! | Hola Mundo!

...output omitted. ..

3.4. Switch to the Kiali Graph page, and observe the traffic animation. You might have to
wait for a few seconds while Kiali captures data from the Envoy proxies and renders
the animation.

By default, Kiali displays a graph with the services and their versions (Versioned app
graph).

Click Versioned app graph and select the Service graph option to display a more
compact graph with only the services in the application.

Chapter 3 | Observing a Service Mesh

spanish

3%

.gfl =0 100% O 33:00 S

english

istio-ingressgateway P‘ greet-api

(istio-system)

33!3%

Note how the greet-api calls the individual services. You should see the percentage
of responses being equally split between the three language services at this point.

A side panel to the right of the graph shows more details about the overall service
mesh. You can click the services in the graph, and the side panel will show details of

D0O328-5SM1.1-en-2-20200910 u

Chapter 3 | Observing a Service Mesh

the selected service. Clicking anywhere other than the displayed services switches
back to the overall service mesh view.

You can click the Hide or Show button on the side panel to hide or show the side
panel respectively.

observe-kiali &
e @
Current Graph:
@ 4 services

¥ Hide

% 1workload
& 4 edges

Incoming Outgoing Total

HTTP (requests per second):
Total %Success %Error

0.31 100.00 0.00

0 25 50 75 100
H OK 3xx M 4xx M S5xx

3.5. Press Ctr1+C to stop the curl command in the command line terminal window where
you were invoking the /greet endpoint.

P 4. Invoke the /chained end point, and visualize the traffic flow in Kiali.

41. Use the curl command to keep sending continuous requests to the /chained
endpoint. Observe that the language services are now called in a different order.

You can also run the invoke-chained. sh script in the /home/student/D0328/
labs/observe-kiali folder

[student@workstation observe-metrics]$ while true; \
> do curl ${GATEWAY_ URL}/chained; \

> sleep 3;done

Hello World! -> Hola Mundo! -> Ahoj svéte!

Hello World! -> Hola Mundo! -> Ahoj svéte!

...output omitted...

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

4.2. Switch to the Kiali Graph page, and observe the traffic animation. You might have to
wait for a few seconds while Kiali captures data from the Envoy proxies and renders
the animation.

(istio-system) /

100%

Ko Qe 1009 > =
- Ny 7
istio-ingressgateway P 00% /9 czech

spanish

english

Note how the greet-api only calls the english service, which calls the other
languages in a chain.

Do not interrupt the command line terminal where you are sending traffic to the /
chained endpoint. Leave it running. You will need this for subsequent steps in this
exercise.

P 5. Deploy version 2 of the english microservice and view the updated traffic flow in Kiali.

51. From a new command line terminal, run the oc create command to deploy version
2 of the english microservice. This new version prints a more informal greeting. The
deployment resource is provided in the english-v2-deploy.yaml file in the /
home/student/D0328/labs/observe-kiali folder.

[student@workstation ~]$ cd ~/D0328/1labs/observe-kiali
[student@workstation observe-kiali]$ oc create -f english-v2-deploy.yaml
deployment.apps/english-v2 created

5.2. Runthe oc get pods command and verify that version 2 of the english
microservice is deployed and in Running state.

[student@workstation observe-jaeger]$ oc get pods

NAME READY STATUS RESTARTS AGE
czech-84c5754796-cpqgfq 2/2 Running 0] 10m
english-v1-684884c897-qk7j2 2/2 Running 0 10m
english-v2-f696b69db-s285s 2/2 Running 0 27s
greet-api-7fb89fdc45-f7gs6 2/2 Running 0 10m
spanish-f8848fc89-c9slw 2/2 Running 0] 10m

5.3. Switch to the command line terminal window running the curl command. After a while,
you should see the output change to:

Hello World! -> Hola Mundo! -> Ahoj svéte!

Hello World! -> Hola Mundo! -> Ahoj svéte!

Hello World! -> Hola Mundo! -> Ahoj svéte!

...output omitted. ..

Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Hello World! -> Hola Mundo! -> Ahoj svéte!

D0O328-5SM1.1-en-2-20200910 “

Chapter 3 | Observing a Service Mesh

Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Hello World! -> Hola Mundo! -> Ahoj svéte!
...output omitted. ..

Traffic for the english service is split equally (load balanced) between both
versions.

5.4. Switch to the Kiali Graph page, and observe the traffic animation. You might have to
wait for a few seconds while Kiali captures data from the Envoy proxies and renders
the animation.

Click Service graph and select Versioned app graph. This will change the graph to
display versions of services.

5{)9/ vl \O\mm’v
e 100% - D S — / e 100 | e O 100 by e 0 e,
1003
p v english 5% 1003 spanish Vi czech VL
istio-ingressgateway \ /
(istio-system)
v2

Note
E Your graph might not look exactly like the above. Graph nodes from previous
scenarios might still be visible, but grayed out in the graph.

Note how Kiali shows the request percentage split equally between version 1and
version 2 of the english microservice.

P 6. Redirect all traffic bound for the english microservice to version 2 of the service. View the
updated traffic flow in Kiali.

6.1. From a new command line terminal, run the oc create command to deploy version
2 of the english microservice. This new version prints a more informal greeting. The
deployment resource is provided in the english-v2-all.yaml file in the /home/
student/D0328/labs/observe-kiali folder.

Note
E Do not worry about the details in the YAML resource file. You will learn more about
traffic shaping and load balancing in subsequent chapters.

[student@workstation observe-kiali]$ oc create -f english-v2-all.yaml
destinationrule.networking.istio.io/english created
virtualservice.networking.istio.io/english-v2-all created

6.2. Switch to the command line terminal window running the curl command. After a while,
you should see the output change to:

Chapter 3 | Observing a Service Mesh

Hello World! -> Hola Mundo! -> Ahoj svéte!

Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Hello World! -> Hola Mundo! -> Ahoj svéte!

...output omitted...

Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
Howdy! This mesh ain't big enough for both of us. -> Hola Mundo! -> Ahoj svéte!
...output omitted...

All traffic for the english service is sent to version 2.
6.3. Switch to the Kiali Graph page, and observe the traffic animation. You might have to

wait for a few seconds while Kiali captures data from the Envoy proxies and renders
the animation.

ﬁ,}_,/”\\

pr—_ © S o
® — N /
P Vi u english | 100%. 100 spanish Vi czech vi
istio-ingressgateway J \ /
(istio-system)

Note how Kiali shows 100% of traffic being sent to version 2 of the english
microservice.

6.4. Press Ctr1+C to stop the curl command in the command line terminal window where
you were invoking the /chained endpoint.

P 7. Return to the home directory.

[student@workstation observe-kiali]$ cd ~
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-kiali finish

This concludes the guided exercise.

Chapter 3 | Observing a Service Mesh

» Lab

Observing an OpenShift Service Mesh

Performance Checklist

In this lab, you will troubleshoot performance issues with an application using distributed
tracing, and enable metrics collection for the application.

Outcomes
You should be able to:

+ ldentify and fix performance issues with an application deployed on Red Hat OpenShift
Service Mesh.

+ Enable distributed tracing for a Quarkus based microservice and visualize the traces using
Jaeger.

+ Enable custom application metrics for a Quarkus based microservice and create a custom
dashboard for visualizing the collected metrics.

+ Visualize communication between services in the application using Kiali.
Before You Begin

To perform this lab, ensure you have:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift client (oc), OpendDK 1.8, and podman installed on workstation.

You will be using an application that simulates an online currency exchange for this lab. The
application has four microservices:

+ currencies: Written in Python using the Flask framework. It provides a REST AP,
which returns a list of all currencies supported by the exchange.

+ history: Written in JavaScript using the Node. js runtime. It provides a REST API, which
returns historical data of exchange rates between currencies.

+ frontend: Written using HTML, JavaScript, and CSS using the React. js library. It
provides a web user interface for users of the currency exchange application.

- exchange: Written in Java using the Quarkus framework. It acts as an API gateway and
communicates with the currencies and history microservices. It acts as a single point
of communication for the frontend microservice.

The source code for the four microservices are available in the exchange - traced folder in
the GitHub repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this
exercise.

[student@workstation ~]$ lab observe-mesh start

https://github.com/RedHatTraining/DO328-apps

Chapter 3 | Observing a Service Mesh

The lab observe-mesh start command will create a new project called observe-mesh
owned by the developer (the value of the SRHT_OCP4_DEV_USER environment variable in
your /usr/local/etc/ocp4.config file) user. It will deploy an initial version of the four
microservices in this project.

You can examine the template that deploys the microservices in the ~/D0328/ labs/
observe-mesh/exchange-app-template.yaml file.

1. Loginto OpenShift as the developer user, and inspect the deployed applications. Verify that
the four microservices are deployed and running.

Do not forget to load the environment variables from the /usr/local/etc/ocp4.config
file in your command line terminal.

2. Identify the gateway URL for the service mesh. The currency exchange application is
available at the URL /frontend relative to the gateway URL.

Explore the currency exchange application by clicking on the Historical Data, and
Exchange menu options in the left navigation panel.

You can ignore the News menu option because it requires communicating with an external
service, which is not deployed in this lab.

Note that fetching the historical data of currency rates in the Historical Data page is very
slow. It takes more than 5 seconds to fetch the data.

3. Visualize the service mesh communication using the Kiali web console. View the traces and
spans generated by the currency exchange application using the Jaeger web console.

Identify the microservice that is causing the slow response time in the Historical Data page.
From the traces and spans in the Jaeger console, you can identify the function name that is
causing the slowdown.

Although distributed tracing was enabled for the services that you originally deployed,
the source code of the problematic microservice that is available in this lab does not
include tracing instrumentation. Therefore, to keep distributed tracing active after fixing
the slowdown problem, you will add tracing instrumentation when you make changes to
the source code of the problematic microservice. You will clone the source code of this
microservice from GitHub and add tracing code in a subsequent step of the lab.

Warning

A The lab start script updates the ServiceMeshMemberRo 11 resource of the service
mesh control plane. This will cause the Kiali pod to be redeployed after some time.
Check the status of the Kiali pod by running oc get pods -n istio-system,
and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the
Kiali console, verify the Kiali pod status and log in again.

4. Clone the source code for the traced currency exchange application from the GitHub
repository at https://github.com/RedHatTraining/D0O328-apps. The application code is
located in the exchange -traced directory. Correct the source code of the microservice
you identified in the previous step to eliminate the performance issue.

Use a text editor like VSCodium, which supports syntax highlighting for editing source files.

https://github.com/RedHatTraining/DO328-apps

Chapter 3 | Observing a Service Mesh

5. Enable distributed tracing for the problematic microservice.

The distributed tracing properties for the problematic microservice must be configured as
follows:

+ The service name for identifying traces and spans in Jaeger must be named exchange.
+ Enable Jaeger to collect all sample traces from all requests to the service.

+ The URL of the Jaeger collectoris http://jaeger-collector.istio-
system.svc:14268/api/traces.

+ Enable propagation of all x-b3-* HTTP headers, and log span information for all incoming
and outgoing requests to and from this service.

6. You have been instructed by the operations team to add custom metrics to the problematic
microservice, which will keep track of its performance in future deployments.

Add the following custom metrics to the problematic microservice:

+ Atimer that tracks how long (in milliseconds) the getHistoricalData()
function takes to execute. Provide a unique name for this metric called
exchange_svc:history_fetch_time.

+ The rate of requests (per minute) served by the getHistoricalbata() function. This
will provide information for capacity planning in the future. Provide a unique name for this
metric called exchange_svc:history_fetch_rate.

7. Rebuild the container image for the problematic microservice. Fully complete Dockerfiles are
provided to you for all four microservices in their respective folders.

Create a new container image repository in Quay.io called ossm-microservice-traced.
Replace microservice with the name of the problematic microservice.

Push the newly built container image with a tag named 1.0 to the ossm-microservice-
traced image repository.

8. Edit the deployment resource for the exchange service.

Replace the container image for the problematic microservice with your newly built container
image.

Enable metrics collection for the problematic microservice by adding the correct annotations.

9. Test the application with the updated exchange microservice. Verify that the performance
issues identified earlier are no longer present in the Historical Data page.

10. Create a custom dashboard in Grafana for the custom application metrics you added in a
previous step.

M. Return to the home directory.

[student@workstation exchange]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the 1lab observe-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab observe-mesh grade

Chapter 3 | Observing a Service Mesh

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-mesh finish

This concludes the lab.

D0O328-5SM1.1-en-2-20200910 w

Chapter 3 | Observing a Service Mesh

» Solution
Observing an OpenShift Service Mesh

Performance Checklist
In this lab, you will troubleshoot performance issues with an application using distributed
tracing, and enable metrics collection for the application.

Outcomes
You should be able to:

+ ldentify and fix performance issues with an application deployed on Red Hat OpenShift
Service Mesh.

+ Enable distributed tracing for a Quarkus based microservice and visualize the traces using
Jaeger.

+ Enable custom application metrics for a Quarkus based microservice and create a custom
dashboard for visualizing the collected metrics.

+ Visualize communication between services in the application using Kiali.

Before You Begin

To perform this lab, ensure you have:
+ A configured and running OpenShift cluster.
+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift client (oc), OpendDK 1.8, and podman installed on workstation.

You will be using an application that simulates an online currency exchange for this lab. The
application has four microservices:

+ currencies: Written in Python using the Flask framework. It provides a REST AP,
which returns a list of all currencies supported by the exchange.

+ history: Written in JavaScript using the Node. js runtime. It provides a REST API, which
returns historical data of exchange rates between currencies.

+ frontend: Written using HTML, JavaScript, and CSS using the React. js library. It
provides a web user interface for users of the currency exchange application.

- exchange: Written in Java using the Quarkus framework. It acts as an AP| gateway and
communicates with the currencies and history microservices. It acts as a single point
of communication for the frontend microservice.

The source code for the four microservices are available in the exchange-traced folder in
the GitHub repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this
exercise.

https://github.com/RedHatTraining/DO328-apps

Chapter 3 | Observing a Service Mesh

[student@workstation ~]$ lab observe-mesh start

The lab observe-mesh start command will create a new project called observe-mesh
owned by the developer (the value of the $RHT_OCP4_DEV_USER environment variable in
your /usr/local/etc/ocp4.config file) user. It will deploy an initial version of the four
microservices in this project.

You can examine the template that deploys the microservices in the ~/D0328/ labs/
observe-mesh/exchange-app-template.yaml file.

1. Loginto OpenShift as the developer user, and inspect the deployed applications. Verify that
the four microservices are deployed and running.

Do not forget to load the environment variables from the /usr/local/etc/ocp4.config
file in your command line terminal.

11, Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

13. Set the current project to observe-mesh:

[student@workstation ~]$ oc project observe-mesh
Now using project "observe-mesh" on server ...output omitted...

1.4. Verify that there are four pods in Running state:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-cc8566cdd-fc4qgx 2/2 Running 0] 13m
exchange-8cf576667-9z7h5 2/2 Running 0 13m
frontend-7846899665-8bpwr 2/2 Running 0] 13m
history-db65bfhb86-rwmdr 2/2 Running 0 13m

2. Identify the gateway URL for the service mesh. The currency exchange application is
available at the URL /frontend relative to the gateway URL.

Explore the currency exchange application by clicking on the Historical Data, and
Exchange menu options in the left navigation panel.

You can ignore the News menu option because it requires communicating with an external
service, which is not deployed in this lab.

Note that fetching the historical data of currency rates in the Historical Data page is very
slow. It takes more than 5 seconds to fetch the data.

Chapter 3 | Observing a Service Mesh
21. Runtheoc get route command to gather the service mesh gateway URL.
[student@workstation ~]$ export \

> GW_URL=$(oc get route istio-ingressgateway -n istio-system \
> -0 template --template '{{ "http://" }}{{ .spec.host }}')

2.2. Access the currency exchange application using the firefox browser on your
workstation.

[student@workstation ~]$ firefox ${GW_URL}/frontend &

2.3. Click Historical Data in the left navigation panel. Select a source and target currency
and click Submit to see historical exchange data.

RED HAT’
TRAINING

Historical Currency Data

oo

Note the slow response after you click Submit to fetch historical data.

2.4. Click Exchange in the left navigation panel. Enter an amount, select the source and
target currency and click Submit.

_ RED HAT
= TRAINING

Single Currency Exchange

Amount Source currency Target currency

10 > EUR - usb -
Exchange

1110000000
0000001

3. Visualize the service mesh communication using the Kiali web console. View the traces and
spans generated by the currency exchange application using the Jaeger web console.

Identify the microservice that is causing the slow response time in the Historical Data page.
From the traces and spans in the Jaeger console, you can identify the function name that is
causing the slowdown.

Although distributed tracing was enabled for the services that you originally deployed,
the source code of the problematic microservice that is available in this lab does not
include tracing instrumentation. Therefore, to keep distributed tracing active after fixing
the slowdown problem, you will add tracing instrumentation when you make changes to
the source code of the problematic microservice. You will clone the source code of this
microservice from GitHub and add tracing code in a subsequent step of the lab.

Chapter 3 | Observing a Service Mesh

Warning

A The lab start script updates the ServiceMeshMemberRo11 resource of the service
mesh control plane. This will cause the Kiali pod to be redeployed after some time.
Check the status of the Kiali pod by running oc get pods -n istio-system,
and proceed after you see it in Running state.

If the Kiali pod is restarted after you have logged into Kiali, or if you see errors in the
Kiali console, verify the Kiali pod status and log in again.

31 Runtheoc get route command to gather the Kiali web console URL.

[student@workstation ~]$ export \
> KIALI_URL=$(oc get route kiali -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

3.2. Access the Kiali web console using the firefox browser on your workstation. Log in
using your OpenShift developer user account.

[student@workstation ~]$ firefox ${KIALI_URL} &

3.3. Click Graph in the left navigation panel, and select the observe-mesh namespace
to view the service mesh graph. Your graph could look different than the one shown
below.

——

A
ﬂ frontend frontend
=

AN
istio-ingressgateway
(istio-system)

LS

_—

currency currency

—
. currency
exchange exchange
> &
z
jaeger-collector jaeger
(istio-system) (istio-system)

—

history history

D0O328-5SM1.1-en-2-20200910 “

Chapter 3 | Observing a Service Mesh

E Note
You will not see the currency microservice sending traces to the jaeger -
collector because, the currency service is written in Python and does not yet
support sending traces to jaeger over TCP. Instead the microservice sends trace
information using UDP datagrams to the jaeger -agent service, which forwards it
to the jaeger backend. Kiali cannot capture this UDP traffic to render the graphs.

You will see traces from the currency microservice in the Jaeger web console and
verify this in the next step.

34. Runtheoc get route command to gather the Jaeger web console URL.

[student@workstation ~]$ export \
> JAEGER_URL=$(oc get route jaeger -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

3.5. Use the Firefox browser to access the Jaeger web console and log in using your
OpenShift developer user account.

[student@workstation ~]$ firefox ${JAEGER_URL} &

3.6. Inthe Jaeger web console, select the istio-ingressgateway service in the search
panel on the left of the page. Click Find Traces. You will see a list of traces for the
currency exchange application.

istio-ingressgateway: exchange.observe-mesh.svc.cluster.local:8080/exchange™ 026046+ 5.01s
5 Spans . exchange (2) exchange.observe-mesh (1) . history (1) istio-ingressgateway (1) Today 6:55:49 pm
17 minutes ago

istio-ingressgateway: exchange.observe-mesh.sve.cluster.local:8080/exchange* 8226839 5.01s
5 Spans . exchange (2) exchange.observe-mesh (1) . history (1) istio-ingressgateway (1) Today 6:55:45 pm
17 minutes ago

istio-ingressgateway: exchange.observe-mesh.svc.cluster.local:8080/exchange™ 614343 5.01s
5 Spans . exchange (2) exchange.observe-mesh (1) . history (1) istio-ingressgateway (1) Today 6:55:37 pm
17 minutes ago

istio-ingressgateway: exchange.observe-mesh.svc.cluster.local:8080/exchange* 06a20c7 8.64ms

5 Spans currencies (1) . exchange (2) exchange.observe-mesh (1) istio-ingressgateway (1) Today 6:55:33 pm

17 minutes ago

3.7. Click any trace that is greater than 5 seconds. These traces are generated by the
functionality in the Historical Data page of the currency exchange application.

Note the hierarchy of service calls for this trace. The front end calls the exchange
service, which then calls the history service to fetch historical data.

w D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

istio-ingressgateway: exchange.

& v observe-mesh.svc.cluster.local: 9 Alternate Views v
8080/exchange*
Trace Start May 11 2020, 18:55 Duration 5.01s Services4 Depth5 Total Spans 5
Oms 1.25s 251s 3.76s 5.01s
Service & Operation v > ¥ » Oms 1.25s 2.51s 3.76s 5.01s

v istio-ingressgateway exchange.observ...
v | exchange POST:com.redhat.resiclient. . (N
v | exchange rPost
v exchange.observe-mesh ...

| history posThistory

3.8. To identify the method causing the bottleneck, click the span corresponding to the
exchange service. This span has the longest execution time (> 5 seconds on average).

Service & Operation ¥ » Oms 1.25s 251s 3.76s 5.01s

v istio-ingressgateway exchange observe-mesh....

v | exchange POST:com.redh: ient.Exchan...

. . . h Du n:5.01
POST:com.redhat.restclient. ExchangeResource.getHistoricalData s
> Tags: component =jaxrs http.method = POST http.status_code =200 http.url = http:/istio-ingressgateway-istio-system.apps.ocp-ravi.do32...

> Process: hostname - exchange-8cf576667-pféw9 ip - 10.128.2.36 jaeger.version = Java-0.34.0
ddf762e9cbabac2f
\/I exchange POST
v exchange.observe-mesh history....

| history PosT:tistory

There seems to be anissue in the getHistoricalData function of the
com.redhat.restclient.ExchangeResource classin the exchange service. The
class name and function is displayed as the title of the span (the text following POST:?).

4. Clone the source code for the traced currency exchange application from the GitHub
repository at https://github.com/RedHatTraining/DO328-apps. The application code is
located in the exchange-traced directory. Correct the source code of the microservice
you identified in the previous step to eliminate the performance issue.

Use a text editor like VSCodium, which supports syntax highlighting for editing source files.

4]. If you have not cloned the source code from the D0328-apps GitHub repository in a
previous exercise, then do so now using the git clone command.

[student@workstation ~]$ git clone https://github.com/RedHatTraining/D0328-apps
...output omitted...

Cloning into 'D0328-apps'...

...output omitted...

4.2. Copy the contents of the /home/student/D0328-apps/exchange-traced folder
from your local Git repository to the /home/student/D0328/labs/observe-mesh
folder.

[student@workstation ~]$ cp -Rv ~/D0328-apps/exchange-traced \
> ~/D0328/labs/observe-mesh/

D0O328-5SM1.1-en-2-20200910 “

https://github.com/RedHatTraining/DO328-apps

Chapter 3 | Observing a Service Mesh

43. Fix theissue in the source code for the exchange microservice. Edit the /home/
student/D0328/labs/observe-mesh/exchange-traced/exchange/src/
main/java/com/redhat/restclient/ExchangeResource. java file.

Note the hard coded Thread.sleep(5000) try-catch block in the
getHistoricalData() method. This was added to simulate slow processing (for
example, due to an inefficient algorithm, a slow database query, or high latency due to
invoking external services).

Remove the try-catch block that was causing the slowdown.

Enable distributed tracing for the problematic microservice.

The distributed tracing properties for the problematic microservice must be configured as
follows:

+ The service name for identifying traces and spans in Jaeger must be named exchange.
+ Enable Jaeger to collect all sample traces from all requests to the service.

+ The URL of the Jaeger collectoris http://jaeger-collector.istio-
system.svc:14268/api/traces.

+ Enable propagation of all x-b3-* HTTP headers, and log span information for all incoming
and outgoing requests to and from this service.

51. Enable distributed tracing for the exchange microservice.

Edit the /home/student/D0328/labs/observe-mesh/exchange-traced/
exchange/pom.xm1 file and add the quarkus-smallrye-opentracing
dependency.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-opentracing</artifactId>

</dependency>

5.2. Editthe /home/student/D0328/labs/observe-mesh/exchange-traced/
exchange/src/main/resources/application.properties file and add the
Jaeger related properties.

quarkus.
quarkus.
quarkus.
quarkus.
quarkus.
quarkus.

jaeger.
jaeger.
jaeger.
jaeger.
jaeger.
jaeger.

service-name=exchange

sampler - type=const

sampler -param=1
endpoint=http://jaeger-collector.istio-system.svc:14268/api/traces
propagation=b3

reporter-log-spans=true

6. You have been instructed by the operations team to add custom metrics to the problematic
microservice, which will keep track of its performance in future deployments.

Add the following custom metrics to the problematic microservice:

+ Atimer that tracks how long (in milliseconds) the getHistoricalData()
function takes to execute. Provide a unique name for this metric called
exchange_svc:history_fetch_time.

Chapter 3 | Observing a Service Mesh

+ The rate of requests (per minute) served by the getHistoricalbata() function. This
will provide information for capacity planning in the future. Provide a unique name for this
metric called exchange_svc:history_fetch_rate.

6.1. Editthe /home/student/D0328/labs/observe-mesh/exchange-traced/
exchange/pom.xm1 file and add the quarkus-smallrye-metrics dependency.

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

6.2. Edit the source code for the getHistoricalData() functionin the /home/
student/D0328/labs/observe-mesh/exchange-traced/exchange/src/
main/java/com/redhat/restclient/ExchangeResource. java file.

Import the required metrics classes from the OpenTracing API. Add the following
import statements at the top of the file.

...output omitted...

import org.eclipse.microprofile.metrics.MetricUnits;

import org.eclipse.microprofile.metrics.annotation.SimplyTimed;
import org.eclipse.microprofile.metrics.annotation.Metered;
...output omitted...

Add the following annotations to the getHistoricalbata() function (below the
@Path("/historicalbData") line) to enable custom metrics.

@SimplyTimed(name = "exchange_svc:history_fetch_time",
description = "A measure of how long it takes to fetch history data",
unit = MetricUnits.MILLISECONDS)

@Metered(name = "exchange_svc:history_fetch_rate",
unit = MetricUnits.MINUTES,
description = "Rate at which historical data is fetched (minutes)",
absolute = true)

7. Rebuild the container image for the problematic microservice. Fully complete Dockerfiles are
provided to you for all four microservices in their respective folders.

Create a new container image repository in Quay.io called ossm-microservice-traced.
Replace microservice with the name of the problematic microservice.

Push the newly built container image with a tag named 1.0 to the ossm-microservice-
traced image repository.

71. Create a new public container image repository called ossm-exchange-traced
in Quay.io. To create a public container image repository, refer to instructions in the
Appendix: Creating a Quay Account.

Warning

A If you skip this step and push the container images without creating public
repositories, the podman push commands will create private container image
repositories by default.

Chapter 3 | Observing a Service Mesh

7.2. To ensure that there are no syntax errors, runmvn clean package and ensure thata
fat JAR is created in the target folder.

[student@workstation ~]$ cd \

> ~/D0328/labs/observe-mesh/exchange-traced/exchange
[student@workstation exchange]$ mvn clean package
...output omitted. ..

[INFO] BUILD SUCCESS

...output omitted. ..

7.3. Review the Dockerfile for the exchange microservice. You will use Red Hat
Universal Base Images (UBI) as the base for building your container image. Do not
make any changes to it.

Build the container image using podman.

[student@workstation exchange]$ podman build -t \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-exchange-traced:1.0 .
STEP 1: FROM registry.access.redhat.com/ubi8:8.1

...output omitted...

STEP 15: COMMIT quay.io/youruser/ossm-exchange-traced:1.0

74. Login to your Quay.io account using podman.

[student@workstation exchange]$ podman login -u ${RHT_OCP4_QUAY_USER} quay.io

You will be prompted for your Quay.io password.

75. Push the updated container image for the exchange microservice to Quay.io.

[student@workstation exchange]$ podman push \

> quay.io/${RHT_OCP4_QUAY_USER}/ossm-exchange-traced:1.0
...output omitted...

Writing manifest to image destination

Storing signatures

8. Edit the deployment resource for the exchange service.

Replace the container image for the problematic microservice with your newly built container
image.
Enable metrics collection for the problematic microservice by adding the correct annotations.

8.1. Edit the deployment resource for the exchange microservice.

[student@workstation exchange]$ oc edit deployment exchange

Edit the spec.template.spec.containers.image attribute for the exchange
deployment, and add the Quay.io URL of the container image for the exchange
deployment.

...output omitted. ..
spec:

containers:

- env:

Chapter 3 | Observing a Service Mesh

10.

- name: NEWS_ENDPOINT

value: http://feed-news.apps-crc.testing

image: quay.io/youruser/ossm-exchange-traced:1.0

imagePullPolicy: Always
name: exchange
...output omitted...

8.2. Add annotations to allow the Prometheus instance to collect metrics from
the exchange microservice. Add the following annotations below the
sidecar.istio.io/inject: "true" annotation for the exchange microservice.

...output omitted...
template:
metadata
annotations:

sidecar.istio.io/inject: "true"

prometheus.io/scrape: "true"

prometheus.io/port: "8080"

prometheus.io/scheme: "http"
...output omitted...

Save your changes. OpenShift will detect the changed deployment, and delete the old

pod. It will create a new pod for the exchange microservice.

8.3. \Verify that the four microservices are ready and running using the oc get pods

command.

[student@workstation exchange]$ oc get pods

NAME READY
currency-699d4ddo8d-rz1lvx 2/2
exchange-5454495f78-47457 2/2
frontend-5b78fc6bb5-ztdvqg 2/2
history-8c875469d-csfsv 2/2

Test the application with the updated exchange microservice. Verify that the performance
issues identified earlier are no longer present in the Historical Data page.

9.1. Access the currency exchange application at the URL GW_URL/frontend. Click
Historical Data, and verify that the response time is much improved (the spinner icon

STATUS

Running
Running
Running
Running

RESTARTS
0

0
0
0

after you click Submit should disappear quickly).

9.2. You will see span information from the exchange microservice. Access the Jaeger
console and verify that there is no longer a 5 second pause in the span details for the

historical data page.

previous step.

10.1. Runthe oc get route command to gather the Grafana web console URL.

[student@workstation exchange]$ export \
> GRAFANA_URL=$(oc get route grafana -n istio-system \
> -0 template --template '{{ "https://" }}{{ .spec.host }}')

AGE
42s
41s
43s
42s

Create a custom dashboard in Grafana for the custom application metrics you added in a

Chapter 3 | Observing a Service Mesh

10.2.

Use the Firefox web browser to access the Grafana web console. Log in using your
developer user account.

[student@workstation exchange]$ firefox ${GRAFANA_URL} &

10.3.

10.4.

10.5.

10.6.

10.7.

Click the plus (+) icon in the left navigation menu of Grafana web console to open the
Create menu. Select Dashboard to create a new dashboard.

Click Add Query in the New Panel panel.

In the query expression editor named A (next to the Metrics label), type
history_fetch_time and select the first auto completed option (ends with
elapsed). Click the graph icon in the left menu (to the left of the Query window) to
select how you want to visualize the metric.

In the Visualization panel, expand the Visualization selection, and select Graph.

Click General (gear icon below Visualize icon in the left menu).
Enter Historical Data Fetch Time as the Title.

Click the left arrow icon (top left corner to the left of New dashboard) to go back to
the dashboard page.

Click Add panel (graph icon with yellow plus in top right) to add another panel.

Click Add Query in the New Panel, and type history_fetch_rate. Prometheus
will auto-complete and provide you with 5 options. Select the option ending with
fetch_rate_total

Click Visualization in the left menu, and select the Gauge option.

Click General in the left panel, and change the Title field to Historical Data
Fetch Rate. Click the left arrow icon in the top left corner to go back to the New
dashboard page.

Your new dashboard should now show both metrics from the exchange service.

Click the Save dashboard icon to save your new dashboard. Enter Exchange
Metrics in the Save As dialog.

Your final Grafana dashboard should look like the following.

Chapter 3 | Observing a Service Mesh
B8 Exchange Metrics -

Historical Data Fetch Rate ~

0.49

Historical Data Fetch Time

1_beta_kubemetes

M. Return to the home directory.

[student@workstation exchange]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the 1lab observe-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab observe-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab observe-mesh finish

Chapter 3 | Observing a Service Mesh

This concludes the lab.

W D0O328-5SM1.1-en-2-20200910

Chapter 3 | Observing a Service Mesh

Summary

In this chapter, you learned:

« Distributed tracing helps you identify performance issues in microservices based applications.
You need to instrument your applications with Jaeger and OpenTracing libraries to enable
distributed tracing.

+ You can use Prometheus libraries to instrument your applications for generating custom
application metrics. You can use Grafana to generate custom dashboards for your application
metrics.

+ Kiali can be used to visualize the communication between services in your service mesh.

D0O328-5SM1.1-en-2-20200910 “

For use by |Jamie Longmuir jlongmui jlongmui@redhat.com

-
1
L L)

oyright © 2020 Red Hat, Inc.

D0O328-SM1.1-en-2-20200910

Chapter 4

Controlling Service Traffic

Goal Manage and route traffic with Red Hat OpenShift ¢
Service Mesh
Objectives + Manage and route traffic with Red Hat .
OpenShift Service Mesh. *
Route traffic to services in a mesh, based on ,
request headers. ",
- Control egress traffic to access external
‘ services.
e
- Sections + Managing Service Connections with Envoy and

Pilot (and Guided Exercise)

Routing Traffic Based on Request Headers (and
Guided Exercise)

Accessing External Services (and Guided
Exercise)

Lab Controlling Service Traffic

r/

D0O328-5SM1.1-en-2-20200910

Chapter 4 | Controlling Service Traffic

Managing Service Connections with
Envoy and Pilot

Objectives

After completing this section, you should be able to manage and route traffic with Red Hat
OpenShift Service Mesh.

Explaining Traffic Management

Traffic management, in the context of cloud-native microservices, is the process of monitoring and
controlling the external and internal network communications of an application.

As cloud-native applications evolve and grow, the number of microservices increases, which makes
it more difficult to manage and observe the network connections in these kinds of applications. In
addition to an increasing number of services to manage, the reliability of microservice applications
is dependent on a reliable network.. For these reasons, developers need a way to improve
reliability, security, and observability of the network connections.

OpenShift Service Mesh abstracts network communications, allowing you to manage them using
Kubernetes custom resources. With OpenShift Service Mesh, you control the flow of traffic and
API calls of your applications.

Projects that are not using Service Mesh usually use libraries embedded in the source code of the
application.

Describing the Sidecar Pattern

Cloud applications usually require functionalities outside of the application domain, such as
monitoring, logging, and authentication.

The sidecar pattern is an architectural pattern where a main process (the main application)
segregates non-business related functionalities to an auxiliary process (the sidecar).

Chapter 4 | Controlling Service Traffic

Service A Service B
Monitoring Monitoring
+—>
Logging Logging
Authentication Authentication

Application without Sidecar

Service A Service B

Sidecar 4P Sidecar

Application with Sidecar

Figure 4.1: The sidecar pattern

Applying the sidecar pattern minimizes coupling between the application and the underlying
infrastructure and reduces the complexity of the main application.

OpenShift Service Mesh and the Istio project are good examples of implementing the sidecar
pattern at a network level.

The Sidecar Pattern and OpenShift Service Mesh

On Service Mesh enabled services, an Envoy proxy instance is injected into the application pod
using the sidecar pattern. After the Envoy sidecar is injected, it takes control of all of the network
communications for the pod.

OpenShift Service Mesh does not automatically inject the sidecar into every pod. You must
explicitly specify the pods that you want Service Mesh to manage by adding annotations to the
deployment configuration. This manual approach ensures that the automatic sidecar injection
does not interfere with other Red Hat OpenShift features.

Chapter 4 | Controlling Service Traffic

E Note
The default configuration in the upstream Istio version uses automatic sidecar
injection at a namespace level.

Injecting the Envoy Sidecar Automatically

To automatically inject the Envoy sidecar into a service, you must specify the
sidecar.istio.io/inject annotation with the value set to "true" in the Deployment
resource.

Example of automatic sidecar injection:

apiVersion: apps/vi
kind: Deployment
metadata:
name: history
spec:
replicas: 1
template:
metadata:
labels:
app: history
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:
- name: history
image: quay.io/redhattraining/ossm-history:1.0
ports:
- containerPort: 8080

Distinguishing Ingress and Egress Traffic

In the context of a Service Mesh, we can distinguish two types of network traffic:

Ingress
Incoming traffic from sources external to the cluster, as well as calls originating from other
services within the cluster.

Egress
Outgoing traffic to sources outside the cluster, as well as calls to services within the cluster.

The default installation of OpenShift Service Mesh provides an instance of istio-
ingressgateway and an instance of istio-egressgateway to manage the ingress and egress
traffic in a Service Mesh. Both gateways can be customized to suit the needs of your applications.

Understanding the Gateway Custom Resource

A gateway is a custom resource that operates as a load balancer at the edge of the Service Mesh,
managing ingress or egress connections. Gateway configurations are applied to Envoy proxies
running at the edge of the Service Mesh.

Chapter 4 | Controlling Service Traffic

In a default installation of OpenShift Service Mesh, a gateway instance called istio-
ingressgateway manages ingress connections and a gateway instance called istio-
egressgateway manages egress connections.

Ingress
traffic

istio-ingressgateway

&

Envoy

< Envoy Prox Service A
€ Emvoyprony

istio-egressgateway

Service Mesh
&

Envoy

Figure 4.2: Ingress and egress gateways

The Open Systems Interconnection (OSI) model is a conceptual model that splits networking
systems into seven abstraction layers. It provides a standard to describe how applications
communicate over the network.

A gateway follows the OSI model, letting you configure Layer 4, Layer 5, and Layer 6 load
balancing properties, and also delegates application-layer traffic routing (Layer 7) to virtual

D0O328-5SM1.1-en-2-20200910 “

Chapter 4 | Controlling Service Traffic

services. This way of splitting the configuration between different and specialized components
gives you more control and flexibility over the communications of your application.

Example of ingress gateway:

apiVersion: networking.istio.io/vilalpha3
kind: Gateway
metadata:
name: exchange-gw
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 80
name: http
protocol: HTTP
hosts:
- "exchange.example.com"

The preceding setup configures the ingressgateway to expose the combination of virtual
hostname/DNS exchange . example.com protocol HTTP and port 80. This means that all HTTP
traffic for that hostname/DNS is allowed to enter the mesh.

Describing the VirtualService Custom Resource

A virtual service is a Kubernetes custom resource, which allows you to configure how the requests
to services in the Service Mesh are routed.

A virtual service is composed of a list of routing rules that are evaluated in order, from top to
bottom. Each routing rule consists of a traffic destination and zero or more match conditions that,
if met, direct traffic to the destination defined by the rule.

Pilot translates the VirtualService custom resources to Envoy configuration, thereby
propagating it to the data plane. In the absence of virtual services, Envoy distributes traffic
between all service instances using a round-robin algorithm.

Example of a virtual service:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: exchange-vs (1]
spec:
hosts:
- exchange
http: (3]
- match:
- headers:
end-user:
exact: test
route:
- destination:
host: reviews
subset: v2

Chapter 4 | Controlling Service Traffic

- route: ©
- destination:
host: exchange
subset: vi

Virtual service name.

List of destinations to which these routing rules apply.

List of routing rules to apply to HTTP/1.1, HTTPZ2, and gRPC traffic.

Rule with a match condition.

Default no condition rule. All traffic will be routed to the specified destination if no previous
conditions are met.

00000

The preceding example redirects all requests containing the header end-user and the value
test from the exchange service to the subset v2. In any other case, the match condition is not
fired so the traffic is redirected to the default destination.

Combining Gateways and Virtual Services

To make gateways and virtual services work together, you must bind them using the gateways
field for the virtual service. As a result, the traffic managed by the gateways listed in the gateways
field is checked against the routing rules defined in the virtual service.

Example of virtual service bound to a gateway:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:

name: exchange-vs
spec:

hosts:

- exchange

gateways:

- exchange-gw

http:

- match:

- headers:
end-user:

exact: test
route:

- destination:
host: reviews
subset: v2

- route:

- destination:
host: exchange
subset: vi

In the preceding example the exchange - gw gateway is bound to the exchange-vs virtual
service.

Ingress flow with OpenShift Service Mesh

In a default OpenShift Service Mesh installation, an OpenShift route is assigned to the Istio
ingress gateway (istio-ingressgateway), which is the resource in charge of managing the

D0O328-5SM1.1-en-2-20200910 w

Chapter 4 | Controlling Service Traffic

routing inside the mesh. All ingress traffic originating from outside the service mesh flows through
this gateway into the service mesh.

request
Ingress Operator
[reevee J€-—---—----
Ingress Controller
Router

&

POD

v
< Envoy Proxy —p C@ Service A
(@ y y

Service Mesh

& RedHat
OpenShift

Figure 4.3: Ingress request flow in Red Hat OpenShift Service Mesh
The ingress request flow is as follows:
1. Aexternal request enters the cluster.

2. Arouterinstance checks the routing rules implemented by the ingress controller. If a match is
found, the request is sent to the ingress gateway service pod (istio-ingressgateway).

W D0O328-5SM1.1-en-2-20200910

Chapter 4 | Controlling Service Traffic

3.

The ingress gateway service pod evaluates the request against the Gateway configurations

to check if the request matches with any configuration. If a match is found, the request is
allowed to enter the mesh.

The ingress gateway service pod evaluates the VirtualService rules to find the

application service pod in charge of processing the request.

If aVirtualService rule is matched, the ingress gateway service pod sends the request to

the designated pod to process the request.

]

References

Traffic management with Istio
https://archive.istio.io/v1.4/docs/concepts/traffic-management/

Automatic sidecar injection in Istio
https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/
#automatic-sidecar-injection

For more information, refer to the Ingress Operator in OpenShift Container Platform
section in the OpenShift Container Platform Service Mesh documentation at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

Decyphering the OSI model of networking
https://www.redhat.com/sysadmin/osi-model-bean-dip

References

For more information, refer to the Red Hat OpenShift Service Mesh's sidecar
injection section in the OpenShift Container Platform Service Mesh documentation
at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/concepts/traffic-management/
https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/#automatic-sidecar-injection
https://archive.istio.io/v1.4/docs/setup/additional-setup/sidecar-injection/#automatic-sidecar-injection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://www.redhat.com/sysadmin/osi-model-bean-dip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index

Chapter 4 | Controlling Service Traffic

» Guided Exercise

Exposing a Service

In this exercise, you will deploy and expose an application in Red Hat OpenShift Service
Mesh.

Outcomes

You should be able to deploy applications to OpenShift Service Mesh and allow clients
outside the service mesh to invoke them.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise:

[student@workstation ~]$ lab traffic-deploy start

P 1. Login to the OpenShift cluster.

11. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Loginto OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

P 2. Create the hello project and and then add it to the ServiceMeshMemberRo11 resource.
21. The required YAML files and scripts for this guided exercise are located in /home/

student/D0328/labs/traffic-deploy. Change to that directory using the cd
command.

[student@workstation ~]$ cd /home/student/D0328/labs/traffic-deploy
[student@workstation traffic-deploy]$

Chapter 4 | Controlling Service Traffic
2.2. Create the hello project.

[student@workstation traffic-deploy]$ oc new-project hello
Now using project "hello" on server
"https://api.cluster.domain.example.com:6443".

...output omitted...

2.3. Add the hello project to the list of members in the ServiceMeshMemberRol1l
resource. The ServiceMeshMemberRollis available in the istio-system project.

Use the add-project-to-smmr. sh script to add the hello project to the list of
members in the ServiceMeshMemberRo11 resource.

[student@workstation traffic-deploy]$ sh add-project-to-smmr.sh
servicemeshmemberroll.maistra.io/default patched

P 3. Deploy asimple Vert.X application. This application exposes a single GET endpoint that
returns “"Hello World!” for every request.

The source code is in the Git repository at https://github.com/RedHatTraining/
D0328-apps/ in the maven-simplest directory.

31. Examine the application.yaml file, which describes the necessary resources to
deploy the application. The deployment resource contains the sidecar.istio.io/
inject: "true" annotation to inject the Envoy proxy.

Run the oc create -f application.yamlcommand to deploy the application.

[student@workstation traffic-deploy]$ oc create -f application.yaml
deployment.apps/hello created
service/hello created

The create command creates a deployment and a service for the application (both
named hell0). At this point the Vert.X application is only accessible from inside the
mesh.

P 4. Create aningress gateway to allow ingress traffic to the mesh.

4]1. Examine the gateway.yaml file, which describes the traffic allowed to enter the
mesh.

apiVersion: networking.istio.io/vilalpha3
kind: Gateway
metadata:
name: hello-gateway"
spec:
selector:
istio: ingressgatewayta
servers:
- port:o
number: 80
name: http
protocol: HTTP
hosts:o

_ nxn

Chapter 4 | Controlling Service Traffic

© Name assigned to the gateway configuration.

© Indicates to which proxy gateway implementations the rules apply. In this case, it
is the ingress gateway Envoy proxy.

© Port and protocol where the gateway is listening for incoming connections.

O Hosts exposed by this gateway; the "*" means that this field is not used to filter
the incoming traffic.

Use the oc create command to create the ingress gateway configuration.

[student@workstation traffic-deploy]$ oc create -f gateway.yaml
gateway.networking.istio.io/hello-gateway created

P 5. Create aVirtualService to redirect the ingress traffic to the Vert.x application.

51. Examine the virtual-service.yaml file, which links the ingress traffic with the
deployed Vert.X application.

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService

metadata:
name: hello-vs"
spec:
hosts:
_ uxn
gateways:
- hello-gatewaye
http: ©
- route:
- destination:
host: hello©
port: @
number: 8080
© Name assigned to the virtual service configuration.
© List of gateways that should apply the routes. This virtual service is applied to
the traffic configured by the hello-gateway gateway.
© List of route rules for HTTP traffic.
® Default route, as no match conditions are defined. This route redirects all traffic
to the specified destination.
© Destination rule which sends the traffic to the hello service.
O Destination rule which sends the traffic to the port 8880 of the he 110 service.

Use the oc create command to create a virtual service.

[student@workstation traffic-deploy]$ oc create -f virtual-service.yaml
virtualservice.networking.istio.io/hello-vs created

P 6. Testthe application.

6.]. Examine the get-ingress-gateway-url. sh script, which uses the oc command
to gather the Istio ingress gateway URL.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

Chapter 4 | Controlling Service Traffic

[student@workstation traffic-deploy]$ export \
> GATEWAY_URL=$(sh get-ingress-gateway-url.sh)

6.2. Execute the cur1l command in combination with the GATEWAY_URL variable to
confirm the access to the application from the terminal.

[student@workstation traffic-deploy]$ curl ${GATEWAY_URL}
Hello World!

P 7. Visualize the ingress traffic with Kiali

71. Examine the get-kiali-url. sh script, which uses the oc command to gather the
Kiali URL.

Export the Kiali URL to an environment variable called KIALI_URL.

[student@workstation traffic-deploy]$ export KIALI_URL=$(sh get-kiali-url.sh)

7.2. Openthe KIALI_URL URL in a browser to access Kiali.

[student@workstation traffic-deploy]$ firefox ${KIALI_URL}

73. Loginasthe developer user.

74. Click Graph in the sidebar to visualize the traffic.

= Okiali A © developer =
Overview Mamespaces
— Name -
Graph
Applicati MName I Show health for Apps ~ I Compact H Expand |
Lastim =« Everylss = E
hello istio-system
1 Applicat 12 Applications | Traffic, lastIm
Mo traffic
| —
stio Config status: & Istio Config status: &
v @ o % ® o @

Figure 4.4: Kiali dashboard

75. From the Graph page, select the hello namespace.

Chapter 4 | Controlling Service Traffic

Okiali A © developer ~

Mamespace: hello ~

Graph ® Apr13,16:26:59 ... Apr13,16:27:59
Versioned app graph = No edge labels Display & -
Find.. Hide. @ Lastim Everylhos w
Y
ello &
! neeam
¥ Current Graph

Dy 1app (1 versions)
Istio ¢ 1 R L Yer

@ 1service

% ledge

Incoming | Outgoing Total
g~
Mo incoming traffic.

Figure 4.5: Graph representation of the hello application

76. Click the Display — Traffic Animation option to add motion to the graphics.

A © developer ~

Mamespace: hello «

Graph @ Apri3,16:40:14 ... Apr 13, 16:41:14

Versioned app graph Mo edge labels ~ Display 7 -

Find | @ r Every1os ~ E
Show

+ Compress Hidden @

+ Node Names h.‘

v Service Nodes

— I ¥ Traffic Animation I

| Unused Nodes Outgeing Total
" hello hello
Show Badges 1ing traffic.
+ Circuit Breakers
hello
¥ Missing Sidecars
v Virtual Services

Q Q X gl 2 Security

Figure 4.6: Adding animation to the Kiali graphics

77. Runthe curl ${GATEWAY_URL} command multiple times in the background.

[student@workstation traffic-deploy]$ while true; \
> do curl -o /dev/null -s ${GATEWAY_URL}; \
> sleep 2; done

Chapter 4 | Controlling Service Traffic

7.8. Observe the Kiali console to see how the traffic flows into the application. You might
have to wait for a few seconds before you can see the changes on the Graph page in

Kiali

O kiali 'y © developer «

MNamespace: hello
Apr13,17:07:14 ... Apr13, 17:08:14

Graph @
\ersioned app graph = Mo edge labels « Display 7 -
ls lide @ Lastim = EverylSs
hello @&
o
» Current Graph:
X 2edges
| —C
-4 —_— — Incoming | Outgoing | Total
.nn.un hello
Istio-ingr essgateway 4 HTTP (requests per second):
{elo e} m Total ~ %Success %Error
0.44 100.00 0.00

O B O e

Figure 4.7: Traffic flow

79. PressCtr1+Cin the terminal to stop the cur 1 command.

> sleep 2; done
AC
[student@workstation traffic-deploy]$

P 8. Return to the home directory.

[student@workstation traffic-deploy]$ cd ~
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-deploy finish

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910 w

Chapter 4 | Controlling Service Traffic

Routing Traffic Based on Request
Headers

Objectives

After completing this section, you should be able to route traffic to services in a mesh, based on
request headers.

Describing Destination Rules

Destination rules are custom resources that define policies that apply to the traffic of a service.
Using those traffic policies, you can configure the load balancing behavior to distribute traffic
between the instances of a service.

Virtual services route traffic to a specific destination, and destination rules operate in the traffic
routed to that destination.

The policies defined in destination rules are applied after the routing rules in the virtual services
are evaluated. With destination rules you can define load balancing, connection limits, and outlier
detection policies.

Load Balancing Traffic

With destination rules, you can specify the strategy used to distribute traffic between the
instances of a service.

Round-robin
Requests are sent to each service instance in turn.

Random
Requests are sent to the service instances randomly.

Weighted
Request are sent to the service instances according to a specific weight (percentage).

Least request
Requests are sent to the least busy service instances.

Note
S When no balancing option is specified, OpenShift Service Mesh uses the round-
robin strategy.

Example of a destination rule that uses random load balancing strategy:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: my-destination-rule (1]
spec:
host: my-svc (2]

Chapter 4 | Controlling Service Traffic

trafficPolicy: ©
loadBalancer:
simple: RANDOM @

Name of the destination rule.

Service affected by the defined policies.

Traffic policy defined for the my-svc service.

Random load balancing strategy for the traffic sent to the my-svec service.

0000

Splitting Services into Subsets

A service can have variants of the application running concurrently with destination rules. You can
group those variants into subsets using Kubernetes tags.

When you have subsets, destination rules allow you to define a global traffic policy for the service
and override the policy on the subsets.

Example of destination rule with subsets and policy overrides:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: my-destination-rule
spec:
host: my-svc
trafficPolicy: @
loadBalancer:
simple: RANDOM
subsets: (2]
- name: vi
labels: (4]
version: vi
- name: v2
labels:
version: v2
trafficPolicy: ©
loadBalancer:
simple: ROUND_ROBIN

Traffic policy defined at a service level.

List of subsets defined for the service.

Name of the subset.

List of label tags used to select the service instances belonging to the subset.
Traffic policy set at the subset level, overriding the policy set at the service level.

00000

Routing Traffic

OpenShift Service Mesh traffic management relies on virtual services and destination rules. After
combining these custom resources, you can perform A/B testing or route traffic to a specific
version of a service.

Route traffic based on request headers with the following steps:

+ Deploy different services or different versions of the same service.

Chapter 4 | Controlling Service Traffic

+ Create destination rules to split the service into subsets.

+ Create a virtual service to check the request headers and route the request to a destination
service or to a subset.

Creating Routing Rules

A virtual service is a compilation of conditions and actions that you can use to route HTTP, TCP,
and unterminated TLS traffic to a desired destination.

Virtual services in combination with destination rules allow you to route traffic based on request
headers. The following conditions and actions are involved:

HTTPRoute
Conditions and actions defined for HTTP/1.1, HTTP2, and gRPC traffic.

HTTPMatchRequest
List of match conditions to meet in order to execute the action defined by the rule.

HTTPRouteDestination
Action that routes the traffic to a desired destination.

StringMatch
Rule to compare a string against a value. The available options to do the comparison are:
exact, prefix, and regex.

Destination
Destination for traffic that matches specified conditions.

Example of a virtual service with routing based on request headers:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService

metadata:
name: my-virtual-service
spec:
hosts:
_ nkn
http: ©
- match:
- headers: (3]
end-user: (4]
exact: redhatter (5]
route: °
- destination: (7]
host: my-svc
subset: v2
- route:
- destination:
host: my-svc
subset: vi

List of HTTPRoute conditions and actions.

List of HTTPMatchRequest conditions and actions.
Header rule.

Name of the HTTP header to check.

0000

Chapter 4 | Controlling Service Traffic

© stringMatch rule for the HTTP header. The match condition is activated when the request
has an HTTP header called end-user with the value redhatter.

© HTTPRouteDestination. When the match condition is activated, the request is redirected
to this route.

© Destination. When the headers condition is satisfied, the traffic is redirected to the v2
subset of the my-svc service.

© Default route. Without a previous matching, the traffic is routed to this destination.

The previous example routes all the traffic that has the HTTP header end -user, with a value of
redhatter, to the subset v2 of the my-svc service. When the HTTP header does not match the
defined values, the traffic goes to the subset v1 of the my-svc service.

Redirecting traffic to an endpoint based on the presence of a specific HTTP header is often used
for A/B testing and for HTTP authorization.

References
Destination Rule reference

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
in Istio documentation.

Virtual Service reference
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/
in Istio documentation.

D0O328-5SM1.1-en-2-20200910 “

https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

Chapter 4 | Controlling Service Traffic

» Guided Exercise

Routing Traffic Based on Request
Headers

In this exercise, you will route traffic to services in Red Hat OpenShift Service Mesh based on
request headers.

Outcomes

You should be able to create subsets of a service, and route traffic to services in a mesh,
based on request headers.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
« Ainstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise:

[student@workstation ~]$ lab traffic-route start

P 1. Loginto the OpenShift cluster.

11. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Loginto OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

P 2. Create the headers project, and then add it to the ServiceMeshMemberRo11 resource.

21. The required YAML files and scripts for this guided exercise are located in the /
home/student/D0328/labs/traffic-route directory. Change to this directory
using the cd command.

Chapter 4 | Controlling Service Traffic

[student@workstation ~]$ cd /home/student/D0328/1labs/traffic-route
[student@workstation traffic-route]$

2.2. Create the headers project.

[student@workstation traffic-route]$ oc new-project headers
Now using project "headers" on server
"https://api.cluster.domain.example.com:6443".

...output omitted. ..

2.3. Add the headers project to the list of members in the ServiceMeshMemberRo11l
resource. The ServiceMeshMemberRoll is available in the istio-system project.

Use the add-project-to-smmr. sh script to add the headers project to the list of
members in the ServiceMeshMemberRo1l1l resource.

[student@workstation traffic-route]$ sh add-project-to-smmr.sh
servicemeshmemberroll.maistra.io/default patched

P 3. Deploy asimple Vert.X application with two versions of the same service, and with /
headers as the URI prefix. This application exposes a single GET endpoint that returns:

* “Hello World!” on version v1.
» “Hello Red Hat!” on version v2.

The source code is in the Git repository at https://github.com/RedHatTraining/
D0328-apps/ inthe maven-simplest and maven-simplest-v2 directories.

31. Examine the application.yaml file, which describes the necessary resources to
deploy the application. This file defines two different deploys of an application, a
service, a virtual service, and a gateway.

Runtheoc apply -f application.yaml command to deploy the application.

[student@workstation traffic-route]$ oc apply -f application.yaml
deployment.apps/headers-v1l created

deployment.apps/headers-v2 created

service/headers created
gateway.networking.istio.io/headers-gateway created
virtualservice.networking.istio.io/headers-vs created

Now the Vert.X application is deployed in the service mesh and is accessible from
outside the mesh.

3.2. Examine the get-ingress-gateway-url. sh script, which uses the oc command
to gather the Istio ingress gateway URL.

Export the ingress gateway URL to an environment variable called GATEWAY_URL.

[student@workstation traffic-route]$ export \
> GATEWAY_URL=$(sh get-ingress-gateway-url.sh)

Chapter 4 | Controlling Service Traffic

3.3. Execute the curl command several times, in combination with the GATEWAY_URL
variable, to confirm access to the application from the terminal.

[student@workstation traffic-route]$ while true; \
> do curl -s ${GATEWAY URL}; \

> sleep 1; done

Hello World!

Hello Red Hat!

Hello Red Hat!

Hello World!

...output omitted...

When you have variants of a service without destination rules defined, Kubernetes
balances the traffic between service instances randomly.

3.4. Press Ctr1+Cin the terminal to stop the cur1 command.

...output omitted. ..

Hello World!

AC

[student@workstation traffic-route]$

P 4. Route all traffic to the v subset of the application.

4]1. Examine the destination-rule.yaml file, which defines the subsets of the Vert.X
application.

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: headers
spec:
host: headers"
subsets:
- name: v1©®
labels:
version: vle’
- name: v2
labels:
version: v2

© Service affected by the defined policies.
© Name assigned to the subset.
© Labels used to make the subset grouping.

The destination-rule.yaml file defines two subsets for the headers service:

+ Asubset called v1 grouping all the application instances that have the version:
v1 flag.

+ Asubset called v2 grouping all the application instances that have the version:
v2 flag.

Use the oc create command to create a destination rule.

Chapter 4 | Controlling Service Traffic

[student@workstation traffic-route]$ oc create -f destination-rule.yaml
destinationrule.networking.istio.io/headers created

4.2. Examine the virtual-service-subset-vi1.yaml file, which uses destination
rules subsets to route traffic.

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: headers-vs
spec:
hosts:
I
gateways:
- headers-gateway
http:
- match:
- uri: @
prefix: /headers
route:e
- destination:
host: headers®
subset: v1@

Rule to accept only traffic with the /headers prefix in the URI.

Route assigned to all ingress traffic with the /headers prefix in the URI.
Destination service.

Destination service subset.

0000

The virtual service defined in virtual-service-subset-vi1.yaml redirects all
the ingress traffic for /headers to the subset v1 of the headers service.

Use the oc apply command to update the headers-vs virtual service with the new
configuration.

[student@workstation traffic-route]$ oc apply -f virtual-service-subset-vi.yaml
virtualservice.networking.istio.io/headers-vs configured

43. Execute the curl command several times, in combination with the GATEWAY_URL
variable, to confirm the routing of all traffic to the v1 subset.

[student@workstation traffic-route]$ while true; \
> do curl -s ${GATEWAY_URL}; \

> sleep 1; done

Hello World!

Hello World!

Hello World!

Hello World!

...output omitted. ..

4.4, Press Ctr1+Cin the terminal to stop the cur 1 command.

Chapter 4 | Controlling Service Traffic

...output omitted...

Hello World!

AC

[student@workstation traffic-route]$

) 5. Route traffic based on headers.

51. Examine the virtual-service-with-header-subsets.yaml file, which uses
destination rules subsets in combination with header rules to route traffic.

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: headers-vs
spec:
hosts:
I
gateways:
- headers-gateway
http:
- match:
- uri:
prefix: /headers
headers:
end-user:
exact: redhatter
route:
- destination:®
host: headers
subset: v2

- match:
- uri:
prefix: /headers
route:e
- destination:

host: headers
subset: vi

© Match condition for HTTP traffic. This rule is activated when the request URI has
the /headers prefix, and an HTTP header called end-user with redhatter
as value.

© Route destination assigned to the match condition. When the match condition is
activated, the request is redirected to the v2 subset of the headers service.

© When no previous match conditions are activated for traffic to /headers, the
request is redirected to the v1 subset of the headers service.

Use the oc apply command to update the headers-vs virtual service with the new
configuration.

[student@workstation traffic-route]$ oc apply \
> -f virtual-service-with-header-subsets.yaml
virtualservice.networking.istio.io/headers-vs configured

Chapter 4 | Controlling Service Traffic
5.2. Execute the curl command in combination with the GATEWAY_URL variable.

[student@workstation traffic-route]$ curl ${GATEWAY_URL}
Hello World!

Without specifying any extra HTTP headers, the request is redirected to the v1
subset, returning “Hello World!"

53. Execute the curl command in combination with the GATEWAY_URL variable and
send the end-user HTTP header.

[student@workstation traffic-route]$ curl -H "end-user: redhatter" ${GATEWAY_URL}
Hello Red Hat!

When the end-user: redhatter HTTP header is added to the request, the
service mesh redirects the request to the v2 subset.

P 6. Visualize traffic routing with Kiali.

6.]. Examine the get-kiali-ur1l.sh script, which uses the oc command to gather the
Kiali URL.

Export the Kiali URL to an environment variable called KIALI_URL.

[student@workstation traffic-route]$ export KIALI_URL=$(sh get-kiali-url.sh)

6.2. Execute the firefox command in combination with the KIALI_URL variable to
access Kiali.

[student@workstation traffic-deploy]$ firefox ${KIALI_URL}

6.3. Loginasthe developer user.

6.4. Click Graph to visualize the traffic.

Chapter 4 | Controlling Service Traffic

— Okiali a © developer ~

Overview Namespaces

MName w | Filter by Name

Name w 13 Show health for Apps ¥ [Compact
Lastim =~ Every15s « E

Graph

headers istio-system

1 Applicatior 12 Application Traffic, last Im

O Q12
Istio Config status: & Istio Config status: &
¥ = o [-]

Figure 4.8: Kiali dashboard

6.5. On the Graph page, select the headers namespace.

= Okiali A @ developer ~

I MNamespace: headers =

Graph Graph ® Apr 21, 09:27:05 ... Apr 21, 09:28:05

Versioned app graph ~ No edge labels ~ Display

Find lide @ LastIm + Everylbs w E

headers @
Do = O
Current Graph:

Incoming = Qutgoing Total
I’ neaters
J Mo incoming traffic.

v2

Figure 4.9: Graph representation of the headers application

@

-

Applications

¥ Hide

6.6. Click the Display — Traffic Animation option to add motion to the graphics.

Chapter 4 | Controlling Service Traffic

r'y © developer ~

Namespace: headers

Graph @ Apr 21, 09:00:03 ... Apr 21, 09:01:03

Versioned app graph = No edge labels
Find Je (O] r EverylSs w E
Show

+ Compress Hidden =@

¥ Node Names h_l

|) _
A ! versions)
Service Nodes .
vl
A l i Traffic Animation L
— Unused Nodes Outgoing Total
headers
— pr— Show Badges 1ing traffic,

—_— + Circuit Breakers
v2

KK

+ Missing Sidecars
m v Virtual Services
-4 k-

Q Q % i %2 _ | Security

Figure 4.10: Adding animation to the Kiali graphics

6.7. Examine the traffic-simulator. sh script. This script simulates traffic to the
deployed application, making cur 1 calls to the ingress URL.

Run the traffic-simulator. sh script to generate some traffic.

[student@workstation traffic-deploy]$ sh traffic-simulator.sh

6.8. Observe the Kiali console to see how the traffic flows into the application to the two

service subsets. You may have to wait for a few seconds until you can see the changes
in the Graph page in Kiali.

Chapter 4 | Controlling Service Traffic

A © developer ~

Mamespace: headers -

Graph @ Apr 21, 09:01:323 .. Apr 21, 09:02:33
Versioned app graph Mo edge labels = Display 7 -

@ Lastlm =+ Everylss = E

headers @

=T

Hide

¥ Current Graph:

| Dy Zapps(3versions)
& 1service
X 3edges

Incoming | Outgoing Total

HTTP (requests per second):

| Total %Success %Error

1.24 100.00 0.00

Qa @ x & #1 &2 I

Figure 4.11: Routed traffic flow

6.9. Press Ctr1+Cin the terminal to stop the traffic-simulator.sh script.
[student@workstation traffic-route]$ sh traffic-simulator.sh

AC
[student@workstation traffic-routel$

P 7. Return to the home directory.

[student@workstation traffic-route]$ cd ~
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-route finish

This concludes the guided exercise.

W D0O328-5SM1.1-en-2-20200910

Chapter 4 | Controlling Service Traffic

Accessing External Services

Objectives

After completing this section, you should be able to control egress traffic to access external
services.

Managing and Routing Egress Traffic in OpenShift
Service Mesh

Preceding sections introduced the capabilities of OpenShift Service Mesh to route between
services inside the mesh. It is common, however, for applications deployed in an OpenShift project
to require access to services in different projects, or even outside the OpenShift cluster. This
section describes how OpenShift Service Mesh enables the management and routing of service
requests outside the mesh. Traffic originating from services inside the mesh and targeting external
services is called egress traffic.

Project 1
@ Service B @ Service A P External Network
g
© .
('LED Envoy Proxy <—» ('L@ Envoy Proxy ——» O |——» External Service
(9]
| 4
Ly : g
Egress Gateway Ingress Gateway ” External Client
A
i
i
Project 2 Project3 |
@ Service C Client
OpenShift Cluster
<+—> Internal Traffic ——» Egress Traffic = ----- » Ingress Traffic

Figure 4.12: Ingress and Egress Traffic in Red Hat OpenShift Service Mesh

There are two elements related to egress traffic in OpenShift Service Mesh. The Istio control
plane includes egress gateways, configuring these gateways to allow all egress traffic, or to restrict
egress traffic to registered services. ServiceEntry resources register external services that are
requested by internal services.

Configuring Egress Traffic Configuration in Istio

By default, OpenShift Service Mesh allows all egress traffic. If a service invokes another service
not managed by OpenShift Service Mesh, the Envoy proxy redirects the requests to the default

D0O328-5SM1.1-en-2-20200910 “

Chapter 4 | Controlling Service Traffic

Istio gateway. By default, this egress gateway forwards the requests to the external network,
allowing all external requests to be serviced.

This setup allows all services in the mesh to reach any external service without restrictions. In
some cases, it is beneficial to restrict the external services allowed to a specific list of approved
services. The spec.istio.global.outboundTrafficPolicy.mode configuration valuein
the ServiceMeshControlPlane resource controls this behavior.

The default value for this entry is ALLOW_ANY. This value instructs Istio to allow all egress traffic
regardless of the destination. If this configuration holds the value REGISTRY_ONLY, the gateway
only forwards requests to services explicitly registered.

Registering External Services

The REGISTRY_ONLY configuration value restricts traffic to registered external services only. To
register external services, create a ServiceEntry resource associated to the external service, as
follows:

[user@host ~]$ oc create -f - <<'EOF'
apiVersion: networking.istio.io/vlialpha3
kind: ServiceEntry
metadata:

name: my-external-service o
spec:

hosts:

- example.external.com (2]

ports:
- number: 80
name: http

protocol: HTTP
resolution: pNS©
location: MESH_EXTERNAL®
EOF

Give each service a meaningful name for easy identification.

The hostname where the external service is exposed.

The actual IP of the service must be resolved via DNS by the proxy.
MESH_EXTERNAL indicates that the service is external to the mesh.

0000

This ServiceEntry configures Istio to allow egress traffic to example.external.com:80
from any service in the mesh.

Enabling Direct Access to External Services

Sometimes, it is necessary to access external services bypassing the Envoy proxy, such as for
extreme performance requirements or strict immutability of the requests. You can configure
Istio to denylist or allowlist ranges of IP addresses for the proxy to intercept. The Envoy

proxy intercepts all IPs belonging to any range in the global. proxy.includeIPRanges
configuration entry. Istio traffic management policies handle all requests to those IPs. The
Envoy proxy does not intercept any request targeting an IP belonging to a range in the
global.proxy.excludeIPRanges configuration entry. Those requests bypass Istio policies
and monitoring.

To update the configuration, edit the ServiceMeshControlPlane resource or use an oc
patch command similar to:

Chapter 4 | Controlling Service Traffic

[user@host ~]$ oc patch smcp basic-install -n istio-system --type merge \
> -p '"{"spec":{"istio":{"global":{"proxy":{"includeIPRanges":"10.0.0.1/24"}}}}}'

Note that this configuration is global for the whole Istio installation, and affects all traffic

in all meshes managed by Istio. To apply this same behavior for specific pods, add the
traffic.sidecar.istio.io/excludeOutboundPorts or traffic.sidecar.istio.io/
includeOutboundIPRanges annotations in the Pod resource.

kind: Pod
apiversion: vi
metadata:
name: application_pod
annotations:
sidecar.istio.io/inject: 'false'
traffic.sidecar.istio.io/includeOutboundIPRanges: '10.0.0.1/24'
...output omitted. ..
namespace: application_project
...output omitted...
spec:
..output omitted...

D References
Accessing External Services

https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-
control/
in Istio documentation.

https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-control/
https://archive.istio.io/v1.4/docs/tasks/traffic-management/egress/egress-control/

Chapter 4 | Controlling Service Traffic

» Guided Exercise

Accessing External Services

In this exercise, you will connect an application with OpenShift with an external service,
deployed in a namespace not managed by Istio. Those same steps are also valid for
connecting with a service deployed outside the OpenShift cluster.

Outcomes

You should be able to enable egress connections from the mesh, either globally for all
services or for a single external service.

Before You Begin
As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command deploys the Financial application and the News service in two separate
projects in the Red Hat OpenShift cluster. The command also includes the Financial
application into the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-external start

P 1. Review the installed applications and acknowledge the correct functioning.

11. Login to the Red Hat OpenShift cluster using the deve loper account.

[student@workstation ~]$ source /usr/local/etc/ocp4.config
[student@workstation ~]$ oc login \

> -u ${RHT_OCP4_DEV_USER} -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}
Login successful.

...output omitted...

1.2. Retrieve the URL of the Istio ingress gateway by running the following command:

[student@workstation ~]$ ISTIO_GW=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath="{.spec.host}{.spec.path}")
[student@workstation ~]$ echo $ISTIO_GW
istio-ingressgateway-istio-system.apps.ocp4.example.com

1.3. Open a web browser to verify the application is functioning correctly. The Financial
application is accessed through the ingress gateway URL as just retrieved, with the /
frontend path appended. You can use your favorite browser to open that URL, or
use the following command to open the URL in Firefox:

[student@workstation ~]$ firefox $ISTIO_GW/frontend &

Chapter 4 | Controlling Service Traffic

14. Navigate through the application to generate traffic between services. Make sure you
gather historical data, exchange data, and news. Note that the News service resides in
a different namespace, traffic-external-news, and hence is considered egress
traffic. Gathering news successfully proves that egress traffic is allowed.

RED HAT

= TRAINING

Timestamp Story
1579263010 Financials Sector -0.77%
1579724882 Basic Materials Sector -0.48%
1580240625 Industrials Sector -1.02%

Figure 4.13: News Section in the Finance Application

1.5. Observe the application graph Kiali generates for the Financial application. You can
find the Kiali URL in the Red Hat OpenShift console, or use the following command:

[student@workstation ~]$ oc get route kiali \
> -n istio-system -o jsonpath="https://{.spec.host}{.spec.path}"
https://kiali-istio-system.apps.ocp4.example.com

Open the resulting URL, and log in user the developer credentials. Go to the Graph
menu and review the Service graph for the traffic-external namespace. The
graph should be similar to the following one:

Chapter 4 | Controlling Service Traffic

&) Kiali [istio-system] Q - o x
= Okiali
Mamespace: traffic-external
Graph @ Apr 14, 070102 .. Apr 14, 13:01:02
Servicegraph » Noedgelabels » Display 6 » Find " ® Lastbh v Everylss = E
H
&
«
,.4/ currency
/'/
”
/.4/
J/
_,J‘/
_.;"A
; —
,\
.\\
IV‘Q.‘
N
Ty
e
"
b
frontend PassthroughCluster

Figure 4.14: Service Graph for the Finance Application

For details about how to log in and navigate through Kiali interface refer to the
Observing Service Interactions with Kiali section in the Chapter 3, Observing a Service

Mesh chapter.

Note that the News service does not appear in the graph. Instead, a generic
PassthroughCluster restricted namespace shows. This generic entry proves that
the service mesh is not managing external traffic to the News service.

P 2. Restrict egress traffic globally to registered services only.

21. Update Istio configuration and define outbound traffic policy to allow egress traffic
only to registered services. To do so, edit the basic-install control plane, and set
the global.outboundTrafficPolicy.mode entry to REGISTRY_ONLY

[student@workstation ~]$ oc patch smcp basic-install \

> --type merge -n istio-system \

> -p "{"spec":{"istio":{"global":{"outboundTrafficPolicy":
{"mode" : "REGISTRY_ONLY"}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

2.2. Validate the external News service is not available anymore. Get back to the Financial
application front end in your browser and navigate to the News section in the left
menu. The application shows that no news can be loaded.

Alternatively, you can check how Kiali detects the failing connection and updates the
service graph:

Chapter 4 | Controlling Service Traffic

E Kiali [istio-system]

= @ kiali

Mamespace: traffic-external

Graph @ Apr14,13:44:58 . Apr 14, 13:4558

Servicegraph * MNoedgelabels = Display 6 = Find . @ Lastlm = EverylSs = E

& Show

A .
" currency

histary

& -
istio-ingressgateway
(istio-system)

P BlackHoleCluster

Figure 4.15: Service Graph Displaying Blocked Egress Traffic

E Note
Browser cache may cause the application to still display the news on the page. Force
reload the web page to instruct the browser to obtain the new page, or use browser
instructions to delete cache, and reload the page.

The Service graph in Kiali may also require some time to update. Some arrows may
look different, depending on the time span selected and traffic analyzed.

P 3. Create aServiceEntry resource for the News service. The presence of that resource
includes the News service in the registry of allowed targets for egress traffic.

31. Retrieve the host where the external News service is available, either through the
OpenShift console or through CLI commands:

+ Login to the OpenShift console and select to the traffic-external-news
project. Within this project, navigate to the Networking — Routes menu entry.
The only route available shows the host used to publish the service.

- Usetheoc get route command to retrieve the host defined in the news route
in the traffic-external-news project:

[student@workstation ~]$ NEWS_HOST=$(oc get route news -n traffic-external-news \

> -0 jsonpath="{.spec.host}")

3.2. Create a ServiceEntry resource in the traffic-external namespace.
You can use the file ~/D0328/solutions/traffic-external/

Chapter 4 | Controlling Service Traffic

news_serviceentry.yml as a template, and replace the host with the one
obtained in the previous step.

[student@workstation ~]$ cd ~/D0328/solutions/traffic-external/
[student@workstation traffic-external]$ sed -e "s/_NEWS_HOST_/$NEWS_HOST/g" \
> news_serviceentry.yml | oc create -n traffic-external -f -
serviceentry.networking.istio.io/news created

[student@workstation traffic.external]$ cd ~

[student@workstation ~]$

3.3. Validate now the external News service is allowed. Get back to the Financial
application front end in your browser and navigate to the News section in the left
menu. The application shows that news are again displayed.

After reviewing the application, you can also review how Kiali is now displaying the
News service as a managed service:

.EKiaLi [istio-system] a g e

= @ kiali

Mamespace: traffic-external

Graph @ Apr 14,13:52:30 . Apr 14, 13:53:30

Servicegraph * MNoedgelabels = Display 6 = Find . @ Lastm = EverylOs E

& Show

-
Currency

/

P
/ ‘,..l’/BlackHoleCIusier

exchange —
~—
k3 =
istio-ingressgateway
(istio-system)

v)

history

L} Q ™ x M 2 news

Figure 4.16: Service Graph Displaying Allowed Egress Traffic

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-external finish

This concludes the guided exercise.

Chapter 4 | Controlling Service Traffic

» Lab

Controlling Service Traffic

Performance Checklist
In this lab, you will deploy multiple versions of a service in the service mesh, route traffic
based on request headers, and restrict the egress traffic.

Outcomes

You should be able to deploy applications on Red Hat OpenShift Service Mesh, route traffic
inside the mesh and restrict egress traffic.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Ainstalled and running OpenShift Service Mesh in the OpenShift cluster.
« The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

This command deploys the Financial application, the News service, and the AB Proxy in
separate projects in the Red Hat OpenShift cluster. The command also includes the Financial
application in the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-mesh start

The following project information is needed for this exercise. This lab uses two projects:

- traffic-mesh: financial application composed of multiple services. This project is used
to deploy a variation of the front end service and to set routes based on request headers.

« traffic-mesh-news: project deployed outside of the service mesh to provide a news
feed for the financial application. This project is used to configure restrictions to the
egress traffic in OpenShift Service Mesh.

Variations of the front end service that you will use in this lab:
+ v2:initial deployment of the front end service that has a dark header.
- beta: new version of the front end service that has a red header.

To help with the testing, the traffic-mesh-proxy project is deployed and ready to
use in the cluster. This project contains an application that works as a proxy for the main
application, adding custom HTTP headers to the requests.

To configure the behavior of the proxy, the following helper scripts are available:

- proxy-set-beta-config.sh: configures the proxy to add the version:beta header
to all requests.

Chapter 4 | Controlling Service Traffic

1.

+ proxy-set-v2-config.sh: configures the proxy to add the version:v2 header to all

requests.

The companion scripts for this lab are located in ~/D0328/1labs/traffic-mesh. Change
to that directory using the c¢d command.

[student@workstation ~]$ cd ~/D0328/labs/traffic-mesh
[student@workstation traffic-mesh]$

Log in to the OpenShift cluster as a unprivileged user and verify that the lab projects are
successfully deployed.

Configure an ingress gateway named traffic-mesh-gateway to allow ingress HTTP
traffic on port 80 to enter the mesh.

Deploy a new beta version of the frontend service with the following characteristics:
- Name: frontend-beta.
+ Use the quay.io/redhattraining/ossm-frontend:betaimage and port 3000.

+ The container needs a environment variable called REACT_APP_GW_ENDPOINT. This
variable gathers the value for the key GW_ADDR stored in the frontend-cm config map.

Split the frontend service into subsets with the following characteristics:
+ Name: frontend-destination-rule.

+ Create a group with all the instances that have the version: v2 tagand assign to this
group the name v2.

+ Create a group with all the instances that have the version: beta tagand assign to this
group the name beta.

Create a virtual service named frontend-vs, which uses the ingress gateway and redirects
the frontend traffic following this rules:

+ Traffic with a header matching version: betais redirected to the beta subset.

+ Traffic with wrong or missing headers is redirected to the v2 subset.

Note
E All traffic for the front end service uses the /frontend prefix.

10.

.

12.

Test the routing configuration using the traffic-mesh-proxy application.
Restrict egress traffic globally to registered services only.
Test the restricted egress policy using the traffic-mesh-proxy application.

Allow egress traffic for the news service. Assign the name news - se to the required custom
resource.

Test the egress traffic using the traffic-mesh-proxy application.

Return to the home directory.

Chapter 4 | Controlling Service Traffic

[student@workstation traffic-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the lab traffic-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab traffic-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-mesh finish

This concludes the lab.

Chapter 4 | Controlling Service Traffic

» Solution

Controlling Service Traffic

Performance Checklist
In this lab, you will deploy multiple versions of a service in the service mesh, route traffic
based on request headers, and restrict the egress traffic.

Outcomes

You should be able to deploy applications on Red Hat OpenShift Service Mesh, route traffic
inside the mesh and restrict egress traffic.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Ainstalled and running OpenShift Service Mesh in the OpenShift cluster.
« The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

This command deploys the Financial application, the News service, and the AB Proxy in
separate projects in the Red Hat OpenShift cluster. The command also includes the Financial
application in the Red Hat OpenShift Service Mesh.

[student@workstation ~]$ lab traffic-mesh start

The following project information is needed for this exercise. This lab uses two projects:

- traffic-mesh: financial application composed of multiple services. This project is used
to deploy a variation of the front end service and to set routes based on request headers.

« traffic-mesh-news: project deployed outside of the service mesh to provide a news
feed for the financial application. This project is used to configure restrictions to the
egress traffic in OpenShift Service Mesh.

Variations of the front end service that you will use in this lab:
+ v2:initial deployment of the front end service that has a dark header.
- beta: new version of the front end service that has a red header.

To help with the testing, the traffic-mesh-proxy project is deployed and ready to
use in the cluster. This project contains an application that works as a proxy for the main
application, adding custom HTTP headers to the requests.

To configure the behavior of the proxy, the following helper scripts are available:

- proxy-set-beta-config.sh: configures the proxy to add the version:beta header
to all requests.

Chapter 4 | Controlling Service Traffic

« proxy-set-v2-config.sh: configures the proxy to add the version:v2 header to all
requests.

1. The companion scripts for this lab are located in ~/D0328/labs/traffic-mesh. Change
to that directory using the ¢d command.

[student@workstation ~]$ cd ~/D0328/labs/traffic-mesh
[student@workstation traffic-mesh]$

2. Login to the OpenShift cluster as a unprivileged user and verify that the lab projects are
successfully deployed.

21. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation traffic-mesh]$ source /usr/local/etc/ocp4.config

2.2. Login to OpenShift as the developer user.

[student@workstation traffic-mesh]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

2.3. Change to the traffic-mesh project.

[student@workstation traffic-mesh]$ oc project traffic-mesh
Now using project "traffic-mesh" on server ...

2.4. \Verify the status of the traffic-mesh project pods.

[student@workstation traffic-mesh]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-v1l-67bfdfd775-59f8v 2/2 Running 0 66s
exchange-v2-5d5c669777-s9zgk 2/2 Running 0 66s
frontend-v2-5cf6499bcd-hfp44 2/2 Running 0 66s
history-v1-8656f7d44f-ddp7c 2/2 Running 0 66s

2.5. Verify the status of the traffic-mesh-news project pods.

[student@workstation traffic-mesh]$ oc get pods -n traffic-mesh-news
NAME READY STATUS RESTARTS AGE
news-cfcd97f4f-9nfkr 1/1 Running 0] 10m

2.6. Verify the status of the traffic-mesh-proxy project pods.

[student@workstation traffic-mesh]$ oc get pods -n traffic-mesh-proxy
NAME READY STATUS RESTARTS AGE
ab-proxy-7bcédb76dc-bfjgp 1/1 Running 0 10m

Chapter 4 | Controlling Service Traffic

3. Configure an ingress gateway named traffic-mesh-gateway to allow ingress HTTP
traffic on port 80 to enter the mesh.

31

3.2

Create a Gateway object YAML file, for example traffic-mesh-gateway.yaml, to
store the object definition.

The completed object definition is available in the ~/D0328/solutions/traffic-
mesh/traffic-mesh-gateway.yaml file. Use it to verify your file and fix mistakes.

Create the gateway configuration with oc create.

[student@workstation traffic-mesh]$ oc create -f traffic-mesh-gateway.yaml
gateway.networking.istio.io/traffic-mesh-gateway created

4. Deploy anew beta version of the frontend service with the following characteristics:

- Name: frontend-beta.

+ Use the quay.io/redhattraining/ossm-frontend:betaimage and port 3000.

+ The container needs a environment variable called REACT_APP_GW_ENDPOINT. This
variable gathers the value for the key GW_ADDR stored in the frontend-cm config map.

41.

4.2.

Create a Deployment object YAML file, for example new-frontend-
deployment .yaml, to store the object definition.

The completed object definition is available in the ~/D0328/solutions/traffic-
mesh/new-frontend-deployment.yaml file. You can use the solution file to verify
and fix mistakes in your file.

Create the deployment with the oc create command.

[student@workstation traffic-mesh]$ oc create -f new-frontend-deployment.yaml
deployment.apps/frontend-beta created

5. Split the frontend service into subsets with the following characteristics:

- Name: frontend-destination-rule.

+ Create a group with all the instances that have the version: v2 tagand assign to this
group the name v2.

+ Create a group with all the instances that have the version: beta tagand assign to this
group the name beta.

5.1

5.2.

Create a DestinationRule object YAML file, for example frontend-destination-
rule.yaml, to store the object definition.

The completed object definition is available in the ~/D0328/solutions/traffic-
mesh/frontend-destination-rule.yaml file. You can use the solution file to
verify and fix mistakes in your file.

Create the destination rules with the oc create command.

[student@workstation traffic-mesh]$ oc create -f frontend-destination-rule.yaml
destinationrule.networking.istio.io/frontend-destination-rule created

Chapter 4 | Controlling Service Traffic

6. Create a virtual service named frontend-vs, which uses the ingress gateway and redirects
the frontend traffic following this rules:

+ Traffic with a header matching version: betaisredirected to the beta subset.

+ Traffic with wrong or missing headers is redirected to the v2 subset.

Note
E All traffic for the front end service uses the /frontend prefix.

6.. Create a VirtualService object YAML file, for example frontend-virtual-
service.yaml, to store the object definition.

The completed object definition is available in the ~/D0328/solutions/traffic-
mesh/frontend-virtual-service.yaml file. You can use the solution file to
verify and fix mistakes in your file.

6.2. Create the virtual service with the oc create command.

[student@workstation traffic-mesh]$ oc create -f frontend-virtual-service.yaml
virtualservice.networking.istio.io/frontend-vs created

7. Test the routing configuration using the traffic-mesh-proxy application.

71. Export the traffic-mesh-proxy URL to an environment variable called
AB_PROXY_URL.

[student@workstation traffic-mesh]$ export AB_PROXY_URL=$(oc get route ab-proxy \
> -n traffic-mesh-proxy -o template --template '{{ "http://" }}{{ .spec.host }}')

7.2. Use the proxy-set-v2-config. sh helper script to configure the proxy to append
the version: v2 headers to all requests.

[student@workstation traffic-mesh]$ sh proxy-set-v2-config.sh
Updated proxy to send version:v2 headers

7.3. Use a web browser to verify the route configuration for the version: v2 HTTP
headers. The Financial application is accessible through the AB proxy URL. Use your
favorite browser to open that URL, or use the following command to open the URL in
Firefox:

[student@workstation traffic-mesh]$ firefox ${AB_PROXY_URL}/frontend

All requests through the AB proxy append the version: v2 header, so the web Ul
shows a dark header.

74. Use the proxy-set-beta-config.sh helper script to configure the proxy to
append the version: beta headers to all requests.

[student@workstation traffic-mesh]$ sh proxy-set-beta-config.sh
Updated proxy to send version:beta headers

Chapter 4 | Controlling Service Traffic

75. Reload the web page in the browser to verify the route configuration for the version:

beta HTTP headers.
All requests through the AB proxy append the version: beta header, so the web Ul
shows a red header.

Note
S Browser cache may cause the application to still display the dark header. Force the
web page to reload, instructing the browser to obtain the new page, or use browser

instructions to delete the cache and reload the page.

8. Restrict egress traffic globally to registered services only.

8.1. Update the Istio configuration and define outbound traffic policy to allow egress traffic
only to registered services.

[student@workstation traffic-mesh]$ oc patch smcp basic-install \

> --type merge -n istio-system \
> -p '{"spec":{"istio":{"global":{"outboundTrafficPolicy":

{"mode": "REGISTRY_ONLY"}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

9. Test the restricted egress policy using the traffic-mesh-proxy application.

9.. Reload the web page in your browser, and then navigate to the News section. The
application reports that it cannot load any news.

Note
The propagation of the new policy can take several seconds; you might need to wait

to see the changes.

10. Allow egress traffic for the news service. Assign the name news - se to the required custom

resource.
10.. Retrieve the host where the external news service is available.

[student@workstation traffic-mesh]$ oc get route news -n traffic-mesh-news \

> -0 jsonpath="{.spec.host}"
news-traffic-mesh-news.apps.example.com

10.2. Create a service entry resource YAML file, for example service-entry.yaml, to
store the object definition.

A template object definition is available in the ~/D0328/solutions/traffic-
mesh/service-entry.yaml file. You can use the solution file to verify and fix

mistakes in your file.

E Note
Remember to set the host to the correct one, obtained in the previous step.

10.3. Create the service entry with the oc create command.

Chapter 4 | Controlling Service Traffic

[student@workstation traffic-mesh]$ oc create -f service-entry.yaml
serviceentry.networking.istio.io/news-se created

M. Test the egress traffic using the traffic-mesh-proxy application.

1. Reload the web page in your browser and navigate to the News section. The application
shows a list of news.

12. Return to the home directory.

[student@workstation traffic-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the lab traffic-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab traffic-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab traffic-mesh finish

This concludes the lab.

Chapter 4 | Controlling Service Traffic

Summary

In this chapter, you learned:

Red Hat OpenShift Service Mesh implements the sidecar pattern injecting an Envoy sidecar into
application pods.

A Gateway resource configures how Istio handles ingress and egress connections and exposes
services deployed in the mesh.

DestinationRule resources define how to route traffic to subsets of services based on
different conditions, such as request headers.

Gateways either allow all egress traffic or restrict egress traffic to services that are registered as
ServiceEntry resources.

Chapter 5

Releasing Applications with
OpenShift Service Mesh

Goal Release applications with canary and mirroring ¢
release strategies.

Objectives * Release application services with a safe canary .
rollout. “
Deploy a "mirror" service to test a new service ,
with a realistic load.]

‘“ \
Sections + Deploying an Application with Canary Releases

; (and Guided Exercise)
Deploying an Application with a Mirror Launch

(and Guided Exercise)
Lab Releasing Applications with OpenShift Service
Mesh

w

r/

D0O328-5SM1.1-en-2-20200910

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Deploying an Application with Canary
Releases

Objectives

After completing this section, you should be able to release application services with a safe canary
rollout.

Describing Canary Releases

Deploying software is a complex and risky process. After a release, developers carry out
verification activities to check that the deployment is successful, such as watching logs,
monitoring metrics and validating that the changes are applied. If something goes wrong, the team
rolls back the deployment to the previous stable version.

A simple release approach is to deploy the new version replacing the old one. However, this
deployment strategy immediately exposes all users to any defects introduced by the new version.

Canary releases address this problem using a progressive and safe deployment approach where
both versions of the application, the old and the new, run in parallel until the new version is
completely validated and ready for all users. The new version, also called the canary, initially
receives only a small amount of all application traffic. Therefore, if something goes wrong with this
new version of the application, a minimal number of users are affected. As you gain confidence
with how the canary works, you progressively route more traffic to it.

The complete process is as follows:

« Initially, send a small amount of the traffic to the canary. The old version receives most of the
traffic, whereas only a small portion goes to the new version. This ensures that the new version
can be tested in production without compromising the stability of the service for the majority of
users.

+ Test the new version against the limited amount of traffic you configured in the previous step.
When you are satisfied with the results, increase the amount of traffic sent to the canary. Repeat
this step to slowly make the canary available to more users. Continue this process until the
canary receives most of the traffic, while monitoring test results and performance.

« After demonstrating that the new version is sufficiently stable, route the remaining traffic to the
canary. At this point, the old version stops receiving traffic. You can remove the old version of
the application from the cluster or leave it there temporarily in case you need the option of a
quick rollback.

Use Cases

Canary deployment is a good strategy whenever you want to have more control and increase the
level of confidence in your deployments. The following cases are scenarios where a canary release
approach makes sense:

+ Your application handles high loads and you want to perform load or stress testing on a new
version.

+ You want to validate the new version against a reduced group of users to analyze how this
affects your key performance indicators. User groups can be defined according to different

Chapter 5 | Releasing Applications with OpenShift Service Mesh

conditions, such as user type or location. For example, a common scenario is releasing canaries
only for internal users or trusted clients.

+ You need a safe strategy to deploy a new critical version.

Deploying a Canary Release with OpenShift
Service Mesh

Canary releases are not specific to OpenShift Service Mesh. You can adopt a canary strategy if
you a have a way to control how traffic is distributed between each version. The most common
case is using a router or a load balancer that lets you manage traffic routing.

In Kubernetes, you can use the canary strategy by creating a new deployment with the same
service selector label as the old version, and adjusting the replica ratio between the old and the
new version. The number of replicas of each version dictates the amount traffic that each version
receives. Therefore, if both versions, the old and the new, scale to one replica, each of them
receives 50% of the traffic.

However, if you want to send only 1% of the traffic to the canary, you would need to scale the old
version to 99 replicas to adjust the replica ratio. This is a clear problem, as it requires more cluster
resources and leads to an inefficient use of those resources. Moreover, this solution only allows you
to control how traffic is routed based on percentages.

With OpenShift Service Mesh, you can take advantage of the Istio traffic management features to
handle traffic distribution without a dependency on replica ratios. Furthermore, Istio offers various
traffic routing policies, so you are not restricted to a strategy based on traffic percentage.

Virtual services, in combination with destination rules, can define traffic routes for each version.
Each version is released as a Deployment and represented by a DestinationRule subset,
which filters the service endpoints for that version. Figure 5.1 shows how these configuration
resources relate in a canary scenario.

Service

metadata
name: myapp

selectors:
app: myapp

select by label

destination host

labels: Deployment

version: v2
subset v2 labels:
app: myapp

version: v2

|
|
: Deployment
] labels:
i i inati subset vi p E[FID8 METHD
VirtualService DestinationRule : version: vl
host: myapp host: myapp '
route: . . routes traffic to a subsets: destination :
- destination: service subset - name: vl version subset 1
subset: vl D —— labels: D ——— label 1
- destination: version: vl filter :
subset: v2 - name: v2 |
|
|
|
|

Figure 5.1: Example of Resources Configuration for Canary Releases

First, assume that you have already deployed an application called myapp. The Deployment and
the Service resources also already exist. The service that represents the application looks like
the following:

D0O328-5SM1.1-en-2-20200910 w

Chapter 5 | Releasing Applications with OpenShift Service Mesh

apiVersion: vi
kind: Service
metadata:
labels:
app: myapp
name: myapp
spec:
selector:
app: myapp

The deployment for the initial version of the application (v1) looks like the following:

apiVersion: apps/vi
kind: Deployment
metadata:

name: myapp-vi
spec:

template:
metadata:
labels:
app: myapp
version: vi
annotations:
sidecar.istio.io/inject: "true"
spec:

Pay special attention to the version label of the deployment. Labels are the main property used
to identify the version of the application, and to split traffic between versions. Also note that you
must enable the injection of the Envoy sidecar by setting the sidecar.istio.io/inject
annotation to "true". This allows the application to use Istio routing features.

Deploying a Canary Release

To deploy a canary release, you must create a new deployment for the new version and split traffic
between versions using a virtual service and a destination rule.

1. Create a Deployment resource for the new version. For example, for v2, create a new
Deployment that looks like this:

kind: Deployment
metadata:
name: myapp-vz"
spec:
replicas: 1
template:
metadata:
labels:
app: myappe
version: v2
annotations:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

sidecar.istio.io/inject: "true"
spec:
containers:

As the example shows, the new deployment must meet the following requirements:

© Use a unique name for this deployment, different from the name of the old deployment.

© Specify the same application label used in the old deployment, so that the service is
aware that the new version belongs to the same application as the old version.

© Change the value of the version label so that OpenShift Service Mesh can distinguish
between versions when routing traffic.

2. Create aDestinationRule resource to define the subsets that represent each version.

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: myapp
spec:
host: myapp"
subsets:
- name: v1©
labels:
version: vi
- name: v2©
labels:
version: v2

This destination rule defines the following configuration:

© The name of the targeted service.

© Asubset for vi, filtering labels specified in the myapp-vi1 deployment. In this case,
version: vi.

© Asubset for v2, filtering labels specified in the myapp-v2 deployment. In this case,
version: v2.

3. Create aVirtualService resource to define the traffic route for each version. Associate
each subset with a route destination and add a weight.

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: myapp
spec:
hosts:
_ nEn
gateways:
- my-gateway
http:
- route:

- destination:
host: myapp"
subset: vi1
port:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

number: 3000

weight: QOG’

- destination:
host: myapp
subset: v2
port:

number: 3000
weight: 10

There are two destination configurations defined in this virtual service, one for each
version. vl receives 90% of the traffic, whereas v2 receives the remaining 10%. Each
destination must contain the following information:

© The service hostname. It must be the same as the host field defined in the destination
rule.

© The name of one of the subsets defined in the associated destination rule.

© The percentage of traffic routed to the version.

If you need to route traffic using more advanced criteria, then you can use
spec.http.match for HTTP traffic or spec. tcp.match for TCP traffic.

After you create these resources, ensure that traffic is being routed as expected. To verify the
routing, send traffic to your application and check that each version receives the expected amount
of traffic. You can check your application responses, inspect the logs, or use Kiali, as discussed in
Inspecting Canary Traffic with Kiali.

When you are ready to send more traffic to your canary, update the route weights or matching
filters. For example, if you want to increase the traffic share received by the canary to 60%, update
the weight field of each subset to adjust the new percentages.

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService

metadata:
name: myapp
spec:
http:
- route:

- destination:
host: myapp
subset: vi1i

weight: 40

- destination:
host: myapp
subset: v2

weight: 60

Similarly, if you need to quickly roll back to the previous version, update the weights to direct more
traffic to it.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Splitting Traffic Using Kiali

Kiali provides a web user interface to observe and manage the services in your service mesh in real
time. As well as providing observability of the platform, Kiali offers configuration features to help
you manage the platform. With Kiali, you can edit the configuration of Istio traffic management
features to control canary releases. In particular, you can edit resource files in yaml format to
modify the configuration of Istio resources. You can also use traffic management wizards to
balance traffic between versions in a user-friendly interface.

Kiali can help you to control how traffic is routed to different versions without explicitly creating
the VirtualService and the DestinationRule resources. Instead of creating or editing these
resources in OpenShift, for example with the oc command, you can use the Kiali configuration
capabilities.

In the Kiali menu, navigate to Services to open the services page.

Next, select your project in the Namespace selector and click the name of your application
service to go to the service configuration page:

© kiali

Overview Namespace: my-project w

Graph S .
Applications
Workloads

. Service Name w | Filter by Service Name Last30m
Services

Name Namespace Health Details Configuration

Istio Config
Distributed Tracing =z myapp my-project @ (]

Figure 5.2: Kiali Services Page

On the lower part of the page, information about workloads, virtual services, and destination rules
is distributed in tabs. If you have created the deployments but have not yet created any Istio traffic
management resources, neither Virtual Services nor Destination Rules should exist on the screen,
as shown in the following example:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Workloads (2) Virtual Services (O) Destination Rules (0)

Name Type Labels Created at Resource version
app version
myapp Deploym @ May 18, 1:33 AM 13241518
vl ent
app version
myapp Deploym @ May 18, 11:33 AM 13241620
v2 ent

Figure 5.3: Service Resources Section in Kiali

Open the weighted routing wizard to configure traffic splitting. Select Create Weighted Routing
from the Actions list in the upper right.

Services » Namespace: my-project » myapp
@ myapp (Show on graph)

Last30m « E Actions w

Create Weighted Routing

Overview Traffic Inbound Metrics = Traces

Create Matching Routing

Service overview Health Overvie\
Suspend Traffic

Labels Health

app <?> No health inform

Resource Version

Delete ALL Traffic Routing

<& Error Rate over last 30m: No requests
13241206

Selectors :
Network Overview

app

Sarvira |IP

Figure 5.4: Kiali Weighted Routing Wizard Selector

In the Create Weighted Routing window that displays, use the sliders to adjust the traffic
percentage assigned to each version.

W D0O328-5SM1.1-en-2-20200910

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Create Weighted Routing

Workload Traffic Weight

myapp-vl

myapp-v2 - 10 +%

4 Evenly distribute traffic

» Show Advanced Options

Figure 5.5: Kiali Weighted Routing Wizard

If you need to setup additional options, such as binding TLS or gateway binding, click Show
Advanced Options.

E Note
Currently, the weighted routing wizard has limited capabilities and only handles
very basic scenarios, such as routing traffic based on percentages. Moreover, it is
only capable of managing VirtualService and DestinationRule resources
created with the wizard. It does not allow the management of VirtualService
and DestinationRule resources created directly in OpenShift.

When you need to increase the amount of traffic directed to the canary, reopen the wizard and
adjust the sliders.

Warning

A There is a bug in Kiali Ul v1.12 that causes the deletion of the gateway field when
updating the configuration of the weighted routing wizard. If you encounter this
problem, edit the wizard configuration again to restore the gateway value.

Inspecting Canary Traffic with Kiali

You can inspect the traffic flow in the Kiali Graph section and visualize how traffic is distributed to
each version. Click Graph in the navigation pane to visualize the graph. Make sure that you select
Versioned app graph asthe graph type and Requests percentage as the graph edge
labels.

D0O328-5SM1.1-en-2-20200910 “

Chapter 5 | Releasing Applications with OpenShift Service Mesh

.'9’ ______._100%0-——""*

istio-ingressgateway
(istio-system)

v2

Figure 5.6: Kiali Traffic Graph

¥ Hide

my-project -]
2 e = H

Current Graph:

[2 apps (3 versions)
& lservice
&, 3 edges

Incoming = Qutgoing Total

HTTP (requests per second):

Total %Success %Error

0.02 100.00 0.00

0 25 50 73 100

B OK M 3xx B 4xx B Sxx

Notice how Kiali identifies that the two versions belong to the same application. You can also see
the amount of traffic that each version receives. This allows you to verify that your traffic splitting

configuration works as expected.

Configuring Istio Resources in Kiali

As well as providing wizards to manage traffic, Kiali also allows you to edit the configuration of Istio
resources in yaml format. To edit the configuration of these resources, select Services in the Kiali
navigation pane, select the resource you want to edit, and then edit the yam1 code.

Editing the configuration of a resource from the Kiali Ul has the same result as editing the resource

using the oc command.

Additionally, you can modify Istio configuration in Kiali by editing the yaml code in the Istio Config
section. Select Istio config in navigation pane. Select the resource you want to edit, and then
click the YAML tab. In this tab, you can view the specification in yam1 format and modify it.

D0O328-5SM1.1-en-2-20200910

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Istioc Config » MNamespace: my-project » VirtualService » myapp

myapp

Overview YAML

1 |kind: VirtualService
2 |apiVersion: networking.istio.io/vlalpha3
3 - |metadata:
4 name: myapp
= namespace: my-project
6~ selfLink: >-
7 fapis/networking.istio.io/vlalpha3/namespaces/my-project/virtualservices/myapp
g uid: @185f641-47da-467@-b86a-dr538ef7dlcd
9 resourceVersion: "132579@5°
19 generation: 2
11 creationTimestamp: 'Z2@820-85-18T18:87:127°
12 - labels:
13 kigli_wizard: weighted_routing
14 - | spec:
15 hosts:
16 =
17 ~| gateways:
18 = my-project/myapp
19 ~ http:
20 - - route:
£l - destination:
2d host: myapp
23 subset: vl
24 weight: 9@
Save ‘ Reload H Cancel ‘

Figure 5.7: YAML edition screen in Kiali

"J' References

Canary Deployments using Istio

https://istio.io/blog/2017/0.1-canary/

Istio 1.4 Docs: Destination Rule
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/

Istio 1.4 Docs: Virtual Service
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

D0O328-5SM1.1-en-2-20200910

https://istio.io/blog/2017/0.1-canary/
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/

Chapter 5 | Releasing Applications with OpenShift Service Mesh

References

For more information, refer to the Kiali overview section in the Red Hat Service Mesh
Guide at

https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

W D0O328-5SM1.1-en-2-20200910

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index

Chapter 5 | Releasing Applications with OpenShift Service Mesh

» Guided Exercise

Deploying an Application with Canary
Releases

In this exercise, you will use Red Hat OpenShift Service Mesh to deploy different versions of
a service using canary releases.

Outcomes
You should be able to:

+ Roll out versions of an application as canary releases using OpenShift Service Mesh.
+ Specify the traffic percentage directed to each canary deployment.

+ Visualize traffic distribution and identify errors using Kiali.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

Run the following command on workstation to setup the environment.

[student@workstation ~]$ lab release-canary start

P 1. Review the resource files provided. The setup script used these files to deploy the initial
version of the vertx-greet application.

The vertx-greet application exposes a GET endpoint that returns a greeting message.
It also implements a basic rate limit feature to help you understand one of the scenarios
in this exercise. Note that this limit is not the same as the rate limit feature included in
OpenShift Service Mesh. The source code is available in the Git repository at https://
github.com/RedHatTraining/D0328-apps/ in the vertx-greet directory.

11. Navigate to the directory where the cluster resource files for this exercise are located.

[student@workstation ~]$ cd ~/D0328/labs/release-canary/

1.2. Review the deployment-vi1.yaml resource file.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

apivVersion: apps/vi
kind: Deployment
metadata:
name: vertx-greet-vil
spec:
selector:
matchLabels:
app: vertx-greet
replicas: 1
template:
metadata:
labels:
app: vertx-greet
version: vi
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:

- name: vertx-greet
image: quay.io/redhattraining/ossm-vertx-greet:1.0
ports:

- containerPort: 8080

This file defines the Deployment resource for the initial version of the application.
Each version is associated to a deployment. The initial version is v1, which is reflected
both in metadata.name and spec.template.metadata. labels.version.

1.3. Review the service.yaml resource file.

apiVersion: vi
kind: Service
metadata:
labels:
app: vertx-greet
name: vertx-greet

spec:
ports:
- name: http
port: 8080

protocol: TCP
targetPort: 8080
selector:
app: vertx-greet

The service directs internal traffic to the deployment pods. You do not need to
change this service or create new ones when deploying canary releases.

14. Review the gateway.yaml resource file.

apiVersion: networking.istio.io/vilalpha3
kind: Gateway
metadata:
name: vertx-greet-gateway
spec:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

selector:
istio: ingressgateway
servers:
- port:
number: 80
name: http
protocol: HTTP
hosts:

_ nxn

The istio gateway sits at the edge of the service mesh and allows incoming
connections to the application.

15. Review the virtual-service.yaml resource file.

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService

metadata:
name: vertx-greet
spec:
hosts:
_ uxn
gateways:
- vertx-greet-gateway
http:
- route:
- destination:
host: vertx-greet
port:

number: 8080
The Istio virtual service defines traffic routes from the istio gateway to the application
and defines traffic splitting for each version. Initially, the virtual service only includes
one route, as only one version of the application is deployed.

P 2. Verify that the initial version application is deployed and running.

21, Run the following command to load the environment variables for this exercise.

[student@workstation release-canary]$ source /usr/local/etc/ocp4.config

2.2. Login to OpenShift as the developer user.

[student@workstation release-canary]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

Ensure that you are using the release-canary project.

[student@workstation release-canary]$ oc project release-canary
...output omitted...

Next, perform the rest of the steps in this project.

Chapter 5 | Releasing Applications with OpenShift Service Mesh
2.3. Check that all the resources have been deployed by the setup script.

[student@workstation release-canary]$ oc get \
> deployment, pod, service, virtualservice, gateway

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/vertx-greet-vi 1/1 1 1 5m38s

NAME READY STATUS RESTARTS AGE
pod/vertx-greet-v1-bd87877dd-6rj2m 2/2 Running 0 5m38s

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S) AGE
service/vertx-greet ClusterIP 172.30.37.155 <none> 8080/TCP 5m38s
NAME GATEWAYS

virtualservice.networking.istio.io/vertx-greet [vertx-greet-gateway]

NAME AGE
gateway.networking.istio.io/vertx-greet-gateway 5m38s

24. Usetheoc get route command to get the URL of the istio gateway. Save the
result into a variable for later use.

[student@workstation release-canary]$ GATEWAY_URL=$(oc get route istio-
ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

2.5. Verify that the application works. Make a request to the route URL that you stored in
the GATEWAY_URL variable.

[student@workstation release-canary]$ curl $GATEWAY_URL
Hello World!

P 3. Generate the canary release. Deploy version 2 of the vertx-greet application by creating
a new deployment. After the new version is deployed, route a portion of the traffic to the
new version.

31 Make a copy of the deployment -vi1.yaml file and name it deployment -v2.yaml.

[student@workstation release-canary]$ cp deployment-vi.yaml deployment-v2.yaml

3.2. Modify the deployment -v2.yaml file to introduce the changes for version 2.
Change the value of metadata.name to vertx-greet-v2, change the value of
spec.template.metadata. labels.version to v2. Finally, add the GREETING
environment variable with the value Hello Red Hat!.

apiVersion: apps/vi
kind: Deployment
metadata:
name: vertx-greet-v2
spec:
selector:
matchLabels:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

app: vertx-greet
replicas: 1
template:
metadata:
labels:
app: vertx-greet
version: v2
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:
- name: vertx-greet
image: quay.io/redhattraining/ossm-vertx-greet:1.0
ports:
- containerPort: 8080
env:
- name: GREETING
value: "Hello Red Hat!"

You can see the complete deployment for version 2 at ~/D0328/solutions/
release-canary/deployment-v2.yaml.

3.3. Deploy version 2 by creating the new deployment.

[student@workstation release-canary]$ oc create -f deployment-v2.yaml
deployment.apps/vertx-greet-v2 created

3.4. Review the destination-rule.yaml file provided.

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: vertx-greet
spec:
host: vertx-greet
subsets:
- name: vi
labels:
version: vi
- name: v2
labels:
version: v2

The file defines two subsets, one for each version. Each subset represents

a portion of the traffic, and includes a name and a label that associates the
subset with the deployment version. The version is the one specified by the
spec.template.metadata. labels.version property in each Deployment
resource.

3.5. Create a DestinationRule with the destination-rule.yaml file.

[student@workstation release-canary]$ oc create -f destination-rule.yaml
destinationrule.networking.istio.io/vertx-greet created

Chapter 5 | Releasing Applications with OpenShift Service Mesh

3.6. Modify the VirtualService resource with the oc edit command to send 80%
of the traffic to v1 and the remaining 20% to v2. Associate the existing destination
with the v1 subset and add a weight of 80. Next, add another destination for the v2
subset with a weight of 20.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

Apply the changes in the text editor.

...output omitted. ..
apivVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
...output omitted. ..
name: vertx-greet
...output omitted. ..
spec:
hosts:
R
gateways:
- vertx-greet-gateway
http:
- route:
- destination:
host: vertx-greet
subset: vi
port:
number: 8080
weight: 80
- destination:
host: vertx-greet
subset: v2

port:
number: 8080
weight: 20

..output omitted...
Save your changes to the resource, and then close the editor.

3.7. Run test_canary.py to check that the portion of responses expected for each
service corresponds to the weights configured in the previous steps. This script
sends a sequence of 50 requests to the specified URL and shows the result. From a
previous step, you should have the gateway route URL stored in the GATEWAY_URL
environment variable. Execute the script passing this variable as the first parameter.

[student@workstation release-canary]$./test_canary.py $GATEWAY_URL

Wait until the script ends

...output omitted...
Hello World!
Hello World!
Hello World!
Hello World!

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Hello World!

Hello World!

Hello World!

Hello Red Hat!

...output omitted. ..

Total requests: 50

* 'Hello World!' responses: 42 (84.0%)
* 'Hello Red Hat!' responses: 8 (16.0%)
* Errors: 0 (0.0%)

Notice how the response percentages for each version show values close to the
weights that you specified in the VirtualService resource. Expect to see small
deviations in the traffic statistics when compared to the configured weights, as there
is a degree of random variation in traffic splitting.

P 4. Create another canary release for version 3. This version includes a rate limit feature, which
establishes the maximum number of requests per second that the application can handle.
The application will reject requests received at a rate that exceeds this limit. After deploying
version 3, modify the traffic weights so that traffic is now distributed between the three
versions.

4]1. Make a copy of the deployment -v2.yaml file and name it deployment -v3.yaml.

[student@workstation release-canary]$ cp deployment-v2.yaml deployment-v3.yaml

4.2. Introduce the changes for version 3 in deployment -v3.yaml.
Change the name to vertx-greet-v3, change the value of
spec.template.metadata. labels.version to v3, change the GREETING
value, and add a new environment variable MAX_REQUESTS_PER_SECOND with a
value of 1.

apiversion: apps/vi
kind: Deployment
metadata:
name: vertx-greet-v3
spec:
selector:
matchLabels:
app: vertx-greet
replicas: 1
template:
metadata:
labels:
app: vertx-greet
version: v3
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:

- name: vertx-greet
image: quay.io/redhattraining/ossm-vertx-greet:1.0
ports:

- containerPort: 8080
env:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

- name: GREETING
value: "Hello v3!"

- name: MAX_REQUESTS_PER_SECOND
value: "1"

You can see the complete deployment for version 3 at ~/D0328/solutions/
release-canary/deployment-v3.yaml.

4.3. Deploy version 3 by creating the new deployment.

[student@workstation release-canary]$ oc create -f deployment-v3.yaml
deployment.apps/vertx-greet-v3 created

4.4. Modify the DestinationRule resource. Use the oc edit command to create a
new subset for version 3.

[student@workstation release-canary]$ oc edit destinationrule vertx-greet

In the text editor, add the subset for v3

...output omitted. ..
apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
...output omitted. ..
name: vertx-greet
...output omitted. ..
spec:
host: vertx-greet
subsets:
- labels:
version: vi
name: vl
- labels:
version: v2
name: v2
- labels:
version: v3
name: v3
...output omitted...

Save and close the editor to apply the changes.
45. Modify the VirtualService resource to assign a small portion of traffic to v1 and

balance the rest between v2 and v3. Use the oc edit command to modify the
weight property of vl and v2, and to add a new destination node for v3.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

In the text editor, modify the weight property of vl and v2, and add a new
destination for v3.

188

Chapter 5 | Releasing Applications with OpenShift Service Mesh

...output omitted...

apiVersion: networking.istio.io/vilalpha3

kind: VirtualService
metadata:

...output omitted...

name: vertx-greet

...output omitted...
spec:

hosts:

Wk

gateways:

- vertx-greet-gateway

http:

- route:

- destination:
host: vertx-greet
subset: vi
port:

number: 8080
weight: 10

- destination:
host: vertx-greet
subset: v2
port:

number: 8080
weight: 45

- destination:
host: vertx-greet
subset: v3
port:

number: 8080
weight: 45
.output omitted. ..

Save and close the editor to apply the changes.

4.6. Run test_canary.py again to check that the portion of responses expected for
each service corresponds to the weights configured. Execute test_canary.py

passing GATEWAY_URL as a parameter.

[student@workstation release-canary]$./test_canary.py $GATEWAY_URL

...output omitted. ..

Hello Red Hat!

Hello World!

Hello Red Hat!

Hello Red Hat!

Hello v3!

Server responded with error

Server responded with error

Hello World!
...output omitted...

HTTP Error 503:

HTTP Error 503:

Service Unavailable

Service Unavailable

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Total requests: 50

* 'Hello
* 'Hello
* 'Hello

* Errors:

World!' responses: 5 (10.0%)
Red Hat!' responses: 18 (36.0%)
v3!' responses: 3 (6.0%)

24 (48.0%)

Notice how version 3 only returns a few correct responses, even though there are a
significant number of errors. The new version, which limits the number of requests per
second, is unable to attend all requests when they come at a high rate.

P 5. Inspect traffic with Kiali to gain more insight into traffic routing.

51

Obtain the Kiali web console url.

[student@workstation release-canary]$ KIALI_URL=$(oc get route \
> -n istio-system kiali \
> -0 jsonpath='http://{.spec.host}"')

52

Open the Kiali web console in the web browser.

[student@workstation release-canary]$ firefox $KIALI_URL &

53.

54.

5.5.

5.6.

57

5.8.

Click Log in with OpenShift. Log in using the developer account. Find your
credentials in the /usr/local/etc/ocp4.config classroom configuration file.
The user name is in the RHT_OCP4_DEV_USER variable and the password is in
RHT_OCP4_DEV_PASSWORD.

In the Kiali web console navigation pane, click Graph to open the graph view.

Click Select a namespace — release-canary to gather metrics for the release-
canary project.

Select anamespace «

C Filter by Name...

\ a
Clear all 2ls

istio-system

release-canary

Figure 5.8: Kiali namespace selector

Click No edge labels — Requests percentage to activate traffic percentage labels
in graph edges.

Click Display — Traffic Animation to include traffic animation in the graph.
Specify a longer duration for metric queries to make sure you can inspect all recent

traffic. Click Last Tm — Last 30m to show the graph with metrics from the last 30
minutes.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

5.9. Take a moment to inspect the traffic graph. Whereas v1 and v2 are working as
expected, v3 is causing the errors. Click the v3 rounded square representing the
workload. Notice how many of the requests to this version result in an error.

vertx-greet @

)

I Has virtual Service

¥ Hide

Services: vertx-greet
Workloads: vertx-greet-vl, vertx-greet-vz,
vertx-greet-v3

7.9%

Mo GRPC traffic logged.
— HTTP (requests per second):

v2 Total %hSuccess %Error

@Wmoe%

istio-ingressgateway

(iStiO‘System) 478% In 017 58.82 4118

Out 0.00 100.00 000

Out
v3

-

0 25 50 75 100
W OK M 3xx N 4xx B 5Sxx

Figure 5.9: Kiali traffic graph with errors

The new rate limiting feature introduced in v3 causes this behavior, as it does not
allow for more than one request per second. When you run the test_canary. py
script, you send a sequence of 50 requests to the application. Roughly 45% of them
are routed to v3, as you specified in the VirtualService resource. The script
does not apply any delay between requests, so as soon as one is completed, the
next one is sent. Under this scenario, v3 is receiving more than one request per
second. Therefore, you must modify the traffic share so that v3 does not receive
more requests than it can handle.

P 6. Reduce the traffic share of version 3. Modify the VirtualService resource to adjust the
traffic load of version 3.

6.]. Usetheoc edit command to modify the VirtualService resource again and
reduce the traffic share of v3.

[student@workstation release-canary]$ oc edit virtualservice vertx-greet

In the text editor, reduce the weight of v3 and send the rest to v2.

...output omitted. ..
apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: vertx-greet
spec:

D0O328-5SM1.1-en-2-20200910 w

Chapter 5 | Releasing Applications with OpenShift Service Mesh

hosts:
_ uxn
gateways:
- vertx-greet-gateway
http:
- route:
- destination:
host: vertx-greet
subset: vi
port:
number: 8080
weight: 10
- destination:
host: vertx-greet
subset: v2
port:
number: 8080
weight: 88
- destination:
host: vertx-greet
subset: v3

port:
number: 8080
weight: 2

...output omitted. ..
Save and close the editor to apply the changes.

6.2. Run test_canary.py again. Increase the number of requests to 100 by adding the
requests parameter, so that you can see some requests routed to v3.

[student@workstation release-canary]$./test_canary.py $GATEWAY_URL --requests 100

Wait until the script ends.

...output omitted. ..

Total requests: 100

* 'Hello World!' responses: 5 (5.0%)

* 'Hello Red Hat!' responses: 93 (93.0%)
* 'Hello v3!' responses: 2 (2.0%)

* Errors: 0 (0.0%)

Now, v3 does not limit requests, as only 2% of the traffic is sent to this version.
Therefore, v3 returns no errors.

Note

S If you do not see any requests routed to v3, run the test_canary. py script again.
The traffic weight assigned to v3 is now very low and it is possible that v3 receives O
out of 100 requests.

Similarly, errors can occur if, by chance, two requests are directed to v3 in less than
a second. Rerun the test_canary.py script in that case too.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

P 7. Inspect the traffic graph in Kiali again and verify that v3 is working as expected after the
traffic reduction.

7.1. Switch back to the Kiali console in the browser.

7.2. Click Graph in the Kiali console navigation pane. Select Last 5min in the metrics
duration selector to only show traffic for the last 5 minutes. Check that the traffic
graph does not show any errors.

wvertx-greet []

()
vl

¥ Hide

I Has Virtual Service

/ Services: vertx-greet
Workloads: vertx-greet-vi, vertx-greet-v2,

vertx-greet-w3

Ne GRPC traffic logged.
HTTP (requests per second):

Total Y%Success %Error

1:90%-

istio-ingressgateway

(istio-system) In 286 100.00 0.00
Out 000 100.00 0.00
Qut

~ |

o] 25 50 75 100
W OK 3xx M 4xx M Sxx

Figure 5.10: Kiali traffic graph without errors
P 8. Return to the home directory.

[student@workstation release-canary]$ cd ~
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-canary finish

This concludes the guided exercise.

D0O328-5SM1.1-en-2-20200910 w

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Deploying an Application with a Mirror
Launch

Objectives

After completing this section, you should be able to deploy a "mirror" service to test a new service
with a realistic load.

Testing in Production

When releasing new versions of services, it is often necessary to test the new versions of the
services in a production environment. Testing in production is important because it is difficult to
simulate production workloads or realistic production data in testing or staging environments.

Testing in production consists of:

+ Deploying the new version of the service in a production environment alongside the existing
version of the service.

+ Sending a copy of production traffic to both the new service and the existing service. This is
known as traffic mirroring.

+ Verifying the correct behavior of the new service.

The responses sent back to clients are sent from the previous version of the service, so there is
little risk of service disruption.

Traffic mirroring is also beneficial when the services involved are stateful. When the new version of
the service starts functioning, it starts with a state known to be compatible with the current state
of the old version. Sending the same traffic to both stateful services allows them to maintain a
synchronized state. When the new version of the service becomes the production version, it will
hold the right state.

These situations may be complex to solve programmatically, but OpenShift Service Mesh features
make them feasible. Traffic mirroring allows testing the new service in production, with production
requests, without service disruption, and keeping the state of both versions of stateful services
synchronized.

Note

S Traffic mirroring is also known as Mirror Launches or Dark Launches, referring
to the capacity of releasing new versions of services while keeping them hidden
from clients.

Mirroring in OpenShift Service Mesh

OpenShift Service Mesh uses DestinationRule resources to define subsets (usually

service versions) and the destination entry in VirtualService resources to route the
requests between subsets. OpenShift Service Mesh provides traffic mirroring by using the same
DestinationRule resources and introducing amirror entry in the VirtualService route:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: my_virtual_service
spec:
hosts:
- target_host
http:
- route:
- destination:
host: old_service_name
subset: old_subset
mirror:
host: new_service_nameta
subset: new_subsete’

© Themirror entry defines the service to which Istio is sending request copies.
© The name of the service that receives the mirrored traffic.
© The subset of hosts that receive the mirrored traffic, as defined in the DestinationRule.

D0O328-5SM1.1-en-2-20200910 w

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Note

E The mirror entry is an attribute of the objects forming the http array. If you find
the indentation and representation in yaml format to be confusing, consider the
following snippet of the same resource in json format:

{
"apiVersion": "networking.istio.io/vialpha3",
"kind": "VirtualService",
"metadata": {
"name": "my_virtual_service",
i
"spec": {
"hosts": [
"target_host"
1,
"http": [
{
"route": [
{
"destination": {
"host": "old_service_name",
"subset": "old_subset"
}
}
1,
"mirror": {
"host": "new_service_name",
"subset": "new_subset"
}
}
1
}
}

Istio does not distinguish whether the mirror host is an external or an internal service. Istio can
mirror traffic to any service with a related VirtualService resource.

Mirroring a Percentage of the Traffic

There are situations where it is not needed or desirable to mirror all the traffic to the new service.
For example, when maintaining the latest state of the service is not required, or when reducing
traffic between services is more important than testing all requests. In those situations, Istio and
OpenShift Service Mesh allow defining a percentage of the mirrored traffic:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:

name: my_virtual_service
spec:

hosts:

- target_host
http:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

- route:
- destination:
host: old_service_name
subset: old_subset
mirror:
host: new_service_name
subset: new_subset
mirror_percent: 10

In this example, only 10% of the requests sent to old_service_name are mirrored to
new_service_name.

Selecting the Appropriate Deployment Strategy

Canary releases and traffic mirroring are both deployment strategies that help you validate the
release of new service versions. Depending on your deployment and testing plan, you may want to
use one or the other. To pick the right strategy, follow these guidelines:

+ Use canary releases when you want to deploy a new version directly in production while
minimizing the risk. Also, choose this strategy if you need to introduce real users in the validation
process of the new version. By picking canary releases, you accept that a small portion of your
users might experience problems derived from the new version.

« Use traffic mirroring when you want to test the new version with production load without making
the version available to the public. For example, traffic mirroring can be suitable if you want
to test how the application responds to 100% of the production load. This approach is less
risky than canary releases. If something goes wrong, it does not affect users. However, traffic
mirroring is also more limited, because you can not include real users in the validation process.

Combining both strategies is also an interesting option. First, you use traffic mirroring to validate
that the new version works correctly with production traffic. Next, you deploy the new version as a
canary to start validating it against real users.

References

Mirroring
https://archive.istio.io/v1.4/docs/tasks/traffic-management/mirroring/
in Istio documentation.

D0O328-5SM1.1-en-2-20200910 w

https://archive.istio.io/v1.4/docs/tasks/traffic-management/mirroring/

Chapter 5 | Releasing Applications with OpenShift Service Mesh

» Guided Exercise

Deploying an Application with a Mirror
Launch

In this exercise, you will perform a Dark Launch release of an application and control the
amount of traffic mirrored to it.

The application you are deploying is a stateful variant of the greetings service: the service
respond request with a predefined response in vi1, and a configurable response in v2. The
status kept by both versions includes the amount of requests received. This status is stored
in memory, so it is lost if the service is restarted.

Outcomes

You should be able to mirror all or part of the traffic from one service to another to execute a
Dark Launch release.

Before You Begin

To perform this exercise, ensure you have:
+ A configured and running OpenShift cluster.
+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command creates the release-dark project in your OpenShift cluster and deploys a

single service on it. Although not needed for this exercise, you can review the source code of
this service at https://github.com/RedHatTraining/D0328-apps/ in the vertex-
greet directory.

[student@workstation ~]$ lab release-dark start

P 1. Validate that the application has successfully deployed.

11. Run the following command to load the environment variables created in Guided
Exercise: Creating a Lab Environment:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

13. Use the release-dark namespace for the remainder of this exercise.

[student@workstation ~]$ oc project release-dark
Now using project "release-dark" on server ...output omitted...

14. Verify the application is running by checking its logs and pod status.

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
vertx-greet-v1l-f44b9976c-skbch 2/2 Running 0] 3mlls

The actual name of your pods may be different.

P 2. Deploy a new version of the application, but continue sending traffic to the old version. The
new version uses the same image as the old one, quay.io/redhattraining/vertx-
greet:latest, but introduces a new environment variable that changes the greeting
message: GREETING="Hola Mundo!".

21. Create the deployment resource for the same quay.io/redhattraining/vertx-
greet:latest image. Use vertx-greet-v2 as the deployment name, and set the
version label to v2. Inject the GREETING environment variable into the deployed
container.

apiVersion: apps/vi
kind: Deployment
metadata:
name: vertx-greet-v2
spec:
selector:
matchLabels:
app: vertx-greet
version: v2
replicas: 1
template:
metadata:
labels:
app: vertx-greet
version: v2
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:

- name: vertx-greet
image: quay.io/redhattraining/ossm-vertx-greet:latest
ports:

- containerPort: 8080
resources:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

limits:
memory: '"200Mi"
cpu: "250m"
env:

- name: GREETING
value: "Hola Mundo!"

Save the Deployment resource in a file named deployment -v2.yml. You can use

the provided solution file at ~/D0328/solutions/release-dark/deployment -
v2.yml to check your file and correct any errors.

2.2. Create the Deployment resource in OpenShift using the oc create command:

[student@workstation ~]$ oc create -f deployment-v2.yml
deployment.apps/vertx-greet-v2 created

2.3. Validate the pod for the new version of the service is deployed and running:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
vertx-greet-v1-f44b9976c-dps95 2/2 Running 0 5m4s
vertx-greet-v2-7849968c47-mq7hc 2/2 Running 0 2m39s

P 3. Generate traffic to the vi service. Visualize in Grafana, and verify v2 is not receiving traffic.

31 Retrieve the gateway URL where the service is exposed. Open a new terminal and
execute the following command:

[student@workstation ~]$ GATEWAY_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

3.2. Inthe same terminal, execute this script to send a request to the vertx-greet
service every 0.5 seconds:

[student@workstation ~]$ watch -p -n0.5 curl -s $GATEWAY_URL

Keep this script active until the end of the exercise.

3.3. Return to the previous terminal window. Find the URL to Grafana by examining the
routes available in the istio-namespace. You can use the OpenShift console, or
execute the following command:

[student@workstation ~]$ GRAFANA URL=$(oc get route grafana \
> -n istio-system -o jsonpath='https://{.spec.host}')

Open the URL in the Firefox web browser. Use the lessons learned in Collecting

Service Metrics, and the instructions from Guided Exercise: Collecting Service Metrics,
to log into Grafana using your developer credentials.

[student@workstation ~]$ firefox $GRAFANA_URL &

34. GototheIstio Workload Dashboard by navigating to Home - Istio — Istio
Workload Dashboard. In the dashboard, select the release-dark namespace

Chapter 5 | Releasing Applications with OpenShift Service Mesh

and the vertx-greet-v1 workload. Note how the Incoming Request Volume
indicates the service is receiving around two requests per second.

S &« (C |Istio Workload Dashboard - Grafana 1 =o x.

WORKLOAD: vertx-greet-v1.release-dark

Incoming Request Volume ; Incoming Success Rate (non-5xx resp... Request Duration
0,
2 ops 100%

TCP Server Traffic] TCP Client Traffic

Leave this browser window open so that later you can review the amount of traffic
received.

3.5. Validate that the state of the service changes with the requests. Execute the
following command several times and see how the request number increases as the
service receives requests. Note also that only the v1 service is showing, indicating no
traffic is sent to the v2 service:

[student@workstation ~]$ oc get pods -o name | \

> xargs -L 1 oc logs --tail 1 -c vertx-greet

INFO: Attending greeting request #109 from vertx-greet-v1-f44b9976c-pkq44
[student@workstation ~]$

P 4. Configure OpenShift Service Mesh to mirror all requests sent to v1 to v2. Visualize in
Grafana, and verify v2 is receiving the same amount of traffic. Validate that both versions
change the state synchronously.

4]1. Update the DestinationRule resource to include the new version of the service as
a subset. Edit the resource directly in the OpenShift console, or use the oc edit
DestinationRule vertx-greet -n release-dark command to open the
resource in your default editor. Add a subset named v2 matching the version: v2
label:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:

name: vertx-greet

labels:

kiali_wizard: weighted_routing

spec:

host: vertx-greet

subsets:

- labels:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

version: vl
name: vl
- labels:
version: v2
name: v2

4.2. Update the Virtua'lService to mirror traffic to the v2 subset. In this way, a copy
of all requests sent to the vl subset of the vertx-greet host are also sent to the
v2 subset. Use the OpenShift console, or the oc edit VirtualService vertx-
greet -n release-dark command to edit the VirtualService resource:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: vertx-greet
labels:
kiali_wizard: weighted_routing
spec:
hosts:
_ mkn
gateways:
- vertx-greet-gateway
http:
- route:
- destination:
host: vertx-greet
subset: vi
port:
number: 8080
mirror:
host: vertx-greet
subset: v2

4.3. Return to the browser window and observe that the amount of traffic sent to vl is
roughly the same. Open a new browser tab to the same URL. Navigate back to the
Istio Workload Dashboard and select the release-dark namespace. This
time, select the vertx-greet-v2 workload.

Review the Incoming Request Volume graph. Note the amount of traffic received
by the v2 version of the service is the same as the traffic received by the v1 version.

4.4, Validate that both services change the state synchronously. Both services should
update the request count on each request. Restart both services, so they start with
the same initial state:

[student@workstation ~]$ oc delete pod --all -n release-dark
pod "vertx-greet-v1l-f44b9976c-pkq44" deleted
pod "vertx-greet-v2-7849968c47-s2s5p" deleted

Wait several seconds for both services to restart, and then use the following
command to check the status of both services. Run the command several times to
validate that both services increase the request count, keeping their internal states
synchronized:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

[student@workstation ~]$ oc get pods -o name | \

> xargs -L 1 oc logs --tail 1 -c vertx-greet

May 12, 2020 12:52:06 PM io.vertx.greet.GreetServer lambda$e

INFO: Attending greeting request #55 from vertx-greet-v1-f44b9976c-pq457
May 12, 2020 12:52:07 PM io.vertx.greet.GreetServer lambda$e

INFO: Attending greeting request #55 from vertx-greet-v2-7849968c47-66Tpg

P 5. Mirror 10% of the requests sent to v1 to v2. Visualize in Grafana, and verify v2 receives
roughly one tenth of the traffic vi1 receives.

51. Update the VirtualService resource to restrict traffic mirroring to 10% using
the OpenShift console or the oc edit VirtualService vertx-greet -n
release-dark command:

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: vertx-greet
labels:
kiali_wizard: weighted_routing
spec:
hosts:
I
gateways:
- vertx-greet-gateway
http:
- mirror:
host: vertx-greet
subset: v2
mirror_percent: 10
route:
- destination:
host: vertx-greet
subset: vi
port:
number: 8080

5.2. Return to your browser window. Observe that the traffic sent to v2 has reduced to
one tenth of the traffic received by v2. Verify that the traffic sent to v1 is still the
same as before, roughly two requests per second.

P 6. Accept the v2 version of the service by transferring all traffic to this version. Update the
VirtualService resource to route all traffic to the v2 subset using the OpenShift
console or the oc edit VirtualService vertx-greet -n release-dark
command:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
creationTimestamp: "2020-05-12T10:30:01Z2"
generation: 4

Chapter 5 | Releasing Applications with OpenShift Service Mesh

labels:
kiali_wizard: weighted_routing

name: vertx-greet

namespace: release-dark

resourceVersion: "20336884"

selfLink: /apis/networking.istio.io/vlalpha3/namespaces/release-dark/
virtualservices/vertx-greet

uid: 46be6a2b-1a89-4c98-9c5b-d342566329da

spec:
gateways:
- vertx-greet-gateway
hosts:
v
http:
- route:
- destination:
host: vertx-greet
port:

number: 8080
subset: v2

Confirm that the v2 service is receiving all traffic by reviewing the Incoming Request
Volume graph for both versions. The v1 service receives no requests, while the v2 service

receives all requests.

P 7. Finalize the traffic generation process. In the window terminal running the watch
command, press Ctr1+C to terminate the process. Then, you can close that terminal.

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-dark finish

This concludes the guided exercise.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

» Lab

Releasing Applications with OpenShift
Service Mesh

Performance Checklist

In this lab, you will deploy different versions of a service using canary releases, and use
service mesh mirroring to perform a dark launch.

Outcomes
You should be able to:

- Deploy a new version of a service using canary releases and redirect a percentage of
traffic to the new version.

+ Mirror traffic between two versions of a microservice using Red Hat OpenShift Service
Mesh mirroring.

Before You Begin
To perform this lab, ensure you have:

+ A configured and running OpenShift cluster.
+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift client (oc) installed on workstation.

You will be using an application that simulates an online payment processor for an e-
commerce application in this lab. The application has two microservices:

- gateway: Written in Java using the Quarkus framework. It simulates processing of
payments using multiple payment gateways like banks, bitcoin, mobile wallets and more.
This microservice is specific to this application and is not equivalent to the ingress
gateway.

- payment: Written in Java using the Quarkus framework. The payment microservice
acts as an APl gateway and the single point of communication for traffic coming into the
service mesh. It communicates with the gateway microservice to process payments.

The source code for the application is available in the payments folder in the GitHub
repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this
exercise.

[student@workstation ~]$ lab release-mesh start

The lab release-mesh start command creates a new project called release-mesh,
owned by the developer user (the value of the $SRHT_OCP4_DEV_USER environment
variable in your /usr/local/etc/ocp4.config file). It deploys an initial version of the
payment and gateway microservices in this project.

https://github.com/RedHatTraining/DO328-apps

Chapter 5 | Releasing Applications with OpenShift Service Mesh

You can examine the template that deploys the microservices in the ~/D0328/ labs/
release-mesh/app-deployment.yaml file.

1. Loginto OpenShift as the developer user and inspect the deployed microservices in the
release-mesh project. Verify that the payment and gateway microservices are deployed
and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

2. Test the initial version (v1) of the payment and gateway microservices. Invoke the /pay/
{amount} endpoint relative to the service mesh gateway URL, where amount is an integer
value representing a random amount.

You can also use the test_app.py script in the /home/student/D0328/1labs/
release-mesh folder to test the application. This script takes the service mesh gateway
URL as an argument (./test_app.py $G6W_URL). The script sends 50 requests and
prints the version, and percentage of traffic processed by each version of the payment
microservice. It also prints the error rate (if any) during request processing.

Verify that you see the response only from v1 of the payment microservice. Verify that all
payment requests are processed by v1 of the gateway microservice.

Note

S You cannot directly invoke the gateway microservice. Inspect the log output
from the gateway microservice to verify the version of the microservice that is
processing the payments.

3. The development team is ready to deploy and test v2 of the payment microservice. This
version has several new enhancements that must be tested in a production environment.

Deploy v2 of the payment microservice. A prebuilt, publicly available container image
is provided in the Quay.io registry at the URL quay.io/redhattraining/ossm-
payment:2.0.

4. Route 10% of all traffic to v2 of the payment microservice. v1 of the payment microservice
should still handle most of the traffic (90%).

Note
E A virtual service resource for the payment microservice was created by the lab start
script.

Use the test_app. py script to verify the traffic split.

5. The developers are also working on a new version of the gateway microservice. The
developers are not yet ready to deploy the new version of the gateway microservice to

Chapter 5 | Releasing Applications with OpenShift Service Mesh

process payments. They want to test this new version with real production data and monitor
the performance characteristics of the microservice.

Deploy v2 of the gateway microservice. A prebuilt, publicly available container image is
provided to you in the Quay.io registry at the URL quay.io/redhattraining/ossm-
gateway:2.0.

Enable mirroring of traffic from v1 of the gateway microservice to v2 of the gateway
microservice. v1 of the gateway microservice should still exclusively process all transactions.

Use the app_test. py script to test the changes and verify that you do not see any errors.
Inspect the log output from both versions of the gateway microservice to verify that all
transactions sent to v1 are mirrored to v2.

i ; Note
A virtual service and destination rule resource has already been created by the lab
start script.

6. Return to the home directory.

[student@workstation release-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the lab release-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab release-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-mesh finish

This concludes the lab.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

» Solution

Releasing Applications with OpenShift
Service Mesh

Performance Checklist
In this lab, you will deploy different versions of a service using canary releases, and use
service mesh mirroring to perform a dark launch.

Outcomes
You should be able to:

- Deploy a new version of a service using canary releases and redirect a percentage of
traffic to the new version.

+ Mirror traffic between two versions of a microservice using Red Hat OpenShift Service
Mesh mirroring.

Before You Begin
To perform this lab, ensure you have:

+ A configured and running OpenShift cluster.
+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift client (oc) installed on workstation.

You will be using an application that simulates an online payment processor for an e-
commerce application in this lab. The application has two microservices:

- gateway: Written in Java using the Quarkus framework. It simulates processing of
payments using multiple payment gateways like banks, bitcoin, mobile wallets and more.
This microservice is specific to this application and is not equivalent to the ingress
gateway.

- payment: Written in Java using the Quarkus framework. The payment microservice
acts as an APl gateway and the single point of communication for traffic coming into the
service mesh. It communicates with the gateway microservice to process payments.

The source code for the application is available in the payments folder in the GitHub
repository at https://github.com/RedHatTraining/DO328-apps.

On the workstation machine, use the lab command to prepare your system for this
exercise.

[student@workstation ~]$ lab release-mesh start

The lab release-mesh start command creates a new project called release-mesh,
owned by the developer user (the value of the $SRHT_OCP4_DEV_USER environment
variable in your /usr/local/etc/ocp4.config file). It deploys an initial version of the
payment and gateway microservices in this project.

https://github.com/RedHatTraining/DO328-apps

Chapter 5 | Releasing Applications with OpenShift Service Mesh

You can examine the template that deploys the microservices in the ~/D0328/ labs/
release-mesh/app-deployment.yaml file.

1. Loginto OpenShift as the developer user and inspect the deployed microservices in the
release-mesh project. Verify that the payment and gateway microservices are deployed
and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

11, Run the following command to load the environment variables defined in the guided
exercise where you created the lab environment:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

1.3. Set the current project to release-mesh:

[student@workstation ~]$ oc project release-mesh
Now using project "release-mesh" on server ...output omitted...

1.4. Verify that the pods for the initial version(v1) of the payment and gateway
microservices are deployed, and in a Running state:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
gateway-v1-5484d6fh59-8vrxf 2/2 Running 0 111s
payment-v1-d74848855-whncc 2/2 Running 0 111s

2. Test the initial version (v1) of the payment and gateway microservices. Invoke the /pay/
{amount} endpoint relative to the service mesh gateway URL, where amount is an integer
value representing a random amount.

You can also use the test_app.py scriptin the /home/student/D0328/labs/
release-mesh folder to test the application. This script takes the service mesh gateway
URL as an argument (./test_app.py $GW_URL). The script sends 50 requests and
prints the version, and percentage of traffic processed by each version of the payment
microservice. It also prints the error rate (if any) during request processing.

Verify that you see the response only from v1 of the payment microservice. Verify that all
payment requests are processed by v1 of the gateway microservice.

S Note
You cannot directly invoke the gateway microservice. Inspect the log output
from the gateway microservice to verify the version of the microservice that is
processing the payments.

Chapter 5 | Releasing Applications with OpenShift Service Mesh
21. Runtheoc get route command to gather the service mesh gateway URL.

[student@workstation ~]$ GW_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}"')

2.2. Test the application. Make a request to the /pay/{amount} endpoint relative to the
gateway URL (GW_URL).

[student@workstation ~]$ curl $GW_URL/pay/10
[payment-v1] OK. Transaction id is 6493

Note the response from v1 of the payment microservice. Your transaction id may be
different.

2.3. Test the application using the test_app. py script.

Do not add any relative endpoints to the gateway URL. It automatically generates a
random amount when invoking the payment microservice.

[student@workstation ~]$ cd ~/D0328/labs/release-mesh
[student@workstation release-mesh]$./test_app.py $GW_URL
Canary Release Test

Sending 50 requests to istio-ingressgateway ...output omitted...
[payment-v1l] OK. Transaction id is 9918

[payment-v1] OK. Transaction id is 8137

...output omitted...

[payment-vl] OK. Transaction id is 7685

Stats

Total requests: 50
* !'[payment-vl] OK' responses: 50 (100.0%)
* Errors: 0 (0.0%)

Note that payment -v1 is used to process all requests.

2.4. Use the oc logs command to view the logs for the gateway microservice. Get the
pod name from the oc get pods command.

[student@workstation release-mesh]$ oc logs gateway-vi1-5484d6fb59-8vrxf \
> -c gateway-vi1i

...output omitted. ..

Processing payment for $10 through gateway-vi...

Processing payment for $0 through gateway-vi...

Processing payment for $1 through gateway-vi...

Processing payment for $2 through gateway-vi...

...output omitted. ..

Processing payment for $48 through gateway-vi...

Processing payment for $49 through gateway-vi...

The logging output shows only the log message and has been trimmed to fit the width
of the page. You will see time stamps, the class name, and the logging level printed
before the log messages in your console.

Note that gateway-v1 is processing payments for all requests.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

3. The development team is ready to deploy and test v2 of the payment microservice. This
version has several new enhancements that must be tested in a production environment.

Deploy v2 of the payment microservice. A prebuilt, publicly available container image
is provided in the Quay.io registry at the URL quay.io/redhattraining/ossm-
payment:2.0.

31 You can copy and create the deployment YAML resource file for v2 from the app-
deployment . yaml file that was originally used to deploy the microservice.

The full deployment YAML resource is also available in the /home/student/D0328/
solutions/release-mesh/payment-v2-deploy.yaml file.

The YAML resource snippet to deploy v2 is as follows:

apiVersion: extensions/vilbetal
kind: Deployment
metadata:
labels:
app: payment
version: v2
name: payment-v2
spec:
replicas: 1
selector:
matchLabels:
app: payment
version: v2
template:
metadata:
labels:
app: payment
version: v2
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:
- name: payment-v2
image: quay.io/redhattraining/ossm-payment:2.0
imagePullPolicy: Always
ports:
...output omitted. ..

Deploy v2 using the oc create command.

[student@workstation release-mesh]$ oc create -f payment-v2-deploy.yaml
deployment.apps/payment-v2 created

3.2. Verify that v2 of the payment microservice is deployed and in Running state.

[student@workstation release-mesh]$ oc get pods

NAME READY STATUS RESTARTS AGE
gateway-v1-5484d6fb59-8vrxf 2/2 Running 0 46m
payment-v1-d74848855-whncc 2/2 Running 0 46m
payment-v2-64d475cb84-wc7cc 2/2 Running 0 22s

Chapter 5 | Releasing Applications with OpenShift Service Mesh

4. Route 10% of all traffic to v2 of the payment microservice. vl of the payment microservice
should still handle most of the traffic (90%).

Note
E A virtual service resource for the payment microservice was created by the lab start
script.

Use the test_app. py script to verify the traffic split.

41. Create a destination rule resource for the payment microservice.

The full destination rule YAML resource is also available in the /home/student/
D0328/solutions/release-mesh/payment-dest-rule.yaml file.

The YAML resource snippet to create the destination rule is as follows:

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: payment-dr
spec:
host: payment
subsets:
- name: vi
labels:
version: vi
- name: v2
labels:
version: v2

Create the destination rule using the oc create command.

[student@workstation release-mesh]$ oc create -f payment-dest-rule.yaml
destinationrule.networking.istio.io/payment-dr created

4.2. Editthe payment -vs virtual service resource.

[student@workstation release-mesh]$ oc edit vs payment-vs

Split the traffic between v1 and v2.

...output omitted. ..

spec:

gateways:

- payment-api-gw

hosts:

_ otk

http:

- route:

- destination:

host: payment
port:

number: 8080

Chapter 5 | Releasing Applications with OpenShift Service Mesh

subset: vi

weight: 90
- destination:
host: payment
port:

number: 8080
subset: v2
weight: 10

Save your changes.

4.3. Test the application using the test_app. py script.

[student@workstation release-mesh]$./test_app.py $GW_URL
...output omitted...
#H### Stats ###H#

Total requests: 50

* '[payment-vl] OK' responses: 48 (96.0%)
* '[payment-v2] OK' responses: 2 (4.0%)

* Errors: 0 (0.0%)

Note that the traffic is split between v1 and v2 (approximately 90/10 ratio). The split
may not be exact. The service mesh tries to maintain the ratio between versions as
much as possible.

5. The developers are also working on a new version of the gateway microservice. The
developers are not yet ready to deploy the new version of the gateway microservice to
process payments. They want to test this new version with real production data and monitor
the performance characteristics of the microservice.

Deploy v2 of the gateway microservice. A prebuilt, publicly available container image is
provided to you in the Quay.io registry at the URL quay.io/redhattraining/ossm-
gateway:2.0.

Enable mirroring of traffic from v1 of the gateway microservice to v2 of the gateway
microservice. vl of the gateway microservice should still exclusively process all transactions.

Use the app_test. py script to test the changes and verify that you do not see any errors.
Inspect the log output from both versions of the gateway microservice to verify that all
transactions sent to v1 are mirrored to v2.

i ; Note
A virtual service and destination rule resource has already been created by the lab
start script.

51. You can copy and create the deployment YAML resource file for v2 from the app-
deployment . yaml file that was originally used to deploy the microservice.

The full deployment YAML resource is also available in the /home/student/D0328/
solutions/release-mesh/gateway-v2-deploy.yaml file.

The YAML resource snippet to deploy v2 is as follows:

apiVersion: extensions/vilbetal
kind: Deployment
metadata:

Chapter 5 | Releasing Applications with OpenShift Service Mesh

labels:
app: gateway
version: v2
name: gateway-v2
spec:
replicas: 1
selector:
matchLabels:
app: gateway
version: v2
template:
metadata:
labels:
app: gateway
version: v2
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:
- name: gateway-v2
image: quay.io/redhattraining/ossm-gateway:2.0
imagePullPolicy: Always
ports:
...output omitted...

Deploy v2 using the oc create command.

[student@workstation release-mesh]$ oc create -f gateway-v2-deploy.yaml
deployment.apps/gateway-v2 created

5.2. Verify that v2 of the gateway microservice is deployed and in Running state.

[student@workstation release-mesh]$ oc get pods

NAME READY STATUS RESTARTS AGE
gateway-v1-5484d6Th59-8vrxf 2/2 Running 0 64m
gateway-v2-f4dc796bd-c72zc 2/2 Running 0 49s
payment-v1-d74848855-whncc 2/2 Running 0] 64m
payment-v2-64d475ch84-wc7cc 2/2 Running 0 18m

5.3. Edit the destination rule for the gateway microservice and add details for v2. You can
get the name of the destination rule resource using the oc get dr command.

[student@workstation release-mesh]$ oc edit dr gateway-dr

Add the details for v2 as follows

...output omitted. ..
spec:
host: gateway
subsets:
- labels:
version: vi

Chapter 5 | Releasing Applications with OpenShift Service Mesh

name: vl
- labels:
version: v2
name: v2

Save your changes.

5.4. Edit the virtual service for the gateway microservice and enable mirroring. You can get
the name of the virtual service resource using the oc get vs command.

[student@workstation release-mesh]$ oc edit vs gateway-vs

Enable mirroring as follows:

...output omitted...
spec:
gateways:
- payment-api-gw
hosts:
- gateway
http:
- mirror:
host: gateway
subset: v2
route:
- destination:
host: gateway
subset: vi
weight: 100

Save your changes.

5.5. Test the application using the test_app. py script.

[student@workstation release-mesh]$./test_app.py $GW_URL
...output omitted. ..
#H### Stats ####

Total requests: 50
* '[payment-vl] OK' responses: 44 (88.0%)
* '[payment-v2] OK' responses: 6 (12.0%)
* Errors: 0 (0.0%)

Note that the traffic split between v1 and v2 remains the same (approximately 90/10
ratio) as configured earlier.

5.6. Usethe oc logs command to view the logs for both versions of the gateway
microservice. Get the pod names from the oc get pods command.

[student@workstation release-mesh]$ oc logs gateway-vi1-5484d6fb59-8vrxf \
> -c gateway-vi

...output omitted. ..

Processing payment for $0 through gateway-vi...

Processing payment for $1 through gateway-vi...

Processing payment for $2 through gateway-vi...

Chapter 5 | Releasing Applications with OpenShift Service Mesh

...output omitted. ..
Processing payment for $48 through gateway-vi...
Processing payment for $49 through gateway-vi...

[student@workstation release-mesh]$ oc logs gateway-v2-f4dc796bd-c72zc \
> -c gateway-v2

...output omitted. ..

Processing payment for $0 through gateway-v2...

Processing payment for $1 through gateway-v2...

Processing payment for $2 through gateway-v2...

...output omitted. ..

Processing payment for $48 through gateway-v2...

Processing payment for $49 through gateway-v2...

The logging output shows only the log message, and has been trimmed to fit the width
of the page. Notice the time stamps, the class name, and the logging level printed
before the log messages in your console.

Note that all requests sent to gateway-v1 are mirrored to gateway-v2.

6. Return to the home directory.

[student@workstation release-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the lab release-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab release-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab release-mesh finish

This concludes the lab.

Chapter 5 | Releasing Applications with OpenShift Service Mesh

Summary

In this chapter, you learned:

Red Hat OpenShift Service Mesh supports canary releases. You can control the percentage of
traffic sent to new versions of microservices.

You can configure Traffic routing to specific versions based on URL and HTTP header matching.

Kiali can be used to visualize the traffic flow in the service mesh and to configure weighted
routing.

Red Hat OpenShift Service Mesh supports traffic mirroring to perform dark launches. You can
use this feature to test newer versions of your microservices without impacting currently running
services in production.

D0O328-5SM1.1-en-2-20200910 w

For use by |Jamie Longmuir jlongmui jlongmui@redhat.com

-
1
L L)

oyright © 2020 Red Hat, Inc.

D0O328-SM1.1-en-2-20200910

Chapter 6

Testing Service Resilience with
Chaos Testing

Goal Test the resiliency of an OpenShift Service Mesh ¢
with Chaos Testing.

Objectives + Create test errors to identify weaknesses in .
your application. 4
Create a delay in your services to test for ,
weaknesses in your application.]

‘“ \
Sections * Throwing HTTP Errors (and Guided Exercise)

o + Creating Delays in Services (and Guided
; Exercise)

I Lab Testing Service Resilience with Chaos Testing

w

r/

D0O328-5SM1.1-en-2-20200910

Chapter 6 | Testing Service Resilience with Chaos Testing

Throwing HTTP Errors

Objectives

After completing this section, you should be able to create test errors to identify weaknesses in
your application.

Chaos Testing

Although microservice-based applications are highly scalable, they also suffer from common
problems or fallacies associated with distributed computing There are eight fallacies of distibuted
computing. In this lecure, we will focus on two of the most common in general use cases.

+ The network is reliable.

+ There is zero latency.

These two assumptions must be addressed because network instability occurs and, if not dealt
with, can create unpredictable application behavior. For example, presenting unexpected errors to
the user, or silently ignoring errors without sending any notifications. To validate how applications
respond to network instability, you can introduce chaos to simulate network instability.

Chaos Testing is the process of testing a microservices-based application in production or in an
environment similar to production by introducing random errors to verify that the steps taken to
handle these problems are correct.

Netflix coined the term Chaos Testing to refer to the techniques they used to test their systems in
production, aimed at verifying that all their complex applications behaved as expected in the event
of network errors. Netflix engineers resorted to these techniques because they knew that network
errors and instability are inevitable.

You can use service mesh traffic management capabilities to introduce latency spikes or
connection errors in your application so that you can perform chaos testing.

Throwing HTTP Errors

Use the HTTPFaultInjection.Abort object on path spec.http.fault.abort toinject
errors into the VirtualService.

The Abort object requires two configuration values:

httpStatus
HTTP status code returned on abort

percentage
Percentage of total request to abort

The httpStatus value is the literal number representing the HTTP status code. If you want to
return an Internal Server Error use:

httpStatus: 500

Chapter 6 | Testing Service Resilience with Chaos Testing

The percentage is configured using a double value, ranging from 0.0 for a 0% and 100.0 for
100%.

For example, if you want to drop 20% of the connections to example-svc from other services
and return the Bad Request error, you can use a code like this in the Virtual Service:

apivVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: example-vs
spec:
hosts:
- example-svc
http:
- route:
- destination:
host: example-svc
subset: vi
fault: (1]
abort: (2]
percentage: (3]
value: 20.0
httpStatus: 400‘,

The HTTPFaultInjection configuration object responsible for all the faults injected into
the service.

The HTTPFaultInjection.Abort configuration object responsible for the error injection
configuration.

Percentage of the connections to abort.

The HTTP status code to return on abort.

00 O ©

When testing your application with HTTP errors, the percentage of failed requests can be lower
than your configured value. This is because the virtual service resources contain automatic retries
of failed requests.

For more information about retries, see Configuring Retry.

D References
Istio 1.4 / Fault Injection
https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
Istio 1.4 / Virtual Service / HTTPFaultinjection.Abort

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/
#HTTPFaultinjection-Abort

Fallacies of distributed computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Chaos engineering
https://en.wikipedia.org/wiki/Chaos_engineering

D0O328-5SM1.1-en-2-20200910 w

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Abort
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Abort
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Chaos_engineering

Chapter 6 | Testing Service Resilience with Chaos Testing

» Guided Exercise

Throwing HTTP Errors

In this exercise, you will set up Services Mesh to throw errors in an application route and
verify these errors.

Outcomes

You should be able to set up a route to throw HTTP errors.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the application is deployed in the cluster to test its behavior.

The source code is in the Git repository at https://github.com/RedHatTraining/
D0328-apps/ in the customer, preference, and recommendation directories.

[student@workstation ~]$ lab chaos-error start

P 1. Login to OpenShift and verify that the sample project deployed successfully.

11. Run the following command to load the environment variables created in the
Verifying OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. Change to project chaos-error:

[student@workstation ~]$ oc project chaos-error
Now using project "chaos-error" on server ...

Chapter 6 | Testing Service Resilience with Chaos Testing
14. Verify that pods are ready

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-6948b8b959-c15zf 2/2 Running 0 11s
preference-6d5d86cb79-9cjkv 2/2 Running 0 11s
recommendation-69db8d6c48-wrkc6é 2/2 Running 0] 11s

15. Save the ingress-gateway route host name with the /chaos endpoint into a
variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/chaos)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ for i in {1..10};do curl $INGRESS_URL; done
customer => preference => recommendation v1i from 'f11be97f1ddo': 1

customer => preference => recommendation v1i from 'f11be97f1ddo': 2
customer => preference => recommendation v1i from 'f11be97f1ddo': 3
customer => preference => recommendation v1 from 'f11be97f1ddo': 4
customer => preference => recommendation v1i from 'f11be97f1ddo0': 5
customer => preference => recommendation v1i from 'f11be97f1ddo0': 6
customer => preference => recommendation v1i from 'f11be97f1ddo': 7
customer => preference => recommendation v1i from 'f11be97f1ddo': 8
customer => preference => recommendation v1i from 'f11be97f1ddo': 9
customer => preference => recommendation vi from 'f11b097f1ddo': 10

) 2. Editthe recommendation VirtualService and configure it to always throw the HTTP
error 500:

[student@workstation ~]$ oc edit virtualservice recommendation

Add this after the route section under the http block with this fault section:

fault:
abort:
httpStatus: 500
percentage:
value: 50.0

The spec section should look like:

spec:
hosts:
- recommendation
http:
- route:
- destination:
host: recommendation
fault:
abort:

Chapter 6 | Testing Service Resilience with Chaos Testing

httpStatus: 500
percentage:
value: 50.0

Save the file to update of the VirtualService.

If you have trouble editing the VirtualService, you can find the new VirtualService definition
in the file D0328/solutions/chaos-error/vs-recommendation-error.yml. Apply
this definition using the following command:

[student@workstation ~]$ oc replace -f D0328/solutions/chaos-error/vs-
recommendation-error.yml
virtualservice.networking.istio.io/recommendation replaced

P 3. To verify that the recommendation application is throwing random errors, repeat the
previous service verification:

[student@workstation ~]$ for i in {1..10};do curl $INGRESS_URL; done
customer => preference => recommendation vi from 'f11b097f1ddo': 11
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => preference => recommendation vi from 'f11b097f1ddo': 14
customer => preference => recommendation vi from 'f11b097f1ddo': 15
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => Error: 503 - preference => Error: 500 - fault filter abort
customer => preference => recommendation vi from 'f11b097f1ddo': 19
customer => preference => recommendation vi from 'f11b097f1ddo': 20

i ; Note
By default, Istio retries each request twice. To clearly show how abort injections
result in errors, retries are deactivated in this exercise.

If no errors are thrown in the first ten requests, then redo the test to see the errors.

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-error finish

This concludes the guided exercise.

Chapter 6 | Testing Service Resilience with Chaos Testing

Creating Delays in Services

Objectives

After completing this section, you should be able to create a delay in your services to test for
weaknesses in your application.

Creating Delays in Services

The second distributed computing fallacy is network latency, which can spike at any moment.
Similar to network errors, network latency must be tested in your application to avoid unexpected
errors. During chaos testing you can inject artificial delays into services to simulate latency,
verifying that the application handles these problems gracefully.

You can inject delay errors independently or in parallel with connection errors. Red Hat
recommends that you perform both types of tests.

To inject delays in a VirtualService resource, use the H-TTPFaultInjection.Delay object
inside the HTTPFaultInjection configuration object.

The Delay object requires two configuration values:

fixedDelay
Delay to add to the connection.

percentage
Percentage of total requests into which the delay is injected.

You can declare the fixedDelay value in hours, minutes, seconds, and milliseconds (h/m/s/ms).

fixedDelay: 1h

The percentage value is a double value, ranging from 0.0 for a 0% and 100.0 for 100%.

For example, to add a 400 milliseconds delay to 10% of connections to the example - svc service,
you can use the following:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: example-vs
spec:
hosts:
- example-svc
http:
- route:
- destination:
host: example-svc
subset: vi
fault: @
delay: (2]

Chapter 6 | Testing Service Resilience with Chaos Testing

percentage: (3]
value: 10.0
fixedDelay: 400ms o

The HTTPFaultInjection configuration object responsible for injecting faults into the
service.

The HTTPFaultInjection.Delay configuration object responsible for the delay injection
configuration.

Percentage of the connections to delay.

Amount of time to delay the connection.

00 O ©

D References
Istio 1.4 / Fault Injection
https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
Istio 1.4 / Virtual Service / HTTPFaultinjection.Delay

https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/
#HTTPFaultinjection-Delay

W D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/traffic-management/fault-injection/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Delay
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPFaultInjection-Delay

Chapter 6 | Testing Service Resilience with Chaos Testing

» Guided Exercise

Creating Service Delays

In this exercise, you will set up Services Mesh to add and verify delays in an application route.

Outcomes

You should be able to set up a delay in a route.

Before You Begin

To perform this exercise, ensure you have access to:
- A configured and running OpenShift cluster.
+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that the microservices application is deployed in the cluster to test
its behavior.

The source code is in the Git repository at https://github.com/RedHatTraining/
D0328-apps/ in the customer, preference, and recommendation directories.

[student@workstation ~]$ lab chaos-delay start

P 1. Login to OpenShift and verify that the sample project is successfully deployed.

11. Run the following command to load the environment variables created in the
Verifying OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. Change to project chaos-delay:

[student@workstation ~]$ oc project chaos-delay
Now using project "chaos-delay" on server ...

Chapter 6 | Testing Service Resilience with Chaos Testing
14. Verify that pods are ready

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-69d5499fc4-h77bx 2/2 Running 0 11s
preference-558cf4f584-9bpd5 2/2 Running 0] 11s
recommendation-c495d86d7-4h8rf 2/2 Running 0 11s

15. Save the ingress-gateway route host name with the /delay endpointinto a
variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/delay)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ for i in {1..10};do curl -m 2 $INGRESS_URL; done
customer => preference => recommendation vl from 'f11be97fi1ddo': 1

customer => preference => recommendation vl from 'f11be97f1ddo': 2
customer => preference => recommendation vl from 'f11be97f1ddo': 3
customer => preference => recommendation vl from 'f11be97fi1ddo': 4
customer => preference => recommendation vl from 'f11be97f1ddo': 5
customer => preference => recommendation vl from 'f11be97f1ddo': 6
customer => preference => recommendation vl from 'f11be97f1ddo': 7
customer => preference => recommendation vl from 'f11be97f1ddo': 8
customer => preference => recommendation vl from 'f11be97f1ddo': 9
customer => preference => recommendation v1 from 'f11b097f1ddo': 10

P 2. Editthe recommendation VirtualService and configure it to add a delay of 7 seconds:

[student@workstation ~]$ oc edit virtualservice recommendation

Add this after the route section under the http block with this fault section:

fault:
delay:
percentage:
value: 50

fixedDelay: 7s

The spec section should look like:

spec:
hosts:
- recommendation
http:
- route:
- destination:
host: recommendation
fault:
delay:

Chapter 6 | Testing Service Resilience with Chaos Testing

percentage:
value: 50
fixedDelay: 7s

Save the file to perform the update of the VirtualService.

If you have any trouble editing the VirtualService, you can find the new VirtualService
definition in the file D0328/solutions/chaos-delay/vs-recommendation-
delayed.yml. Apply this definition with the following command:

[student@workstation ~]$ oc replace -f D0328/solutions/chaos-delay/vs-
recommendation-delayed.yml
virtualservice.networking.istio.io/recommendation replaced

P 3. To verify that the recommendation service is disrupting the flow of the application, repeat
the previous verification with a timeout of 2 seconds:

[student@workstation ~]$ for i in {1..10};do curl -m 2 $INGRESS_URL; done
customer => preference => recommendation v1i from 'f11be97f1ddo': 1

curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
customer => preference => recommendation v1i from 'f11be97f1dd0': 5

curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
curl: (28) Operation timed out after 2001 milliseconds with 0 bytes received
customer => preference => recommendation v1i from 'f11b097f1ddo': 8

customer => preference => recommendation v1i from 'f11be97f1ddo': 9

customer => preference => recommendation vi from 'f11b097f1ddo': 10

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-delay finish

This concludes the guided exercise.

Chapter 6 | Testing Service Resilience with Chaos Testing

» Lab

Testing Service Resilience with Chaos
Testing

Performance Checklist

In this lab, you will simulate network issues to test application resilience and graceful handling
of network issues.

Outcomes

You should be able to use OpenShift Service Mesh to simulate network failures and delays.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

« Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.
The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps
in the exchange-application directory.

The exchange application consists of the following services:
+ Frontend

+ Currency

+ Exchange

+ History

You can examine the services in the chaos -mesh project. The application is available using
the istio-ingressgateway route at the /frontend endpoint.

[student@workstation ~]$ lab chaos-mesh start

1. Loginto OpenShift and verify that the application is ready.

11. Run the following command to load the environment variables created in the Verifying
OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

https://github.com/RedHatTraining/DO328-apps

Chapter 6 | Testing Service Resilience with Chaos Testing
12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. Change to project chaos-mesh:

[student@workstation ~]$ oc project chaos-mesh
Now using project "chaos-mesh" on server ...

14. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-566cddc8c6-jtd5g 2/2 Running 0] 13s
exchange-66b78bf65c-s72gv 2/2 Running 0] 13s
frontend-5648fbb85f-td5dg 2/2 Running 0 13s
history-54b5c9d476-rk4pd 2/2 Running 0 13s

15. Save the ingress-gateway route hostname with the /frontend endpoint into a
variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

17. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history
On the Historical Data page, click Submit.

1.8. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

2. Introduce a delay fault to the exchange-vservice virtual service resource with the
following parameters:

+ Delay time: 10s.
+ The fault should influence 20% of all requests to the exchange-vservice virtual service.

With the delay fault in place, test how the frontend application responds to large delay
times.

Chapter 6 | Testing Service Resilience with Chaos Testing

3. Introduce an abort fault to the exchange-vservice virtual service resource with the
following parameters:

+ HTTP error code: 500.
The fault should influence 30% of all requests to the exchange-vservice virtual service.

With the abort fault in place, test how the frontend application reacts to HTTP errors.

4. Optionally, update the frontend deployment to use the quay.io/redhattraining/
ossm-frontend:3.0 image.

With both the delay and abort faults in place, test how the new application handles the
injected network issues.

Evaluation

Grade your work by running the lab chaos-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab chaos-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-mesh finish

This concludes the lab.

Chapter 6 | Testing Service Resilience with Chaos Testing

» Solution

Testing Service Resilience with Chaos
Testing

Performance Checklist

In this lab, you will simulate network issues to test application resilience and graceful handling
of network issues.

Outcomes

You should be able to use OpenShift Service Mesh to simulate network failures and delays.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

« Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.
The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps
in the exchange-application directory.

The exchange application consists of the following services:
+ Frontend

+ Currency

+ Exchange

+ History

You can examine the services in the chaos -mesh project. The application is available using
the istio-ingressgateway route at the /frontend endpoint.

[student@workstation ~]$ lab chaos-mesh start

1. Loginto OpenShift and verify that the application is ready.

11. Run the following command to load the environment variables created in the Verifying
OpenShift Credentials guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

https://github.com/RedHatTraining/DO328-apps

Chapter 6 | Testing Service Resilience with Chaos Testing
12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. Change to project chaos-mesh:

[student@workstation ~]$ oc project chaos-mesh
Now using project "chaos-mesh" on server ...

14. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-566cddc8c6-jtd5g 2/2 Running 0] 13s
exchange-66b78bf65c-s72gv 2/2 Running 0 13s
frontend-5648fbb85f-td5dg 2/2 Running 0 13s
history-54b5c9d476-rk4pd 2/2 Running 0 13s

15. Save the ingress-gateway route hostname with the /frontend endpoint into a
variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

17. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history
On the Historical Data page, click Submit.

1.8. Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

2. Introduce a delay fault to the exchange-vservice virtual service resource with the
following parameters:

+ Delay time: 10s.
+ The fault should influence 20% of all requests to the exchange-vservice virtual service.

With the delay fault in place, test how the frontend application responds to large delay
times.

Chapter 6 | Testing Service Resilience with Chaos Testing

2]. Edit the exchange-vservice virtual service resource. You can use the ~/D0328/
solutions/chaos-mesh/vservice-delay.yaml. Alternatively, add the delay

fault manually:

[student@workstation ~]$ oc edit virtualservice exchange-vservice

Add the following fault section to the first object in the . spec.http path:

http:
- match:

- uri:
prefix: /exchange

rewrite:

uri: /

route:

- destination:
host: exchange
port:

number: 8080
fault:
delay:
fixedDelay: 10s
percentage:
value: 20

Save the file to update the virtual service.

2.2. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

Refresh the Historical Data page until you encounter the delay.

The application waits until the delay is resolved. This is suboptimal in case of a non-
responsive service, and is considered a bug in the application.

3. Introduce an abort fault to the exchange-vservice virtual service resource with the
following parameters:

* HTTP error code: 500.

The fault should influence 30% of all requests to the exchange-vservice virtual service.
With the abort fault in place, test how the frontend application reacts to HTTP errors.

3.1. Edit the exchange-vservice virtual service resource. You can use the ~/D0328/
solutions/chaos-mesh/vservice-abort.yaml Alternatively, add the delay

fault manually:
[student@workstation ~]$ oc edit virtualservice exchange-vservice

Add the following abort section into the already existing fault section:

Chapter 6 | Testing Service Resilience with Chaos Testing

fault:
delay:
fixedDelay: 10s
percentage:
value: 20
abort:
percentage:
value: 30

httpStatus: 500

3.2. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

3.3. Open the Firefox developer console. Right-click anywhere on the web page. Then, click
Inspect Element.

In the Inspector window, click Console.

3.4. With the developer console open, refresh the page until you see the following error:

SyntaxError: "JSON.parse: unexpected keyword at line 1 column 1 of the JSON data"

The application does not inform the user about any network errors. It fails silently and
prints errors only into the developer console.

This behavior leads to user confusion and is considered a bug.

4. Optionally, update the frontend deployment to use the quay.io/redhattraining/
ossm-frontend: 3.0 image.

With both the delay and abort faults in place, test how the new application handles the
injected network issues.

4]. Update the frontend deployment:

[student@workstation ~]$ oc edit deployment frontend

Change the image version in the . spec.template.spec.containers[0].image
path:

spec:
containers:
- env:
- name: REACT_APP_GW_ENDPOINT
valueFrom:
configMapKeyRef:
key: GW_ADDR
name: frontend-cm
image: quay.io/redhattraining/ossm-frontend:3.0

Save the file to update the deployment.

4.2. Verify that the frontend pod is in the Running state:

Chapter 6 | Testing Service Resilience with Chaos Testing

[student@workstation ~]$ oc get pods
NAME READY
currency-c6879ff94-d7xdr 2/2
exchange-b8bb857cd-7x161 2/2
frontend-847f8bb99f-h4ssf 2/2
history-548b7f4954-jdjr8 2/2

STATUS

Running
Running
Running
Running

RESTARTS
0

© © o

AGE
151m
151m
40s
151m

4.3. Retest the application. Open the Historical Data page:

[student@workstation ~]$ firefox $FRONTEND/history

Note the following:

+ Because of time-out, no request takes longer than 3 seconds. After 3 seconds, the
request is discarded and another request is issued.

The time-out pattern addresses long delays.

+ When the exchange service returns a 5XX response, requests are re-executed up to 3

times.

The retry pattern addresses service and network unreliability.

+ When the application encounters more than 3 errors, the last error is propagated to

the user.

Evaluation

Grade your work by running the lab chaos-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab chaos-mesh grade

Finish

On the workstation machine, use the lab command to complete this exercise. This is important
to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab chaos-mesh finish

This concludes the lab.

Chapter 6 | Testing Service Resilience with Chaos Testing

Summary

In this chapter, you learned:
+ How to inject random errors into services to test the application resilience to network errors.

+ How to inject random delays into network connections to test applications behavior when faced
with network latency.

+ How to use errors and delays to perform Chaos Testing.

W D0O328-5SM1.1-en-2-20200910

Chapter 7

Building Resilient Services

Goal Leverage OpenShift Service Mesh strategies for ¢
creating resilient services.
Objectives *+ Describe the strategies for creating resilient .
services with Service Mesh. y
+ Configure time-outs to maintain service ,
reliability.]
- + Configure a service retry to maintain service
‘ reliability.
o + Configure a circuit breaker pattern to maintain
= service reliability.
Sections + Describing Strategies for Resilient Services with
OpenShift Service Mesh (and Quiz)
Configuring Time-outs (and Guided Exercise)
+ Configuring Retry (and Guided Exercise)
+ Configuring a Circuit Breaker (and Guided
Exercise)
Lab Building Resilient Services

r/

D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Objectives

After completing this section, you should be able to describe the strategies for creating resilient
services with Service Mesh.

Describing Strategies for Resilience

As discussed in Chapter 6, Testing Service Resilience with Chaos Testing, microservices-based
architectures are subject to the negative effects of distributed computing: unreliable networks,
transport costs, and latencies. Therefore, you should assume that applications will sometimes
experience problems and outages.

Preparing for resilience is a way to make applications more reliable and ready to overcome some
of these challenges. Istio takes reliability into account and includes resilience features as a part
of its traffic management model. In particular, virtual services and destination rules allow you to
configure flexible resilience strategies at different levels, such as the service level or the subset
level.

Resilience strategies include:

Load balancing
Use load balancing to prevent service overloads by distributing the load among several
service replicas sufficient to handle the load. To achieve resiliency with load balancing, you
must have at least one redundant replica. Thus, if a replica fails, then the load balancer can
redistribute all traffic among the rest of the healthy replicas without overwhelming them.

Time-outs
When making a request to a service, you might encounter errors, such as a slow-down or
failure in the service or network.

Instead of waiting indefinitely when these errors occur, establish a time-out beyond which the
request is rejected. Setting a time-out helps applications release resources that are blocked
waiting for a response. It also protects the whole system against cascading failures.

Retries
Sometimes, services might be temporarily unavailable due to transient problems, such as
network outages or momentary overloads. To address this situation, configure Istio to retry
the initially failed request a given number of times so that a request that would otherwise fail
due to a momentary problem can eventually succeed.

Circuit breakers
When a service approaches capacity, you can stop sending traffic to it, or break the circuit.
The service fails fast and you protect the service from becoming overloaded, which can cause
instability.

Istio can break the circuit statically and dynamically. You can define static connection and
request limits to protect a service against high loads. The dynamic mechanism uses outlier
detection, which monitors the status of each service host and stops sending traffic to hosts
that become unhealthy.

Chapter 7 | Building Resilient Services

Implementing Service Resilience with Load Balancing

One basic way of implementing service resilience is to distribute the load among multiple replicas
of the same service. If one of the replicas experiences a failure, then the load balancer removes
that replica from its pool and distributes the load among the healthy nodes. To be resilient, the
service must have at least one redundant replica, which is known as the N+ redundancy rule.

For example, if a service receives 50 requests per second, and each replica can handle 10 requests
per second, then the minimum number of replicas to be resilient is six. If one of the replicas fails,
then the service still has five replicas that can handle 100% of the load.

To configure load balancing for resilience at the service level, you must use the
DestinationRule configuration resource. Specifically, you must set the value of the
spec.trafficPolicy. loadBalancer .simple field to one of the following algorithms:

ROUND_ROBIN
Requests are sent to each host in turn to distribute the load evenly. This is the default
algorithm.

RANDOM
Requests are sent to hosts randomly. Under high loads, requests are distributed randomly
across instances.

LEAST_CONN
Requests are sent to a host with few connections. This algorithm picks two random hosts and
chooses the host with the fewest active connections.

The following is an example of a destination rule that uses the least requested load balancer:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:

name: my-destination-rule o
spec:

host: my-svcta

trafficPolicy:

loadBalancer:
simple: LEAST _conn®

Name of the destination rule.

Service affected by the defined policies.
Traffic policy defined for the my-svc service.
Load balancing algorithm name.

0000

You can also define load balancing policies at the subset level, applying specific load balancers to
different versions of the same service. The following example shows how to specify load balancing
features both at the service and the subset level for a specific version:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:

name: my-destination-rule
spec:

host: my-svc

trafficPolicy:

loadBalancer:

Chapter 7 | Building Resilient Services

simple: LEAST_CONN
subsets:
- name: vi
labels:
version: vi
- name: v2
labels:
version: v2
trafficPolicy: (2]
loadBalancer:
simple: RANDOM

© Traffic policy that applies the LEAST_CONN load balancer to the service.
© Traffic policy that applies the RANDOM load balancer to the v2 subset, overriding the policy at
the service level.

Consistent Hash Load Balancing

Istio includes a more advanced load balancing algorithm called Consistent Hash-based load
balancing. This load balancer provides soft session affinity by mapping HTTP headers, cookies, or
source IP to a particular service host. When hosts are added to or removed from the service, the
affinity is lost.

You can use this load balancer to keep a user session on a host when you want all requests from
that user to go to the same host. The following example demonstrates using the session_id
cookie as the hash key to apply this strategy:

apivVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: my-destination-rule
spec:
host: my-svc
trafficPolicy:
loadBalancer:
consistentHash:
httpCookie:
name: session_id
ttl: Os

Similarly, you can use the same approach with other HTTP headers or cookies. For example, you
can distribute the load based on the requested endpoint.

Because Consistent Hash-based load balancing establishes affinity between request data

and specific hosts, this type of load balancing can lead to host overload when your traffic is
unbalanced. For example, demanding users generating high loads, or popular endpoints receiving
much more load than other endpoints may cause this overload.

Chapter 7 | Building Resilient Services

D References
N+1redundancy
https://en.wikipedia.org/wiki/N%2B1_redundancy

Istio Docs: Traffic Management
https://archive.istio.io/v1.4/docs/concepts/traffic-management/

Istio Docs: LoadBalancerSettings
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
#LoadBalancerSettings

D References

For more information, refer to the Traffic management section in the Red Hat
Service Mesh Guide at
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/index

D0O328-5SM1.1-en-2-20200910 w

https://en.wikipedia.org/wiki/N%2B1_redundancy
https://archive.istio.io/v1.4/docs/concepts/traffic-management/
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#LoadBalancerSettings
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#LoadBalancerSettings
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index

Chapter 7 | Building Resilient Services

» Quiz

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Choose the correct answers to the following questions:

b1

b 2.

P 3.

) 4.

Which three strategies can be used to implement service resiliency in OpenShift
Service Mesh? (Choose three.)

a. Canary releases.

b. Load balancing.

c. Time-outs.

d. Distributed tracing.

e

. Circuit breakers.

Your networking provider is experiencing problems that affect your cluster. These
problems cause outages in the network that last for less than a second. As aresult, a
small percentage of requests directed to your services fail.

Which resilience strategy can make the failing requests succeed?

a. Load balancing.

b. Circuit breaker.

c. Retries.

d. Time-outs.

You are deploying an application on OpenShift Service Mesh. You estimate that the
application will receive an average of 30 requests per second.

Assuming that the application can handle up to 10 requests per second, what is a good
strategy for resilience?

a. Scale the service to 4 replicas and balance the load among them.

b. Scale the service to 3 replicas and balance the load among them.

c. Limit the load to 10 requests per second with a circuit breaker.

d. Configure retries to resend a request to the service if the request fails.

Which resilience strategy protects a service from overloading by stopping traffic
directed toit?

a. Retries.

b. Circuit breaker.

c. Time-outs.

d. Load balancing.

W D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

» Solution

Describing Strategies for Resilient
Services with OpenShift Service Mesh

Choose the correct answers to the following questions:

b1

b 2.

P 3.

) 4.

Which three strategies can be used to implement service resiliency in OpenShift
Service Mesh? (Choose three.)

a. Canary releases.

b. Load balancing.

c. Time-outs.

d. Distributed tracing.

e

. Circuit breakers.

Your networking provider is experiencing problems that affect your cluster. These
problems cause outages in the network that last for less than a second. As aresult, a
small percentage of requests directed to your services fail.

Which resilience strategy can make the failing requests succeed?

a. Load balancing.

b. Circuit breaker.

c. Retries.

d. Time-outs.

You are deploying an application on OpenShift Service Mesh. You estimate that the
application will receive an average of 30 requests per second.

Assuming that the application can handle up to 10 requests per second, what is a good
strategy for resilience?

a. Scale the service to 4 replicas and balance the load among them.

b. Scale the service to 3 replicas and balance the load among them.

c. Limit the load to 10 requests per second with a circuit breaker.

d. Configure retries to resend a request to the service if the request fails.

Which resilience strategy protects a service from overloading by stopping traffic
directed toit?

a. Retries.

b. Circuit breaker.

c. Time-outs.

d. Load balancing.

D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

Configuring Time-outs

Objectives

After completing this section, you should be able to configure time-outs to maintain service
reliability.

Defining Time-outs

Cloud-native applications are composed of different microservices making various internal and
external calls. When an application relies on different components distributed across the network,
the network connection becomes one of the biggest potential problems for the stability of your
application.

Both the network and external service are inherently unreliable. To improve the resilience of your
applications, you can use a time-out.

A time-out is the amount of time that a service or an application waits for some event. OpenShift
Service Mesh enables you to configure the time-out outside of your application code, in the Envoy
proxy, using virtual services or HTTP headers.

Using a time-out provides:

+ A simple way of mitigating cascading failures. Because your application is failing early, you stop
propagating slow responses from downstream services to systems that depend on yours.

+ A guarantee that a network request finishes within a limited time.

+ Better resource usage, because the time-outs reduce the time an application is blocked waiting
for a response.

Configuring Time-outs in OpenShift Service Mesh

Time-outs can be managed in the application code, but that approach has drawbacks including:
+ Adding an additional layer of complexity that must be maintained.

+ Coupling the application with the network layer.

Using OpenShift Service Mesh to manage time-outs enables you to maintain a separation of
application business logic and network management.

In OpenShift Service Mesh, you can configure the time-outs using virtual services or HTTP
headers without modifying your application code.

Note
E The default time-out for HTTP connections in OpenShift Service Mesh is 15
seconds.

W D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

Configuring Time-outs Using Virtual Services

Virtual services allow you to configure time-outs for all traffic routed to a service. You can apply
a time-out setting using the timeout field in the route rules and assigning a value measured in
seconds.

The following example shows a time-out configuration in a virtual service:

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: a-service-vs
spec:
hosts:
- example-svc
http:
- route:
- destination:
host: preference
timeout: 1s

In the preceding example, Envoy waits up to 1second on any call to the example-svc service
before returning a time-out error.

Configuring Time-outs Using HTTP Headers

In OpenShift Service Mesh, you can use HTTP headers to modify Envoy behavior. The Envoy
proxy can add, remove, or modify HTTP headers for incoming requests. When requests with HTTP
headers modifying Envoy proxy behaviour are made from outside the mesh, the Envoy proxy
ignores them.

In OpenShift Service Mesh, you can use the PILOT_SIDECAR_USE_REMOTE_ADDRESS

flag to modify how Envoy determines the origin of a connection. Setting the value of
PILOT_SIDECAR_USE_REMOTE_ADDRESS to true, allows you to configure time-outs using
headers.

Warning
Changing Pilot settings can have unexpected consequences on the stability and
behavior of your service mesh.

You can configure time-outs adding the x-envoy-upstream-rq-timeout-ms request HTTP
header with a value assigned in milliseconds.

The following example shows a request to a service with time-out settings:

HTTP/1.1 200 OK

date: Wed, 13 May 2020 13:56:01 GMT
...output omitted. ..
X-envoy-upstream-rqg-timeout-ms: 500
...output omitted...

The preceding example defines a time-out of 500 milliseconds that is only valid until the service
responds to that request.

Chapter 7 | Building Resilient Services

Selecting Time-outs for Resilience

Each application is different, and the time required to generate a response depends on multiple
factors, such as how busy the application is or if it calls external services. There is no standard
way of calculating a precise value for the time-out, but there are several things to consider when
defining a time-out value:

+ The value allows slow responses to arrive.

+ The value stops waiting for a response that is not returned.

+ A high value increases latency, especially in distributed systems.

+ A high value potentially increases computing resources waiting for a dead service to respond.

Time-outs are not the only solution to increase the reliability of your applications. You can
combine time-outs with more advanced strategies like retries or circuit breakers.

D References
Time-outsin Istio

https://archive.istio.io/v1.4/docs/tasks/traffic-management/request-timeouts/

HTTPRoute
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/
#HTTPRoute

HTTP Header sanitizing with Envoy
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/
header_sanitizing

W D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/traffic-management/request-timeouts/
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRoute
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRoute
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/header_sanitizing
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_conn_man/header_sanitizing

Chapter 7 | Building Resilient Services

» Guided Exercise

Configuring Time-outs

In this exercise, you will configure time-outs for an application deployed in OpenShift Service
Mesh.

Outcomes

You should be able to configure time-outs in OpenShift Service Mesh.

The application is composed of several services calling each other. These services pass
requests as follows:

-+ customer: the entry point of the application sending requests to the preference
service.

- preference: receives requests from the customer service, and sends requests to the
recommendation service.

- recommendation: receives requests from the preference service and returns a
response. This is the last service in the chain of requests.

The final response from the application includes the responses from each service.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab resilience-timeout start

P 1. This guided exercise uses scripts that are located in ~/D0328/1labs/resilience-
timeout. Change to that directory.

[student@workstation ~]$ cd ~/D0328/labs/resilience-timeout
[student@workstation resilience-timeout]$

P 2. Loginto the OpenShift cluster as an unprivileged user and verify that the lab project has
successfully deployed.

21. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ source /usr/local/etc/ocp4.config

2.2. Login to OpenShift as the developer user.

[student@workstation resilience-timeout]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

2.3. Change to the resilience-timeout project.

[student@workstation resilience-timeout]$ oc project resilience-timeout
Now using project "resilience-timeout" on server

2.4. \Verify the status of the resilience-timeout project pods.

[student@workstation resilience-timeout]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-f7bffdbf6-9mbzn 2/2 Running 0 50s
preference-5585d5987f-9z26q 2/2 Running 0 50s
recommendation-75c77bd445-55bb4 2/2 Running 0 50s

2.5. Examine the response-times. sh script which uses the cur1 command to make a
call to the lab application and returns a custom output.

Execute the response-times. sh script to test the lab application response time..

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation v1i from 'f11be97f1ddo': 1
HTTP code: 200

Time: 0,032099s

P 3. Configure a delay of 3 seconds in the recommendation-vs virtual service.

31. Examine the recommendation-delay.yaml file that configures a 3 seconds delay

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
...output omitted...
http:
- fault:
delay:
percent: 100
fixedDelay: 3s
...output omitted...

Use the oc replace command to replace the virtual service configuration with the
new one.

[student@workstation resilience-timeout]$ oc replace -f recommendation-delay.yaml
virtualservice.networking.istio.io/recommendation-vs replaced

Chapter 7 | Building Resilient Services

P 4. Verify the response time of the application.

4]1. Execute the response-times. sh script to verify the increased response time.

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation vl from 'f11be97f1ddo': 2

HTTP code: 200
Time: 3,063155s

P 5. Configure aroute time-out of 0.5 seconds in the preference-vs virtual service.

51. Examine the route-timeout.yaml file that configures the route time-out.

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
...output omitted. ..
http:
- route:
...output omitted...
timeout: 0.5s

Use the oc replace command to replace the virtual service configuration with the
new one.

[student@workstation resilience-timeout]$ oc replace -f route-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

P 6. Verify the response time of the application.

6.1. Execute the response-times. sh script to verify the time-out setting.

[student@workstation resilience-timeout]$ sh response-times.sh
customer => Error: 504 - upstream request timeout

HTTP code: 503

Time: 1,630933s

The preference service only waits 0.5 seconds for a response from the
recommendation service. The reason that the response takes more than 0.5
seconds is because of the default Istio retry policies.

P 7. Update the preference-vs virtual service to remove the route time-out setting.

71. Examine the removed-timeout .yaml file that configures the preference-vs
virtual service to use the default route time-out settings.

Use the oc replace command to replace the virtual service configuration with the
new one.

[student@workstation resilience-timeout]$ oc replace -f removed-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

7.2. Execute the response-times. sh script to test the response of the lab application.

Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ sh response-times.sh
customer => preference => recommendation vl from 'f11be97f1ddo': 5
HTTP code: 200

Time: 3,034979s

After removing the time-out in the preference-vs virtual service, the response
time returns to values close to 3 seconds.

) 8. Verify that the application applied a timeout of @.5 seconds per request.

81. Setthe PILOT_SIDECAR_USE_REMOTE_ADDRESS environment variable in the
istio-pilot deployment.
By default the Envoy proxy discards any HTTP header that modifies its behaviour.

Enabling the PILOT_SIDECAR_USE_REMOTE_ADDRESS environment variable allows
you to modify the time-out settings using HTTP headers.

[student@workstation resilience-timeout]$ oc set env deployment/istio-pilot \
> PILOT_SIDECAR_USE_REMOTE_ADDRESS=true -n istio-system
deployment.apps/istio-pilot updated

Wait a few seconds until OpenShift redeploys the istio-pilot container with the
new environment variable. Use the oc command to follow the progress.

[student@workstation resilience-timeout]$ oc get pods -n istio-system

NAME READY STATUS RESTARTS AGE
...output omitted...

istio-ingressgateway-7f6fcf4bc9-9ng74 1/1 Running 0] 42h
istio-pilot-5bbc676f7c-1j29x 2/2 Running 0] 7s

istio-pilot-6b5f69bcc7-4h6v8 2/2 Terminating 0 42h
istio-policy-7cb97db7c8-cf55c 2/2 Running 0 42h

...output omitted. ..

Warning
Changing pilot settings can have unexpected consequences on the stability and
behavior of your service mesh.

8.2. Examine the headers-timeout.yaml file that configures the customer virtual
service to add a header.

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
...output omitted. ..
http:
- headers:
request:
set:
X-envoy-upstream-rq-timeout-ms: "500"
...output omitted...

Use the oc replace command to replace the virtual service configuration with the
new one.

Chapter 7 | Building Resilient Services

[student@workstation resilience-timeout]$ oc replace -f headers-timeout.yaml
virtualservice.networking.istio.io/preference-vs replaced

8.3. Execute the response-times. sh script to verify the time-out setting.
[student@workstation resilience-timeout]$ sh response-times.sh

customer => Error: 504 - upstream request timeout

HTTP code: 503
Time: 1,563069s

P 9. Return to the home directory.

[student@workstation resilience-timeout]$ cd ~
[student@workstation ~]$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-timeout finish

This concludes the guided exercise.

Chapter 7 | Building Resilient Services

Configuring Retry

Objectives

After completing this section, you should be able to configure a service retry to maintain service
reliability.

Defining the Retry Pattern

The retry pattern is a behavioral design pattern that focuses on reducing transient, short-lived
communication failures. In a cloud-native environment, microservices often rely on networks to
communicate with other microservices. Because networks can be unreliable, a microservice might
encounter a number of issues during a communication request, such as:

+ Arequest is lost, mishandled, or dropped due to an overloaded network.

+ A target service experiences a temporary failure, for example, due to storage becoming
temporarily disconnected.

+ A subset of target service pods experience a failure.

+ Arequest response takes longer than expected, resulting in the source service experiencing a
time-out.

When a request fails due to any of the errors described above, a repeated request with identical
parameters might still succeed. The retry pattern prevents propagation of such transient errors
into the application.

OpenShift Service Mesh enables you to implement the retry pattern without changing the
application code. Consequently, you can easily change the retry configuration at runtime, without
recompiling or redeploying your application.

Configuring Retries in OpenShift Service Mesh

Implementing the retry pattern in the logic of the application is possible, but has several
drawbacks:

+ The application code contains non-business logic. The application code becomes less focused,
and thus more difficult to understand and maintain.

+ Depending on the implementation, changing the parameters of the retry configuration might
require redeploying the application.

Implementing the retry pattern using OpenShift Service Mesh provides benefits, including:

+ Envoy proxies in OpenShift Service Mesh provide advanced configuration integrated with the
Red Hat OpenShift platform. For example, you can enable automatic outlier detection in case of
multiple 50x HTTP status codes, and provide routing logic for subsequent retries.

+ Both administrators and developers can change the configuration of retries and other resiliency
features. This encourages the DevOps approach towards developing and maintaining an
application.

W D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

Configuring Retry Using Virtual Service

You can configure the retry pattern in the virtual service resource, for example:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: example-vs
spec:
hosts:
- example-svc
http:
- route:
- destination:
host: example-svc
subset: vi
retries: (1)
attempts: 3 ©
perTryTimeout: 2s (3]
retryoOn: 5xx,retriable-4xx o

The HTTPRetry object responsible for configuring retries.

The number of times to resend a request.

A time-out value for each retry request. Valid values are in milliseconds ms, seconds s,
minutes m, or hours h.

A policy that specifies conditions that cause failed requests to retry. The value is a list of
comma-separated values.

0O 000

Virtual services retry failed requests twice by default. To disable the retry configuration, set the
attempts parameter of the retry configuration to 0. For example:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: vs-with-no-retry
spec:
hosts:
- example-svc
http:
- retries:
attempts: 0
route:
- destination:
host: example-svc

Selecting Retry Policies

The virtual service resource enables you to select one or more retry policies. The Envoy proxy
evaluates each failed request using the retry policies. If the Envoy proxy matches a request with
any of the selected policies, it retries that request.

Selecting retry policies is important for optimal behavior of your service mesh. OpenShift Service
Mesh contains, among others, the following retry policies:

Chapter 7 | Building Resilient Services

5xx
This policy matches any response that contains the 5xx response code. Additionally, this
policy matches any requests that do not get a response, such as due to a disconnect, reset, or
aread time-out.

Note that setting the x-envoy-upstream-rq-timeout -ms header overrides the
configuration time-out. If a request violates a value set in this header, the response contains
the 504 response code, but will not be matched by the 5xx policy.

gateway-error
This policy matches responses that contain the 502, 503, or 504 response codes.

reset
This policy matches requests without any response due to disconnect, reset, or read time-out.

retriable-4xx
This policy matches request responses that contain the 409 response code.

Note that the list above is not exhaustive. When choosing a retry policy, it is a good practice to first
analyze all failed requests in your application and choose the most specific policy for that case. For
example, an application pod might take a long time to start, and responds to first requests with a
time-out. You can mitigate the issue using the reset retry policy.

Selecting Retry Parameters for Resiliency

The configuration of the retry communication pattern requires carefully considering the
parameters of your environment, such as the latency requirements, network layout, application
complexity, and others.

There are no standard values for the retry configuration that are suitable for every environment.
The following non-exhaustive list contains some of the considerations for selecting retry
parameters:

+ Anincorrect retry policy can substantially impact application performance. For example, if the
back end application is incorrectly configured, and any requests result in a disconnect response,
then retries only increase the overall number of retries with no benefits to the end-user.

+ Increasing the number of retries increases the potential probability for success at the cost of
performance. A higher number of retries results in larger network saturation and can cause
issues in busy environments.

+ Increasing the time-out value helps to reduce the load for compute-intensive services that
can take longer to respond. However, increasing the time-out values also increases the overall
latency of your system.

An incorrect retry setting makes your environment less resilient, and can accelerate performance
issues in your environment. Other resilience patterns, such as the circuit breaker, can mitigate
worst-case retry scenarios. Additionally, Red Hat recommends implementing monitoring to alert
you to possible issues as soon as they occur.

Chapter 7 | Building Resilient Services

References

Retry Concepts
https://archive.istio.io/v1.4/docs/concepts/traffic-management/#retries

HTTP Retry Reference Documentation
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/
#HTTPRetry

Retry Policies
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/
router_filter#x-envoy-retry-on

Envoy Proxy Outlier Detection
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/
outlier#arch-overview-outlier-detection

Retries in Envoy Proxy
https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/
transient_failures.html?highlight=retry#retries

409 Conflict-HTTP | MDN
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/409

D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#retries
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRetry
https://archive.istio.io/v1.4/docs/reference/config/networking/virtual-service/#HTTPRetry
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/router_filter#x-envoy-retry-on
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/router_filter#x-envoy-retry-on
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/outlier#arch-overview-outlier-detection
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/outlier#arch-overview-outlier-detection
https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/transient_failures.html?highlight=retry#retries
https://www.envoyproxy.io/docs/envoy/latest/faq/load_balancing/transient_failures.html?highlight=retry#retries
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/409

Chapter 7 | Building Resilient Services

» Guided Exercise

Configuring Retry

In this exercise, you will configure the retry settings of an Envoy proxy.

Outcomes

You should be able to configure retries for a service in OpenShift Service Mesh without
changing the application code.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

- Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

« The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

The lab command deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository at
https://github.com/RedHatTraining/D0O328-apps in the customer, preference, and
recommendation directories.

[student@workstation ~]$ lab resilience-retry start

P 1. Login to the OpenShift cluster and verify that the lab project is successfully deployed.

11. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation ~]$ source /usr/local/etc/ocp4.config
1.2. Loginto OpenShift as the developer user.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

1.3. Change to the resilience-retry project.

[student@workstation ~]$ oc project resilience-retry
Now using project "resilience-retry" on server ...

14. Verify that pods are in the Running state:

https://github.com/RedHatTraining/DO328-apps

Chapter 7 | Building Resilient Services

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-f7bffdbf6-9mbzn 2/2 Running 0 50s
preference-5585d5987f-9z26q 2/2 Running 0 50s
recommendation-75c77bd445-55bb4 2/2 Running 0 50s

15. Save the ingress-gateway route host name with the /mtls endpoint into a
variable:

[student@workstation ~]$ INGRESS_URL=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/resilience-retry)

1.6. Verify that the service responds using the INGRESS_URL variable:

[student@workstation ~]$ curl $INGRESS_URL
customer => preference => recommendation v1i from 'f11be97f1ddo': 1

Note that you may encounter an error. This error is injected in the
recommendation-vs virtual service, with a 90% probability of returning the 500
HTTP code. The error injection simulates an environment where retries are useful.

P 2. Configure aretry policy for the preference-vs virtual service with the following
parameters:

« The Envoy proxy executes 10 or fewer retry attempts.
» Each retry waits at most 1s before timing out.

« The Envoy proxy issues retries only when the response contains a 500 HTTP code.

21. Edit the preference-vs virtual service:

[student@workstation ~]$ oc edit virtualservice preference-vs

2.2. Addthe retries configuration. View the ~/D0328/solutions/resilience-
retry/preference-retry.yml file to see the solution.

spec:
hosts:
- preference
http:
- route:
- destination:
host: preference
port:
number: 8080
retries:
attempts: 10
perTryTimeout: 1s
retryon: 5xx

P 3. Verify the retry configuration.

Chapter 7 | Building Resilient Services
31 Change to the ~/D0328/1labs/resilience-retry directory:

[student@workstation ~]$ cd ~/D0328/labs/resilience-retry
[student@workstation resilience-retry]$

3.2. Examine the test-retries.sh file. Then, execute it.

[student@workstation resilience-retry]$ sh test-retries.sh
Executing 10 requests:

customer => preference => recommendation vi from 'f11be97f1ddo0': 6
customer => preference => recommendation v1i from 'f11be97f1ddo': 7
customer => Error: 503 - preference => Error: 500 - fault filter abort

customer => preference => recommendation v1i from 'f11be97f1ddo': 8
customer => preference => recommendation v1i from 'f11be97f1ddo': 9
customer => preference => recommendation vi from 'f11b097f1ddo': 10
customer => preference => recommendation vi from 'f11b097f1ddo': 11
customer => preference => recommendation vi from 'f11b097f1ddo': 12
customer => preference => recommendation vi from 'f11b097f1ddo': 13
customer => preference => recommendation vi from 'f11b097f1ddo': 14

Done

P 4. Setthe recommendation-vs virtual service to have a 99% probability of returning a 500
HTTP code.

4]1. Edit the recommendation-vs virtual service:

[student@workstation resilience-retry]$ oc edit virtualservice recommendation-vs

4.2. Change the percentage value to 99.

spec:
hosts:
- recommendation
http:
- fault:
abort:
httpStatus: 500
percentage:
value: 99
route:
- destination:
host: recommendation
port:
number: 8080

P 5. Change the retry value of the preference-vs virtual service to retry 100 times, with a 2s
time-out limit.

51. Editthe preference-vs virtual service:

Chapter 7 | Building Resilient Services

[student@workstation resilience-retry]$ oc edit virtualservice preference-vs

5.2. Change the number of retries and time-out settings:

spec:
hosts:
- preference
http:
- retries:
attempts: 100
perTryTimeout: 2s
retryon: 5xx
route:
- destination:
host: preference
port:

number: 8080

P 6. Verify the responsiveness of the service

[student@workstation resilience-retry]$ sh test-retries.sh
Executing 10 requests:

customer => preference => recommendation v1 from 'f11b097fi1dde': 15
customer => preference => recommendation v1 from 'f11b097f1ddo': 16
customer => preference => recommendation v1 from 'f11b097fi1ddo': 17
customer => preference => recommendation v1 from 'f11b097fi1ddo': 18
customer => preference => recommendation v1 from 'f11b097f1ddo': 19
customer => preference => recommendation v1 from 'f11b097f1ddo': 20
customer => preference => recommendation v1 from 'f11b097fiddo': 21
customer => preference => recommendation v1 from 'f11b097fidde': 22
customer => preference => recommendation v1 from 'f11b097fi1ddo': 23
customer => preference => recommendation v1 from 'f11b097fi1ddo': 24

Done

The service responds properly even when 99% of the requests fail. Note that you can still
see a reduced number of time-outs or errors.

The large number of retries generates large load on your Red Hat OpenShift cluster. The
script finishes correctly, but takes a long time to complete

Consequently, the retry value considerably increases the overall latency of your application.
Such a high retry configuration is dangerous in case the service is faulty, or incorrectly
configured.

P 7. Change into the home directory:

[student@workstation resilience-retry]$ cd ~
[student@workstation ~]$

Chapter 7 | Building Resilient Services

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-retry finish

This concludes the guided exercise.

W D0O328-5SM1.1-en-2-20200910

Chapter 7 | Building Resilient Services

Configuring a Circuit Breaker

Objectives

After completing this section, you should be able to configure a circuit breaker pattern to maintain
service reliability.

Describing the Circuit Breaker

When a service experiences transient errors, those errors tend to occur continuously. Circuit
Breaker uses this knowledge to temporarily avoid directing requests to a failing host. When a
request is about to reach a failing host, the circuit breaks, sending a failure to the client without
the need to wait for the host to respond. This ban is temporary, so the host receives new requests
when normal function is restored.

This behavior has two benefits. First, as requests do not reach the failing hosts, services are more
responsive, even if the host is slow. Second, the service in the host stops receiving requests for
some time, allowing the service to recover from overload and resolve pending requests.

Service Service

HostA
« Failing

* Slow
 Unavailable @

— Circuit break

T ey
Client Client
HostB HostB

Figure 7.1: The Circuit Breaker

v

A

Circuit Breaker classifies host failures as two kinds.

Local origin
Local failures are service errors (usually HTTP codes above 500) generated by the service.

Gateway origin
Gateway failures arise when the service is unreachable or unresponsive, hence it cannot be
used.

A Circuit Breaker identifies both kinds of failures and stops sending requests to the failing host,
forwarding requests only to healthy hosts.

Detecting failing hosts, whether failures are of local origin or gateway failures, and marking them
for eviction is called Outlier Detection.

Selecting Circuit Breakers for Resilience

Circuit Breakers are useful to protect services prone to transient failures. Compute-intensive
services, for example, receive more requests than they can respond to and may experience
transient failures more often. Circuit Breakers redirect requests from the host as it starts failing or
timing out, so the service has time recover from the increased load.

D0O328-5SM1.1-en-2-20200910 w

Chapter 7 | Building Resilient Services

Other common examples of selecting Circuit Breakers for resilience are services that need to
process requests sequentially. Those services usually store pending requests in a queue that
they process in order. If this queue becomes too big, the service takes too much time to respond,
degrading the service. Circuit Breakers detect those time-outs and give the host time to empty
the queue.

Configuring Circuit Breakers in OpenShift Service
Mesh

OpenShift Service Mesh implements Circuit Breakers at the host (network) level, not at the
service level. That means OpenShift Service Mesh evicts failing hosts, not failing services nor
subsets. This behavior allows services to keep functioning even if some subset or some hosts fail.

E Note
Istio terminology, and consequently OpenShift Service Mesh terminology,can
be confusing when referring to a host. In many situations, like in the
DestinationRule resource, host refers to a service as an entry in the Kubernetes
service registry. However, in the context of Circuit Breakers, host refers to a
physical or virtual workload, usually a container.

Managing Unhealthy Hosts

To enable a Circuit Breaker, include an out lierDetection entry in the DestinationRule
resource related to the service:

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: myDestinationRule
spec:
host: myService o
trafficPolicy: (2]
outlierDetection:
consecutiveErrors: 1 ©
interval: 1s ©
baseEjectionTime: 3m (5]
maxEjectionPercent: 100 0o

host does not refer to the physical host, but the service name. See references for details.
The outlierDetection entry belongs to a trafficPolicy object.

Defines how many errors are allowed before evicting the host.

The time interval between checking error counts.

The minimum amount of host ejection time.

The maximum percentage of evicted hosts belonging to a service at any time.

000000

The value for baseEjectionTime indicates the minimum eviction time for the host, not the
actual time. The first time that OpenShift Service Mesh evicts the host, the eviction lasts for
approximately the minimum time. Subsequent evictions multiply the baseEjectionTime by the
number of times the host is evicted. For example, if baseEjectionTime is five seconds, then the
first time the host is evicted, the eviction lasts five seconds. The second time that same host is
evicted, the eviction lasts ten seconds. The third time, the eviction lasts fifteen seconds. And so
on.

Chapter 7 | Building Resilient Services

The maxEjectionPercent value limits the percentage of hosts that can simultaneously be in
the evicted state. If the current percentage of evicted hosts is higher than this limit, OpenShift
Service Mesh evicts no other hosts, even if they fail or are unavailable. This limit is useful to avoid
the eviction of all the hosts for a service, making the service unavailable even if some hosts can
respond. The default value for maxEjectionPercent is 10%.

Configuring Connection Limits

Another technique to protect hosts from failing is limiting the number of simultaneous
connections to the host. If hosts are prone to time-out or fail when they receive too many
requests, limiting the number of connections helps prevent the host from crashing.

OpenShift Service Mesh enables applying those limits using a connectionPool entry in the
DestinationRule:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: myDestinationRule
spec:
host: myService
trafficPolicy:
connectionPool:
tep: (1)
maxConnections: 1 (2]
connectTimeout: 3oms ©
http: (4]
httpiMaxPendingRequests: 1 o
maxRequestsPerConnection: 1 o

© O Connection pool settings are divided into HTTP and TCP settings for clarity.

Maximum number of simultaneous connections established to the host.

Maximum time to establish the connection.

Maximum number of requests pending service by the host.

Maximum number of requests permitted on a single connection. OpenShift Service Mesh
reuses connections until reaching this limit, or the tcp. tcpKeepalive time is consumed.

0000

See the Istio reference documentation about DestinationRule resources for the complete list
of supported entries.

When limiting the connections to a host, if the threshold is exceeded it will generate service
failures, specifically, gateway failures. Those limits can be applied simultaneously with a Circuit
Breaker. Failures generated by the connection limit are used by the Circuit Breaker to break the
circuit and start eviction policies. However, connection limits and Circuit Breaker are independent
traffic policies, and developers can use one of them without the other.

Connection pools apply to every host in the service. That means each host has a connection pool
independent from other host pools. If the host depletes its connection pool, OpenShift Service
Mesh establishes no more connections to that host, but continues using the rest of the hosts.

Chapter 7 | Building Resilient Services

D References
Istio documentation on cirtuit breakers
https://archive.istio.io/v1.4/docs/concepts/traffic-management/#circuit-breakers

Istio documentation on outlier detection
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
#OutlierDetection

Istio documentation on connection pools
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
#ConnectionPoolSettings

Envoy proxy documentation on cirtuit breaking
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/
circuit_breaking

Envoy proxy documentation on outlier detection
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/
outlier

Istio reference documentation for DestinationRule resources
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/
#DestinationRule

W D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/concepts/traffic-management/#circuit-breakers
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#OutlierDetection
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#OutlierDetection
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/circuit_breaking
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/circuit_breaking
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/outlier
https://www.envoyproxy.io/docs/envoy/v1.14.1/intro/arch_overview/upstream/outlier
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#DestinationRule
https://archive.istio.io/v1.4/docs/reference/config/networking/destination-rule/#DestinationRule

Chapter 7 | Building Resilient Services

» Guided Exercise

Configuring a Circuit Breaker

In this exercise, you will configure a connection pool for protecting a service from failing, and
a Circuit Breaker to manage unhealthy hosts.

This exercise installs a basic greeting service that fails when it is stressed. First, you add
a connection pool to avoid sending requests to the service that fails Second, you add a
new version of the service. Finally, you deploy the new version beside the old and configure
Circuit Breaker to avoid service failures when the original version of the service is stressed.

Outcomes

You should be able to configure Circuit Breaker and connection pools in OpenShift Service
Mesh.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
+ Ainstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/fusr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

[student@workstation ~]$ lab resilience-break start

P 1. Validate that the service is working as expected. Include a connectionPool entry to limit
the number of simultaneous connections to the host.

11. Login your Red Hat OpenShift cluster using the developer credentials and make sure
that you use the resilience-break project:

[student@workstation ~]$ source /usr/local/etc/ocp4.config
[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \

> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

[student@workstation ~]$ oc project resilience-break

Now using project "resilience-break" on server ...output omitted...

12. The service is exposed in the default gateway, so retrieve the URL using the following
command:

[student@workstation ~]$ GATEWAY_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o template --template '{{ .spec.host }}')

Chapter 7 | Building Resilient Services
1.3. Test the service to ensure that it installed and is functioning correctly.

[student@workstation ~]$ curl -w "%{http_code}\n" $GATEWAY_URL
Hello World!
200

14. The installed service fails when it receives too many requests. Use the parallel.sh
script provided in the labs folder to perform twenty parallel requests to the service.

[student@workstation ~]$ cd D0328/labs/resilience-break
[student@workstation resilience-break]$./parallel.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL"

Hello World!

200

Hello World!

200

503

503

...output omitted. ..

These results prove that the service is unable to respond to the increased load. The
service correctly responds a few times, providing the Hello World! text and the
200 HTTP code. Eventually the service fails and returns the 503 failure HTTP code.

1.5. Configure a connection pool to reduce the number of connections allowed to the
service. Limit the number of concurrent connections, the number of requests per
connections, and the number of requests pending to one.

You can edit the vertx-greet DestinationRule resource from the Red Hat
OpenShift console, or run the following command in your terminal:

[student@workstation resilience-break]$ oc edit DestinationRule vertx-greet

Add the needed trafficPolicy entry to the resource. The DestinationRule
must look like the following:

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
...output omitted...
name: vertx-greet
...output omitted...
spec:
host: vertx-greet
trafficPolicy:
connectionPool:
http:
httpiMaxPendingRequests: 1
maxRequestsPerConnection: 1
tep:
maxConnections: 1

You can see the complete destination rule at ~/D0328/solutions/resilience-
break/dr-connection-pool.yml.

Chapter 7 | Building Resilient Services

1.6. Verify that the pool limits pending requests, connections, and requests per
connection to 1.

[student@workstation resilience-break]$./parallel.sh \

> "curl -w '%{http_code}\n' $GATEWAY_URL"

Hello World!

200

upstream connect error or disconnect/reset before headers. reset reason:
overflow503

503

503

...output omitted. ..

The connection pool drops some of the connections, but the service still fails.
P 2. Deploy a new version of the service that accepts more requests.

21. Use the file deployment -v2.yam1 provided in the solutions folder to create the
new Deployment resource.

[student@workstation resilience-break]$ oc create \
> -f ~/D0328/solutions/resilience-break/deployment-v2.yaml
deployment.apps/vertx-greet-v2 created

2.2. \Verify that a new pod is deployed.

[student@workstation resilience-break]$ oc get pods
vertx-greet-v1l-5bcf556987-ssbft 2/2 Running 0] 6mils
vertx-greet-v2-6794b4bd67-qcgb5 2/2 Running 0 36s

Pod names are generated automatically and yours may differ.

2.3. Validate that the new pod is receiving traffic and responding as expected.

[student@workstation resilience-break]$./parallel.sh \

> "curl -w '%{http_code}\n' $GATEWAY_URL"

Hello World!

200

upstream connect error or disconnect/reset before headers. reset reason:
overflow503

upstream connect error or disconnect/reset before headers. reset reason:
overflow503

Hello from v2

200

Hello from v2

200

upstream connect error or disconnect/reset before headers. reset reason:
overflow503

...output omitted...

P 3. Remove the connection pool and configure a Circuit Breaker so that OpenShift Service
Mesh evicts the failing host after two failures occur during a 2 second interval. Evict hosts
for a minimum of 10 seconds and ensure that OpenShift Service Mesh can evict all hosts.

Chapter 7 | Building Resilient Services

3.1

Update the DestinationRule resource to replace the connectionPool entry
with an out lierDetection entry configured with appropriate values. Again, use the
Red Hat OpenShift console, or the oc edit DestinationRule vertx-greet
command to make this update.

The DestinationRule must look like the following:

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule

metadata:

name: vertx-greet

spec:

host: vertx-greet
trafficPolicy:
outlierDetection:
baseEjectionTime: 10.000s
consecutiveErrors: 2
interval: 2.000s
maxEjectionPercent: 100

3.2

You can see the complete destination rule at ~/D0328/solutions/resilience-
break/dr-outlier-detection.yml

Verify the Circuit Breaker settings evict the initial service when it receives a few
requests.

You can use the same parallel. sh script to generate a burst of requests, but the
eviction might not display in the output. Use the provided sequential. sh scriptin
the labs folder to emulate intense traffic to the service.

[student@workstation resilience-break]$./sequential.sh \
> "curl -w '%{http_code}\n' $GATEWAY_URL;"
Hello from v2

200

Hello from v2

200

Hello from v2

200

Hello World!

200

Hello from v2

200

Hello from v2

200

Hello from v2

200

Hello from v2

200

Hello from v2

200

Hello from v2

200

Hello from v2

Chapter 7 | Building Resilient Services

200
Hello from v2
...output omitted. ..

Note that the initial version provides some responses, but the Circuit Breaker
eventually evicts the host. After eviction, no responses are received from this version
of the service for approximately 10 seconds. The host eventually restores and starts
sending responses again.

Keep this script running for some time, and then review the output. Notice that the
host takes more and more time to recover after each eviction. Press Ctr1+C to stop
the process.

Note also that there are no service failures, because the connection pool has been
removed.

3.3. Change the current working directory to the home folder before finishing the
exercise:

[student@workstation resilience-break]$ cd ~
[student@workstation ~1$

Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-break finish

This concludes the guided exercise.

Chapter 7 | Building Resilient Services

» Lab
Building Resilient Services

Performance Checklist
In this lab, you will apply different resilience strategies to improve the reliability of an
application.

Outcomes

You should be able to implement retry policies, limit connections to services, and add Circuit
Breakers to improve the resilience of your applications.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

- Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.
« The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

This command deploys unreliable versions of the currency exchange application and the
news application. The command also includes the Financial application into the Red Hat
OpenShift Service Mesh. The source code is in the Git repository at https://github.com/
RedHatTraining/DO328-apps in the exchange-application, and python-flask-
gossip directories.

[student@workstation ~]$ lab resilience-mesh start

1. This activity uses scripts that are located in ~/D0328/labs/resilience-mesh. Change to
that directory.

[student@workstation ~]$ cd ~/D0328/labs/resilience-mesh
[student@workstation resilience-mesh]$

2. Login to the OpenShift cluster as an unprivileged user and verify that the lab projects are
successfully deployed.

3. Configure a circuit breaker in the external news service with the following characteristics:
+ A maximum of 2 consecutive errors
+ Aninterval between ejection sweep analysis of 5 seconds
+ A minimum ejection duration of 10 seconds

+ A maximum ejection percent of 100

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 7 | Building Resilient Services

Name the destination rule resource news-circuit and the service entry resource news-
se.

Test the circuit breaker configuration.

5. Configure a retry policy in the currencies service with the following characteristics.
+ Retry policy of 4 attempts
+ Retry on any 5xx error
+ Timeout between retries of 1 second

Name the virtual service resource currency-retries.
Test the retry policy applied to the currencies service.

Configure the the frontend service with the following connection limits:
+ A maximum of 5 pending HTTP requests

+ A maximum of 10 requests per connection

+ A maximum of 5 HTTP1/TCP connections

Name the destination rule resource frontend-pool.
Test the connection limits to the frontend service.

Return to the home directory.

[student@workstation resilience-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the lab resilience-mesh grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab resilience-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-mesh finish

This concludes the lab.

Chapter 7 | Building Resilient Services

» Solution
Building Resilient Services

Performance Checklist
In this lab, you will apply different resilience strategies to improve the reliability of an
application.

Outcomes

You should be able to implement retry policies, limit connections to services, and add Circuit
Breakers to improve the resilience of your applications.

Before You Begin

To perform this exercise, ensure you have access to:
+ A configured and running OpenShift cluster.
+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

This command deploys unreliable versions of the currency exchange application and the
news application. The command also includes the Financial application into the Red Hat
OpenShift Service Mesh. The source code is in the Git repository at https://github.com/
RedHatTraining/DO328-apps in the exchange-application, and python-flask-
gossip directories.

[student@workstation ~]$ lab resilience-mesh start

1. This activity uses scripts that are located in ~/D0328/labs/resilience-mesh. Change to
that directory.

[student@workstation ~]$ cd ~/D0328/1labs/resilience-mesh
[student@workstation resilience-mesh]$

2. Login to the OpenShift cluster as an unprivileged user and verify that the lab projects are
successfully deployed.

21. Source the classroom configuration file that is accessible at /usr/local/etc/
ocp4.config.

[student@workstation resilience-mesh]$ source /usr/local/etc/ocp4.config

2.2. Loginto OpenShift as the developer user.

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 7 | Building Resilient Services

[student@workstation resilience-mesh]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

2.3. Change to the resilience-mesh project.

[student@workstation resilience-mesh]$ oc project resilience-mesh
Now using project "resilience-mesh" on server

2.4. \Verify the status of the resilience-mesh project pods.

[student@workstation resilience-mesh]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-84d75bdb8c-8g97h 2/2 Running 0] 36s
exchange-5fd7954fb5-874kj 2/2 Running 0] 36s
frontend-7559c7874f-fknr9 2/2 Running 0] 36s
history-548b7f4954-fc9jx 2/2 Running 0] 36s

2.5. Verify the status of the resilience-mesh-news project pods.

[student@workstation resilience-mesh]$ oc get pods -n resilience-mesh-news

NAME READY STATUS RESTARTS AGE
news-error-6c49447695-8kt18 1/1 Running 0 30s
news-ok-8bbf9f9c9-v8f58 1/1 Running 0 30s

2.6. Save the front-end route into a variable.

[student@workstation resilience-mesh]$ FRONTEND=$(oc get route \
> istio-ingressgateway -n istio-system \
> -0 jsonpath='{"http://"}{.spec.host}{"/frontend"}")

2.7. Access the lab application using the Firefox web browser on your workstation
machine to check the unreliable behavior of the application.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

The Historical Data and Exchange pages rely on the currency service. This service
returns a failure response for two of three requests.

Chapter 7 | Building Resilient Services

Fetching currencies failed b

Got the following error trying to fetch currencies: SyntaxError: JSON.parse:
unexpected character at line 1 column 1 of the JSON data

Historical Currency Data

Source currency Target currency

Submit

Figure Error.l: Front end displaying errors generated by the currency service

2.8. Navigate between the Historical Data and Exchange pages several times to observe
this behavior.

The News page sometimes fails to fetch data from the external service. Reload the
page several times to observe this behavior.

RED HAT

= TRAINING

Timestamp story

®

No results found

nable to get news from external feed.

Figure Error.2: News page not receiving data from the external service

3. Configure a circuit breaker in the external news service with the following characteristics:

Chapter 7 | Building Resilient Services

+ A maximum of 2 consecutive errors

+ Aninterval between ejection sweep analysis of 5 seconds
+ A minimum ejection duration of 10 seconds

+ A maximum ejection percent of 100

Name the destination rule resource news-circuit and the service entry resource news-
se.

31. Get the news service host name.

[student@workstation resilience-mesh]$ oc get route news -n resilience-mesh-news \
> -0 jsonpath='{.spec.host}{"\n"}'
news-resilience-mesh-news.apps.ocp4.example.com

Use the news service host in the destination rule and service entry you are going to
create in the following steps.

3.2. Create aservice entry object YAML file, for example service-entry.yaml, to store
the object definition.

The completed object definition is available in the ~/D0328/solutions/
resilience-mesh/service-entry.yaml file. You can use the YAML file to verify
your file and fix mistakes.

3.3. Create the service entry configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f service-entry.yaml
serviceentry.networking.istio.io/news-se created

3.4. Create a destination rule object YAML file, for example circuit-breaker.yaml, to
store the object definition.

The completed object definition is available in the ~/D0328/solutions/
resilience-mesh/circuit-breaker.yaml file. You can use the YAML file to
verify your file and fix mistakes.

3.5. Create the destination rule configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f circuit-breaker.yaml
destinationrule.networking.istio.io/news-circuit created

4. Test the circuit breaker configuration.
41. Open the lab application in your browser and access the News page.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

4.2. Reload the News page several times to verify that it always displays news. It may take
several seconds to OpenShift Service Mesh to propagate the new configuration.

The circuit breaker detects failures in the connections to the external news feed and
removes the problematic hosts.

Chapter 7 | Building Resilient Services

5. Configure a retry policy in the currencies service with the following characteristics.
+ Retry policy of 4 attempts
+ Retry on any 5xx error
+ Timeout between retries of 1 second
Name the virtual service resource currency-retries.

5]1. Create a virtual service object YAML file, for example retries.yaml, to store the
object definition.

The completed object definition is available in the ~/D0328/solutions/
resilience-mesh/retries.yaml file. You can use the YAML file to verify your file
and fix mistakes.

5.2. Create the service entry configuration with the oc create command.

[student@workstation resilience-mesh]$ oc create -f retries.yaml
virtualservice.networking.istio.io/currency-retries created

6. Test the retry policy applied to the currencies service.

6.1. Open the lab application in your browser and access to the Historical Data or Exchange
pages.

[student@workstation resilience-mesh]$ firefox ${FRONTEND}

6.2. Navigate through the application pages to verify that all pages are working.
7. Configure the the frontend service with the following connection limits:

+ A maximum of 5 pending HTTP requests

+ A maximum of 10 requests per connection

+ A maximum of 5 HTTP1/TCP connections

Name the destination rule resource frontend-pool.

71. Create a destination rule object YAML file, for example connection-pool.yaml, to
store the object definition.

The completed object definition is available in the ~/D0328/solutions/
resilience-mesh/connection-pool.yaml file. You can use the YAML file to
verify your file and fix mistakes.

7.2. Create the service entry configuration using the oc create command.

[student@workstation resilience-mesh]$ oc create -f connection-pool.yaml
destinationrule.networking.istio.io/frontend-pool created

8. Test the connection limits to the frontend service.

81. Examine the parallel-requests. sh script. This script generates parallel
connections to the front-end service and prints the HTTP code from the response.

Chapter 7 | Building Resilient Services

Run the parallel-requests. sh script to send a small amount of traffic to the
front-end service.

[student@workstation resilience-mesh]$ sh parallel-requests.sh 2
HTTP code: 200
HTTP code: 200

8.2. Runthe parallel-requests.sh script to send a large amount of traffic to the front-
end service.

[student@workstation resilience-mesh]$ sh parallel-requests.sh 33
HTTP code: 200

HTTP code: 200

...output omitted. ..

HTTP code: 200

HTTP code: 503

HTTP code: 503

HTTP code: 503

...output omitted...

The preceding command shows a mix of 200 and 503 errors. The connection pool
settings are limiting the connections so that some responses are 503 errors.

9. Return to the home directory.

[student@workstation resilience-mesh]$ cd ~
[student@workstation ~]$

Evaluation

Grade your work by running the 1lab resilience-mesh grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab resilience-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab resilience-mesh finish

This concludes the lab.

Chapter 7 | Building Resilient Services

Summary

In this chapter, you learned:

With OpenShift Service Mesh you can implement different resilience strategies without
changing your code.

Load balancing prevents service overloads by distributing the load among several service
replicas.

Time-outs guarantee that a network request finishes within a specified time limit.
Retries focuses on reducing transient, short-lived communication failures.
Circuit Breaker avoids directing requests to a failing host.

Another technique to protect hosts from failing is limiting the number of simultaneous
connections to the host.

W D0O328-5SM1.1-en-2-20200910

Chapter 8

Securing an OpenShift Service
Mesh

Goal Secure and encrypt services in your application ¢

with Red Hat OpenShift Service Mesh.

Objectives *+ Describe how Citadel manages identities. .
Configure Mutual TLS to secure intra-service y
communication.

Configure restriction on services "
communication in OpenShift Service Mesh. i

Sections + Describing the Role of Citadel in OpenShift
Service Mesh (and Quiz)

Configuring Mutual TLS (and Guided Exercise)

Defining Service to Service Authorization (and
Guided Exercise)

TN

Lab Securing an OpenShift Service Mesh

r/

D0O328-5SM1.1-en-2-20200910

Chapter 8 | Securing an OpenShift Service Mesh

Describing the Role of Citadel in
OpenShift Service Mesh

Objectives

After completing this section, you should be able to describe how Citadel manages identities.

Describing Security of the Microservice Architecture

As organizations move to cloud-native applications with DevOps principles, security practices
often change. Some traditional security concepts still apply, but can become difficult to
implement. For example, traditional firewall security perimeters operate on the network transport
layer (L4), which becomes difficult to implement and maintain in a cloud-native environment.

Cloud-native platforms, such as Red Hat OpenShift, introduce a number of new security concepts,
such as verifying and trusting your container registry, adapting network security to software
defined networking, identifying and preventing unintended egress requests, and similar. As teams
continue iterating upon their application, security is often deprioritized in favor of new feature
development.

Deprioritizing security can lead to:

+ Outages

+ Data breaches

+ Legal liability and noncompliance

+ Slower time to production

Security is always a priority in the Red Hat ecosystem. Red Hat products and services encourage
adopting DevSecOps principles.

DevSecOps is an evolution of DevOps principles. DevSecOps integrates security in the software
development design and implementation loops from the beginning. Security becomes a
responsibility of everyone involved in the software development cycle.

Security and Red Hat OpenShift Service Mesh

OpenShift Service Mesh enables developers and system administrators to abstract security away
from application code and into infrastructure configuration, enabling zero-trust perimeters and
deny-by-default behavior.

OpenShift Service Mesh provides, among others, the following security features:

Cryptographically Verifiable Service Identities
Red Hat OpenShift assigns each service a service account by default. However, this identity
is not cryptographically verifiable. OpenShift Service Mesh provides X.509 identities with
advanced security features to verify service identity.

Security features, such as internal traffic encryption, verify services using the service
identities.

Chapter 8 | Securing an OpenShift Service Mesh

Enabling traffic encryption means only the origin and target services can decrypt the traffic.
Consequently, this mitigates the impact of possible security breaches, and reduces avenues
for attack, or attack vectors.

Service authentication
A service inside of Red Hat OpenShift cluster can communicate with any other service by
using the resolvable DNS name, such as svc-name .project-name.dns-domain.

Unrestricted communication can lead to attackers communicating with services to which they
should not have access. Depending on the OpenShift cluster architecture, attackers might
also compromise sensitive data to external servers.

In a large service mesh, developers might also discover that services contact legacy endpoints
or other unexpected services. Because legacy endpoints often become deprecated or
decommissioned, depending on legacy endpoints may cause outages.

OpenShift Service Mesh enables you to explicitly permit or deny service-to-service
communication, further reducing potential attack vectors and providing clarity into the service
mesh communication patterns in your cluster.

Citadel in OpenShift Service Mesh

Citadel is a crucial part of OpenShift Service Mesh, responsible for the public key infrastructure
(PKI). OpenShift Service Mesh uses Citadel to provision X.509 identities for each workload, which
are then used for security features, such as authentication and authorization settings, or mutual
TLS.

Citadel enables the following:

+ Self-rotating PKl ensures that Citadel automatically rotates certificates within its PKI that are
about to expire. Administrators do not manually manage certificates issued by Citadel.

The self-rotating PKI aim to reduce the maintenance costs connected with manual PKI
management, and to avoid possible outages related to certificate expiry and misconfiguration.

« Certificate-key pair injection ensures that Citadel mounts necessary certificates into any pod
that OpenShift Service Mesh manages. For example, for any new pod joining OpenShift Service
Mesh, Citadel generates a certificate-key pair identity, mounts it into the pod, and stores the
identity information for further security settings.

The automatic certificate-key pair injection enables OpenShift Service Mesh to automatically
assign identities for workloads. The identities are later used for authorization and authentication
features.

Citadel-Issued Identity Management

When you configure OpenShift Service Mesh to manage a project, Citadel generates a certificate-
key pair for the default project service accounts. OpenShift Service Mesh stores the certificate-
key pair, together with the certificate chain, as a secret named istio.service_account_name.
The secret is mounted into any pods containing the Envoy proxy container.

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get secret

NAME TYPE DATA AGE
istio.builder istio.io/key-and-cert 3 98m
istio.default istio.io/key-and-cert 3 98m
istio.deployer istio.io/key-and-cert 3 98m

...output omitted...

All services in a project use the same service account by default. Therefore, all services within

one project encrypt their communication with the identical private key, meaning that a malicious
container injected into the project can decrypt all traffic in the project. Although the attack
surface is reduced to the same project traffic, Red Hat recommends creating a service account for
each microservice in a project to further reduce the attack surface.

Citadel generates a new certificate-key pair for each service account in a project. OpenShift
Service Mesh mounts the certificate-key pair into pods associated with the service account.

Red Hat recommends generating a unique service account for each microservice in your project so
that a malicious process cannot decrypt any traffic in the project.

Chapter 8 | Securing an OpenShift Service Mesh

Pilot Citadel
. Envoy > Envoy __
" L';.Gj Proxy < @‘@ Proxy [€--1

Vo1 v 1
c@ Service A (@ Service B

Service account: frontend
— __ project: frontend
SVID: clusterlocal/ns/frontend/sa/frontend
Service account: backend
project: dbs L - —
SVID: clusterlocal/ns/dbs/sa/backend
TLS Communication

User deploys two new pods with separate service accounts.

Citadel generates a new certificate-key pair for each service account.

OpenShift Service Mesh mounts certificate-key pairs into the Envoy proxy container of each
pod.

Pilot creates service-identity mapping for secure naming.

Pilot pushes secure naming information into Envoy proxy containers of each pod.

o0 000

Service A and Service B can communicate with each other using TLS encryption based on
Citadel-issued identities.

Identity Verification

When Citadel generates a certificate-key pair for a service account, it uses the Secure Production
Identity Framework for Everyone (SPIFFE) to provide further security checks. SPIFFE is a

D0O328-5SM1.1-en-2-20200910 w

Chapter 8 | Securing an OpenShift Service Mesh

specification maintained by the Cloud Native Computing Foundation (CNCF). SPIFFE is designed
to cryptographically verify that the certificate identity presented by a microservice matches with
the microservice service account.

Each certificate is encoded with SPIFFE Verifiable Identity Document (SVID). The SVID takes the
form of cluster_domain/ns/project_name/sa/service_account_name, and is encoded
into the certificate as the X509v3 Subject Alternative Name parameter.

The role of SPIFFE is to mitigate the attack surface for identity theft. For example, if a malicious
user gains access to the certificate-key pair of the frontend microservice, and finds an exploit to
execute arbitrary code in the gateway microservice, then SPIFFE checks might stop the attack.
Because the service account name is encoded in each certificate, setting a unique service account
for both the microservices ensures that the SPIFFE check fails and Envoy proxy fails to complete
the TLS handshake.

OpenShift Service Mesh provides additional security checks, referred to as secure naming. At

run time, the Pilot component checks whether a service uses the correct service account before
SPIFFE is checked. Consequently, because Pilot expects a response from one service, but receives
response from a different service, if you set each a different service account for each service, then
the Envoy proxy rejects the request because it originated from a service other than the expected
(mapped) one. Secure naming is useful when an attacker compromises network routing in your
OpenShift cluster and can reroute traffic from one service to another service.

References

What is DevSecOps?
https://www.redhat.com/en/topics/devops/what-is-devsecops

Understanding Red Hat OpenShift Service Mesh
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/service_mesh/
index#understanding-service-mesh

Istio High-level architecture
https://archive.istio.io/v1.4/docs/concepts/security/#high-level-architecture

Istio PKI
https://archive.istio.io/v1.4/docs/concepts/security/#pki

Istio Secure Naming
https://archive.istio.io/v1.4/docs/concepts/security/#secure-naming

Understanding and creating service accounts
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/authentication/
index#understanding-and-creating-service-accounts

W D0O328-5SM1.1-en-2-20200910

https://www.redhat.com/en/topics/devops/what-is-devsecops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/service_mesh/index#understanding-service-mesh
https://archive.istio.io/v1.4/docs/concepts/security/#high-level-architecture
https://archive.istio.io/v1.4/docs/concepts/security/#pki
https://archive.istio.io/v1.4/docs/concepts/security/#secure-naming
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/authentication/index#understanding-and-creating-service-accounts

Chapter 8 | Securing an OpenShift Service Mesh

» Quiz

Describing the Role of Citadel in
OpenShift Service Mesh

Choose the correct answers to the following questions:

P 1. Which two of the following statements about issuing certificate-key pair identity are

correct? (Choose two.)

a. Citadel generates a new certificate-key pair when a user deploys a new pod in an already
existing project.

b. Citadel generates a new certificate-key pair when a user creates a new service account in
an already existing project.

c. Citadel generates a new certificate-key pair when a user creates a new project.

d. Citadel generates a new certificate-key pair when a user requests a new identity.

P 2. Which of the following two statements about microservice security with OpenShift

Service Mesh are recommended practices? (Choose two.)

a. Enable traffic encryption in each project. For example, using TLS and unique service
accounts for each pod.

b. Deploy each pod into a unique project so that malicious pods cannot decrypt internal
traffic of other pods.

¢. Encode a custom SVID into each pod identity so that malicious containers are easily
spotted.

d. Enable deny-by-default practices, and refuse communication with any pods with identities

that you cannot cryptographically verify.

P 3. Anapplication consists of four services: a front end service, a gateway service, and two
back end services. The front end service serves a web page to the end user. The web
page then sends requests to the gateway service, which communicates with back end
services and replies directly to the web page.

Assuming that Red Hat OpenShift Service Mesh manages all of the services, how many

service accounts should be created in the application project?

a. One, only for the front end service, because no other pod is directly exposed to the end
user.

b. Two, for both the front end and gateway services, because they are exposed to the end
user.

c. Two, for both of the back end services, because they might contain sensitive information.

d. Four, one for each of the services because every service must be cryptographically
verifiable.

D0O328-5SM1.1-en-2-20200910 w

Chapter 8 | Securing an OpenShift Service Mesh

P 4. How does Red Hat Service Mesh store Citadel-generated identities?
a. Using OpenShift secrets, named istio.service_account_name.
b. Using an X.509 certificate-key pair, mounted into each pod.
c¢. Pilot mounts Citadel-generated identities into each pod.

d. OpenShift cluster administrator stores each identity outside of the cluster.

pl:1:3 D0O328-5SM1.1-en-2-20200910

Chapter 8 | Securing an OpenShift Service Mesh

» Solution

Describing the Role of Citadel in
OpenShift Service Mesh

Choose the correct answers to the following questions:

P 1. Which two of the following statements about issuing certificate-key pair identity are
correct? (Choose two.)
a. Citadel generates a new certificate-key pair when a user deploys a new pod in an already
existing project.
b. Citadel generates a new certificate-key pair when a user creates a new service account in
an already existing project.
c. Citadel generates a new certificate-key pair when a user creates a new project.

d. Citadel generates a new certificate-key pair when a user requests a new identity.

P 2. Which of the following two statements about microservice security with OpenShift

Service Mesh are recommended practices? (Choose two.)

a. Enable traffic encryption in each project. For example, using TLS and unique service
accounts for each pod.

b. Deploy each pod into a unique project so that malicious pods cannot decrypt internal
traffic of other pods.

¢. Encode a custom SVID into each pod identity so that malicious containers are easily
spotted.

d. Enable deny-by-default practices, and refuse communication with any pods with identities

that you cannot cryptographically verify.

P 3. Anapplication consists of four services: a front end service, a gateway service, and two
back end services. The front end service serves a web page to the end user. The web
page then sends requests to the gateway service, which communicates with back end
services and replies directly to the web page.

Assuming that Red Hat OpenShift Service Mesh manages all of the services, how many

service accounts should be created in the application project?

a. One, only for the front end service, because no other pod is directly exposed to the end
user.

b. Two, for both the front end and gateway services, because they are exposed to the end
user.

c. Two, for both of the back end services, because they might contain sensitive information.

d. Four, one for each of the services because every service must be cryptographically
verifiable.

D0O328-5SM1.1-en-2-20200910 w

Chapter 8 | Securing an OpenShift Service Mesh

P 4. How does Red Hat Service Mesh store Citadel-generated identities?
a. Using OpenShift secrets, named istio.service_account_name.
b. Using an X.509 certificate-key pair, mounted into each pod.
c. Pilot mounts Citadel-generated identities into each pod.

d. OpenShift cluster administrator stores each identity outside of the cluster.

W D0O328-5SM1.1-en-2-20200910

Chapter 8 | Securing an OpenShift Service Mesh

Configuring Mutual TLS

Objectives

After completing this section, you should be able to configure Mutual TLS to secure intra-service
communication.

Describing Mutual TLS in OpenShift Service Mesh

Mutual TLS (mTLS) is a security feature provided by OpenShift Service Mesh. Enabling mTLS
results in encrypted traffic between Envoy proxy containers. Every service injected with Envoy
proxy can perform plain text as well as TLS-encrypted requests.

Enabling mTLS reduces the attack surface of your Red Hat OpenShift cluster. For example, mTLS
mitigates man-in-the-middle attacks between the Red Hat OpenShift nodes by securing internal
(also called east-west) traffic. If an attacker injects a malicious container into your service mesh,
due to a compromised external container registry, for example, this container cannot decrypt

the encrypted network packets. Enabling mTLS also provides a cryptographically verifiable
identity, which serves to further mitigate the attack vector of potential malicious containers. Using
cryptographic identities to further reduce the attack surface is explored in later sections.

Red Hat OpenShift does not provide any mechanism to enable encryption for internal
communication automatically. Cloud administrators who want to adhere to the DevSecOps
principles, such as implementing zero-trust network perimeters, must manually provision and
maintain a Public Key Infrastracture (PKI). The application developers must adjust the application
code to communicate using TLS protocols.

OpenShift Service Mesh enables you to utilize a ready-made and automatically managed PKI
infrastructure. Because TLS is used between Envoy proxies, the application code requires no
modifications to utilize TLS communication. OpenShift Service Mesh manages and rotates
X.5009 certificates automatically. Consequently, expired certificates do not result in unresponsive
services.

Mutual TLS Modes

You can enable mTLS in one of two modes:
+ Permissive (default)

« Strict

The permissive mode enables Envoy proxies to accept either HTTP or mTLS encrypted traffic.
The permissive mode is the default mTLS mode because it enables communication with services
that are not injected with Envoy proxies. In the permissive mode, you can manually enable mTLS in
projects that do not communicate with services outside of the OpenShift Service Mesh.

The strict mode forbids Envoy proxies to accept HTTP traffic. Consequently, services using plain
text requests are unable to communicate with services in OpenShift Service Mesh. Note that the
strict mode might also disable certain features of OpenShift Service Mesh.

Use the strict mode when you want to enforce zero-trust perimeter, and your services have
no dependencies on services without the Envoy proxy sidecar container. Permissive mode is

Chapter 8 | Securing an OpenShift Service Mesh

especially useful when you are migrating some of your services to OpenShift Service Mesh, or for
testing. Even when OpenShift Service Mesh uses the permissive mode, you can set your services
to communicate using mTLS.

Configuring Mutual TLS
Configuring Mutual TLS Globally

You can configure global enforcement of mTLS by modifying the servicemeshcontrolplane
resource. Set the .spec.istio.global.mt1ls.enabled property to true to enable strict
enforcement mode:

[student@demo ~]$ oc edit servicemeshcontrolplane basic-install -n istio-system
apiVersion: maistra.io/vi
kind: ServiceMeshControlPlane
metadata:
creationTimestamp: "2020-04-15T10:34:312"
finalizers:
- maistra.io/istio-operator
generation: 2
name: basic-install
namespace: istio-system
spec:
istio:
global:
mtls:
enabled: true (1)
grafana:
enabled: true

© The .spec.istio.global.mtls.enabled property of the
servicemeshcontrolplane resource.

The .spec.istio.global.mtls.enabled property sets all Envoy proxies to both accept and
send strictly mTLS requests. The default setting is false.

Configuring Mutual TLS per Project

When you set the global mTLS mode to PERMISSIVE, you can enforce mTLS on the project level
using the Policy resource:

apiVersion: authentication.istio.io/vlalphal
kind: Policy
metadata:

name: default
spec:

peers:

- mtls:

mode: STRICT

When you create a Policy resource, you configure Envoy proxies to accept only mTLS-encrypted
requests. However, without further configuration, Envoy proxies send plain text HTTP requests.

To configure Envoy proxies to also strictly send mTLS requests, use the DestinationRule
resource:

Chapter 8 | Securing an OpenShift Service Mesh

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:

name: dr-mtls
spec:

host: * (1]

trafficPolicy:

tls:
mode: ISTIO_MUTUAL ©

© This destination rule applies to requests for all hosts
© Requests use mutual TLS

Verifying State of Mutual TLS

When you configure services to use mTLS, you might find that some services stop responding.
This is often the result of conflicting configuration of services, where one service strictly accepts
mTLS requests while another strictly accepts plain HTTP requests. You might also want to verify
your mTLS service configuration to ensure that the configuration settings are properly applied.

You can both troubleshoot and verify mTLS configuration using the istioct/ command-line utility.
You can use the istioctl authn tls-check POD_NAME command to verify Envoy proxy
mTLS settings.

Verifying Service Identity

Any service using mTLS contains a set of X.509 certificates. The Citadel stores the certificates as
a secret with the name of istio.service_account_name, for example:

[student@demo ~]$ oc get secrets -n istio-system | grep istio\\.

istio.builder istio.io/key-and-cert 3 45h
istio.default istio.io/key-and-cert 8 45h
istio.deployer istio.io/key-and-cert 8 45h
istio.grafana istio.io/key-and-cert 3 45h
istio.istio-citadel-service-account istio.io/key-and-cert 3 45h

...output omitted...

You can examine each certificate using the openss1 utility:

[student@demo ~]$ oc get secret -n istio-system \
> istio.istio-ingressgateway-service-account \

> -0 json | jg -r '.data["cert-chain.pem"]' | \
> base64 --decode | openssl x509 -in /dev/stdin -text -noout
Certificate:

Data:

Version: 3 (0x2)
Serial Number:
8a:da:c5:65:3b:52:b8:90:d6:1b:f1:7d:57:0d:3b:9e
Signature Algorithm: sha256WithRSAEncryption
Issuer: 0 = cluster.local
Validity
Not Before: Apr 15 10:35:06 2020 GMT
Not After : Jul 14 10:35:06 2020 GMT

Chapter 8 | Securing an OpenShift Service Mesh

Subject:
Subject Public Key Info:
...output omitted. ..

OpenShift Service Mesh mounts the secret into each Envoy proxy at /etc/certs:

[student@demo ~]$ oc exec frontend-6877597c88-mscmh \
> -c¢ istio-proxy [1 1s /etc/certs

cert-chain.pem

key.pem (3]

root-cert.pem ¢,

The Envoy proxy container is named istio-proxy by default.

Envoy certificate that is presented to other Envoy proxies in order to perform TLS handshake.
Envoy's private key, used for decrypting TLS traffic. Forms a certificate-key pair with cert -
chain.pem.

The root certificate to verify other cert-chain. pem certificates. Each Citadel manages its
own root certificate.

0 000

Verifying service identity is useful when you change the Citadel certificate authority to your
organization's certificate authority, or when troubleshooting lower-level network issues, such as
failure to perform TLS handshake between two services. You can also verify the SPIFFE identity
encoded in the certificate.

End-to-End TLS

Configuring end-to-end TLS means the communication between an external client and a service
is fully encrypted. However, to utilize all features of OpenShift Service Mesh, you must use the
ingressgateway pods.

Using one route to expose multiple different services is difficult because a single route can have
only one set of certificates.

You can solve the issue by deploying a separate ingress gateway for each service that you
want to expose to external clients. Alternatively, you can create a passthrough-terminated
TLS route for each exposed service and mount the certificates for each route into the default
ingressgateway pod.

To secure your application using a passthrough-terminated TLS route:

1. Create a t1s secret with the contents of your certificate-key pair.

[student@demo ~]$ oc -n istio-system create secret tls istio-ingressgateway-
customer-certs --key customer.key --cert customer.crt
secret/istio-ingressgateway-customer-certs created

2. Mount the certificates into the istio-ingressgateway pod.

a. Prepare a patch that mounts the istio-ingressgateway-customer-certs secret
into the istio-ingressgateway pod.

[student@demo ~]$ cat > gateway-patch.json << EOF

> [{
> Ilopll : Iladdll’
> "path": "/spec/template/spec/containers/0/volumeMounts/0",

Chapter 8 | Securing an OpenShift Service Mesh

"value": {
"mountPath": "/etc/istio/customer-certs",
"name": "customer-certs",
"readOnly": true

~
<
(]

"op": "add",
"path": "/spec/template/spec/volumes/0",
"value": {
"name": "customer-certs",
"secret": {
"secretName": "istio-ingressgateway-customer-certs",
"optional": true

V V.V V V V V V V V V V V V V V

\
o
—t

'l

> EOF

b. Apply the patch

[student@demo ~]$ oc -n istio-system patch --type=json deploy istio-ingressgateway
-p "$(cat gateway-patch.json)"
deployment.apps/istio-ingressgateway patched

c. Verify certificates are mounted in the ihgressgateway container.

[student@demo ~]$ INGRESS_POD=$(oc -n istio-system get pods -1
istio=ingressgateway -o jsonpath='{.items..metadata.name}')

[student@demo ~]$ oc -n istio-system exec $INGRESS_POD -- 1s /etc/istio/customer -
certs

tls.crt

tls.key

3. Create a gateway that accepts connections using the host of your exposed application, that is,
the resolvable host name used for ingress on the HTTPS port

a. Prepare the gateway yaml file:

[student@demo ~]$ cat > gateway.yml <<EOF
> apiVersion: networking.istio.io/vilalpha3
> kind: Gateway

> metadata:

> name: customer-gateway

> spec:

> selector:

> istio: ingressgateway (1]
> servers:

> - port:e

> number: 443

> name: https-customer

> protocol: HTTPS

> tls:

Chapter 8 | Securing an OpenShift Service Mesh

V V.V V V V

EOF

® 0 0 ©o

mode: SIMPLE ©
serverCertificate: /etc/istio/customer-certs/tls.crt o
privateKey: /etc/istio/customer-certs/tls.key

hosts:

- "customer.com" (5]

The gateway targets the istio-ingressgateway pod by the label
istio=ingressgateway. The istio-ingressgateway pod contains the
mounted certificate-key pair.

The gateway accepts connections on the HTTPS port 443 using the HTTPS
protocol.

The SIMPLE TLS mode means the server does not verify client certificates. Only the
client verifies the server authority.

Provide path to the mounted certificate-key pair. The route presents this certificate
to clients.

The host of the path. This path responds to https://customer.com. Ensure
clients can correctly resolve this domain.

b. Apply the gateway:

[student@demo ~]$ oc create -f gateway.yml
gateway.networking.istio.io/customer-gateway created

4. Create avirtual service that responds to the customer -gateway gateway.

a. Prepare the virtual service yaml file:

[student@demo ~]$ cat > vservice.yml << EOF
> apiVersion: networking.istio.io/vialpha3
> kind: VirtualService

> metadata:

> name:

> spec:

V V.V V V V V V V V V V V V

EOF

hosts:

- "customer.com"
gateways:

- customer-gateway
http:

- match:

customer-virtualservice

- uri:

prefix: /

route:
- destination:

host: customer
port:
number: 8080

b. Apply the virtual service:

[student@demo ~]$ oc create -f vservice.yml
virtualservice.networking.istio.io/customer-virtualservice created

Chapter 8 | Securing an OpenShift Service Mesh

5.

Create a passthrough-terminated TLS route in the istio-system project that
listens to the domain that you selected earlier. The route redirects requests to the istio-

ingressgateway service.

a. Prepare the route yaml file

[student@demo ~]$ cat > route.yml << EOF

> apiVersion: route.openshift.io/v1
> kind: Route
> metadata:
> labels:
app: istio-ingressgateway
name: customer-https-route
namespace: istio-system
spec:
host: customer.com
port:
targetPort: https
tls:

termination: passthrough
to:
kind: Service
name: istio-ingressgateway
weight: 100
wildcardPolicy: None
EOF

V V.V V V V V V V V V V V V V V

b. Apply the route:

insecureEdgeTerminationPolicy:

None

[student@demo ~]$ oc create -f route.yml
route.route.openshift.io/customer-https-route created

Verify the secure ingress:

[student@demo ~]$ curl https://customer.com/
customer => preference => recommendation vl from 'f11be97f1ddo': 2

Chapter 8 | Securing an OpenShift Service Mesh

D References
Mutual TLS Deep-Dive
https://archive.istio.io/v1.4/docs/tasks/security/authentication/mutual-tls/

Automatic mutual TLS
https://archive.istio.io/v1.4/docs/tasks/security/authentication/auto-mtls/

Mutual TLS Migration
https://archive.istio.io/v1.4/docs/tasks/security/authentication/mtls-migration/

Gateway
https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-
TLSOptions

Configuring Routes
https://access.redhat.com/documentation/en-us/
openshift_container_platform/4.4/html-single/networking#configuring-routes

For more information, refer to the Mutual Transport Layer Security (mTLS) chapter
in the Introducing Istio Mesh for Microservices book at
https://developers.redhat.com/books/introducing-istio-service-mesh-
microservices/

W D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/tasks/security/authentication/mutual-tls/
https://archive.istio.io/v1.4/docs/tasks/security/authentication/auto-mtls/
https://archive.istio.io/v1.4/docs/tasks/security/authentication/mtls-migration/
https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-TLSOptions
https://archive.istio.io/v1.4/docs/reference/config/networking/gateway/#Server-TLSOptions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking#configuring-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/networking#configuring-routes
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/

Chapter 8 | Securing an OpenShift Service Mesh

» Guided Exercise

Configuring Mutual TLS

In this exercise, you will configure OpenShift Service Mesh to use mutual TLS (mTLS).
Outcomes

You should be able to:

+ Verify mTLS state in the OpenShift Service Mesh cluster.

+ Enable mTLS in a specific project using the Policy and DestinationRule resources.
+ Validate mTLS state using the istioct/ command-line client.

Before You Begin

To perform this exercise, ensure you have:

+ A configured and running OpenShift cluster.

+ Ainstalled and running OpenShift Service Mesh in the OpenShift cluster.

« The OpenShift CLI (/usr/local/bin/oc).

As the student user on the workstation machine, use the lab command to prepare your
system for this exercise.

This command ensures that:
+ Your OpenShift cluster meets the requirements.
+ Microservices used in this guided exercise are present on your cluster, and ready to use.

+ You have access to the solution files on the workstation machine.

[student@workstation ~]$ lab secure-mtls start

P 1. Login to OpenShift and verify that the sample project has been successfully deployed.

11. Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

Chapter 8 | Securing an OpenShift Service Mesh
1.3. Change to project mt1s:

[student@workstation ~]$ oc project mtls
Now using project "mtls" on server ...

14. Verify that the pods are ready:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-6948b8b959-c15zf 2/2 Running 0 11s
preference-6d5d86cb79-9cjkv 2/2 Running 0 11s
recommendation-69db8d6c48-wrkcé 2/2 Running 0 11s

15. Save the ingress-gateway route host name with the /mtls endpoint into a
variable:

[student@workstation ~]$ INGRESS_HOST=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/mtls)

1.6. Verify that the service responds using the INGRESS_HOST variable:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1i from 'f11be97f1ddo': 1

The start script deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository
athttps://github.com/RedHatTraining/D0328-apps/ in the customer,
preference, and recommendation directories.

P 2. Verify the state of mTLS in your service mesh using the istioct1 utility.

2]. Save the customer pod name into a variable:

[student@workstation ~]$ CUSTOMER_POD=$(oc get pods -1 app=customer \
> -0 jsonpath={.items..metadata.name})

2.2. Examine the istioct1 output using the CUSTOMER_POD variable:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD

HOST : PORT STATUS SERVER
customer.mtls.svc.cluster.local:8080 OK PERMISSIVE
grafana.istio-system.svc.cluster.local:3000 OK DISABLE

...output omitted...
Mutual TLS is disabled from the client side. The customer pod can communicate with
all of the services because most services are set to the PERMISSIVE mode. Services
in the PERMISSIVE mode accept both HTTP and mTLS connections.
) 3. Enforce use of mTLS in the mt1s project.

31. Create the policy.ym1 file:

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ cat > policy.yml << EOF
apiVersion: authentication.istio.io/vialphal
kind: Policy
metadata:

name: default
spec:

peers:

- mtls:

mode: STRICT

vV V.V V V V V V V

EOF

You can see the complete resource at ~/D0328/solutions/secure-mtls/
policy.yml

3.2. Apply the Policy resource:

[student@workstation ~]$ oc create -f policy.yml
policy.authentication.istio.io/default created

P 4. Recheck the mTLS status in the mt s project.

4]. Check the state of mTLS in your service mesh:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD | grep mtls.svc
customer.mtls.svc.cluster.local:8080 OK STRICT -
preference.mtls.svc.cluster.local:8080 OK STRICT -
recommendation.mtls.svc.cluster.local:8080 OK STRICT -

...output omitted. ..

Because the defau'lt policy is now in the STRICT mode, all services within the mt1s
project accept only TLS requests. However, the services in the mt s project send
only HTTP requests. Consequently, communication in the mt s project is forbidden.

4.2. Check that the service no longer responds to requests:

[student@workstation ~]$ curl $INGRESS_HOST
upstream connect error or disconnect/reset before headers. reset reason:
connection termination

P 5. Resolve the mTLS conflict within the mt s project.

51. Create the destrule.yml file:

[student@workstation ~]$ cat > destrule.yml << EOF
> apiVersion: "networking.istio.io/vlialpha3"
> kind: "DestinationRule"

> metadata:

> name: "default"

> spec:

> host: "*.mtls.svc.cluster.local"

> trafficPolicy:

> tls:

Chapter 8 | Securing an OpenShift Service Mesh

> mode: ISTIO_MUTUAL
> EOF

You can see the complete resource at ~/D0328/solutions/secure-mtls/
dr.yml

5.2. Apply the destination rule:

[student@workstation ~]$ oc create -f destrule.yml
destinationrule.networking.istio.io/default created

5.3. Verify that there is no longer conflict within the mt s project using the istioct1
client:

[student@workstation ~]$ istioctl authn tls-check $CUSTOMER_POD | grep mtls.svc
customer.mtls.svc.cluster.local:8080 OK STRICT ISTIO_MUTUAL
preference.mtls.svc.cluster.local:8080 OK STRICT ISTIO_MUTUAL
recommendation.mtls.svc.cluster.local:8080 OK STRICT ISTIO_MUTUAL
...output omitted. ..

Services now use the ISTIO_MUTUAL mode, which means sending requests using
mutual TLS.

5.4. Verify that the customer pod responds at the /mt s endpoint:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11b097f1dde': 2

P 6. Secure communication between pods so that each pod can only decrypt its own
communication.

6.1. Create a service account for each pod:

[student@workstation ~]$ oc create serviceaccount customer
serviceaccount/customer created

[student@workstation ~]$ oc create serviceaccount recommendation
serviceaccount/recommendation created

[student@workstation ~]$ oc create serviceaccount preference
serviceaccount/preference created

6.2. Assign the service accounts to pod deployments:

[student@workstation ~]$ oc set serviceaccount deployment customer customer
deployment.apps/customer serviceaccount updated

[student@workstation ~]$ oc set serviceaccount deployment recommendation \

> recommendation

deployment.apps/recommendation serviceaccount updated

[student@workstation ~]$ oc set serviceaccount deployment preference preference
deployment.apps/preference serviceaccount updated

6.3. Assigning a service account to a deployment terminates the current pod and creates
a new pod. Wait until all pods become ready.

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-5c7b87c6c5-55vrz 2/2 Running 0] 22s
preference-6d98556fc5-vzk7v 2/2 Running 0] 23s
recommendation-6b886bd8d8-8r6xq 2/2 Running 0] 24s

6.4. Save the new pod name into a variable:

[student@workstation ~]$ CUSTOMER_POD=$(oc get pods -1 app=customer -o \
> jsonpath={.items..metadata.name})

6.5. Verify the customer pod uses a unique SVID:

[student@workstation ~]$ oc exec $CUSTOMER_POD -c istio-proxy o \
> cat /etc/certs/cert-chain.pem | \ (2]
> openssl x509 -text -noout | \©
> grep "X509v3 Subject" -A 1 @
X509v3 Subject Alternative Name:
URI:spiffe://cluster.local/ns/mtls/sa/customer

2]
3]
o

Execute the following commands in the istio-proxy container, which contains
the certificates.

Print the encoded certificate for this pod.

Decode the certificate using the openss1 utility.

Find the Subject Alternative Name, and then print the line below it.

Repeat the step to verify the SVID for the preference and recommendation pods.

6.6. Verify that pods can communicate using the unique identities:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation v1 from 'f11be97f1ddo': 1

Finish

On the workstation machine, use the lab command to complete this exercise. This is important
to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mtls finish

This concludes the guided exercise.

Chapter 8 | Securing an OpenShift Service Mesh

Defining Service to Service Authorization

Objectives

After completing this section, you should be able to configure restriction on services
communication in OpenShift Service Mesh.

Defining Authorization in Zero-Trust Perimeters

Previously, you learned about the concepts of zero-trust networks and using mutual TLS to
encrypt your internal traffic. OpenShift Service Mesh also provides an authorization mechanism,
which uses the strong service identity and provides developers fine-grained control over services
communication.

In OpenShift Service Mesh, you can specify a deny-by-default communication pattern with
targeted exceptions. For example, you expose the front end and gateway services to end users,
but exposing the database directly would be a security risk. Red Hat OpenShift enables you to
selectively expose only specified services. However, if an attacker breaches the initial security
perimeter, internal services are left exposed and accessible to any other service.

An attacker might breach the initial network perimeter by injecting a malicious container into
your cluster, for example due to a compromised container registry. In a worst case scenario, the
malicious container is properly deployed into the cluster with its own Envoy proxy and a valid
cryptographic identity.

OpenShift Service Mesh enables you to mitigate such a breach using the deny-by-default
communication pattern. Developers can configure the OpenShift Service Mesh to allow
connections to the database service only from pods with a trusted identity. Any other
communication is forbidden and the malicious container does not gain full access to the database
pod.

Authorization requires no modifications to the application code. Microservices focus on executing
business logic while Pilot, together with Envoy proxies, ensure that authorization configuration is
enforced.

Additionally, OpenShift Service Mesh enables developers to control egress calls. If the developers
configure OpenShift Service Mesh with security in mind, the malicious container is unable to make
any calls outside of OpenShift Service Mesh. Service to service authorization is another tool in the
toolbox of a DevSecOps organization that enables you to minimize security vectors and mitigate
security breaches.

Describing Authorization Workflow

Developers configure authorization using the AuthorizationPolicy custom resource
definition (CRD). When you create a new AuthorizationPolicy CRD, Pilot generates an Envoy
RBAC policy configuration, which propagates into Envoy proxy containers. Envoy proxies apply the
authorization policies at run time, when another service sends a request.

Chapter 8 | Securing an OpenShift Service Mesh

P Authorization Policy

User l

Pilot

mTLS

(@ Service A @ Service B

POD A PODB

Figure 8.1: OpenShift Service Mesh Authorization Workflow

Note that mutual TLS is required for authorization policies that use identity, such as principals,
namespaces, or server name indication (SNI). If you do not enable mutual TLS for identity-based
conditions, then the request contains no identity and is denied by the policy.

Configuring Service Authorization

To configure OpenShift Service Mesh authorization policies, use the AuthorizationPolicy
custom resource definition (CRD). The AuthorizationPolicy CRD specifies the following
attributes:

+ Subject, matched by the . spec.selector field. This is the target Envoy proxy that enforces
the policy.

+ Action, matched by the . spec.action field, specifies an allowlist (ALLOW) or a denylist (DENY)
action. The default value is ALLOW.

*+ Rule set, matched by the spec. rules field, specifies the trigger for this policy, for example
communication on a specified port. Each rule set has the following attributes:

- source field, specifies the origin of the request, for example, a service identity.
- tofield, specifies the HTTP method, port, path, or other properties of the request.

- when field, specifies additional conditions, such as the presence of an HTTP header.

For example:

D0O328-5SM1.1-en-2-20200910 w

Chapter 8 | Securing an OpenShift Service Mesh

apiVersion: "security.istio.io/vibetal"
kind: "AuthorizationPolicy"
metadata:
name: "test-policy"
spec:
selector: (1]
matchLabels:
app: test
action: ALLow ©
rules: (3]
- from:
- source:
namespaces: ["test"]
to:
- operation:
methods: ["GET"]
ports: ["8080"]
paths: ["/"]

© This authorization policy targets all pods that match the app=test label. The Envoy proxy in
matching pods will enforce this authorization policy.

© Action is explicitly set to ALLOW. Requests that trigger this policy are permitted. Any other
requests to the matching pods will be denied, unless you specify another authorization policy.

© This policy matches requests from the test namespace with the GET HTTP method to the
8080 port matching the / endpoint.

Note the following:

+ If you create no authorization policy, then all requests are permitted. However, when you specify
at least one authorization policy, you enable deny-by-default behavior for the Envoy proxy of
the matching workload.

This behavior also applies when you create a single denylist policy. If you create a single
authorization policy with the DENY action, all requests will be denied, and your pod will be
inaccessible.

+ You can create multiple authorization policies for one workload.

Creating multiple policies for a single workload is useful for designing atomic, easy-to-maintain
policies. Creating multiple policies for a single workload also enables other patterns, such as
temporary permit requests used for testing or development.

Each Envoy proxy contains a list of authorization policies. When an Envoy proxy receives a
request, each policy is evaluated separately. The first policy that matches is applied. This results
in a logical OR behavior.

Warning
Do not rely on the policy order of your envoy proxy.

+ The scope of authorization policies is a project. The test -policy example policy above will
not match workloads with the app=test label in a different project.

Chapter 8 | Securing an OpenShift Service Mesh

Combining Authorization Policy Rule Parameters

You can specify multiple rule parameters, such as the .spec.rules.from.source or
.spec.rules.from. to.operation parameters. Specifying multiple matching parameters
results in the logical OR behavior.

This is useful for specifying multiple trigger conditions for the policy. However, large authorization
policies with multiple rule parameters are be difficult to understand and maintain. It is best
practice to keep your authorization policies as small and atomic as possible in the context of your
environment.

The following policy example combines multiple . spec.rules. from.source fields:

apivVersion: "security.istio.io/vibetal"
kind: "AuthorizationPolicy"
metadata:
name: "test-policy-multiple-sources"
spec:
selector:
matchLabels:
app: test
rules:
- from:
- source:
namespaces: ["test"]
- source:
principals: ["cluster.local/ns/test2/sa/test2-service-account"]
- source:
ipBlocks: ["10.128.0.0/14"]

The example test-policy-multiple-sources authorization policy specifies no
.spec.action field value. Consequently, the default ALLOW value is applied. The policy permits
any requests that match at least one of the following conditions:

+ Requests originate from the test namespace
+ Requests identified by the test2-service-account service account in project test2

+ Requests originating from an IP in the 10.128.0.0/14 range

The following policy example combines multiple . spec.rules.from.to.operation fields:

apivVersion: "security.istio.io/vilbetal"
kind: "AuthorizationPolicy"
metadata:
name: "test-policy-multiple-operation"
spec:
selector:
matchLabels:
app: test
rules:
- from:
- to:
- operation:
methods: ["GET"]
ports: ["8080"]

Chapter 8 | Securing an OpenShift Service Mesh

- operation:

methods: ["POST"]

ports: ["8080"]

paths: ["/api/v2/createEmployee/*"]
- operation:

methods: ["PUT"]

ports: ["8080"]

paths: ["/api/v2/updateEmployee"]

The test-policy-multiple-operation authorization policy permits any requests that match
at least one of the following conditions:

+ Any GET requests on the 8080 port.
+ POST requests on the 8080 port to the /api/v2/createEmployee/* endpoints.

+ PUT requests on the 8080 port to the /api/v2/updateEmployee endpoint.

D References
Authorization Policy (Reference)

https://archive.istio.io/v1.4/docs/reference/config/security/authorization-policy/

Authorization Policy Conditions
https://archive.istio.io/v1.4/docs/reference/config/security/conditions/

Authorization Policy (Concept)
https://archive.istio.io/v1.4/docs/concepts/security/#authorization-policy

Envoy Proxy HTTP filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/
http_filters

W D0O328-5SM1.1-en-2-20200910

https://archive.istio.io/v1.4/docs/reference/config/security/authorization-policy/
https://archive.istio.io/v1.4/docs/reference/config/security/conditions/
https://archive.istio.io/v1.4/docs/concepts/security/#authorization-policy
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters

Chapter 8 | Securing an OpenShift Service Mesh

» Guided Exercise

Configuring Service to Service
Authorization

In this exercise, you will restrict service-to-service communication within a project and across
projects.

At the start of the exercise, the lab command deploys the customer, preference, and
recommendation services into your Red Hat OpenShift cluster. The customer service
sends requests to the preference service. The preference service sends requests the
recommendation service.

You will:

+ Restrict each service to accept incoming requests from one and only one other service, as
per the service workflow.

+ Relax the restriction by enabling the customer service to accept incoming requests from
an external project, to simulate developer environment.

Outcomes

You should be able to configure OpenShift Service Mesh to restrict access to services based
on service parameters, such as namespace or service account.

Before You Begin

To perform this exercise, ensure you have:
+ A configured and running OpenShift cluster.
- Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

+ The OpenShift CLI (/usr/local/bin/oc).

On the workstation machine, use the lab command to prepare your system for this
exercise.

The lab command deploys the customer, preference, and recommendation
services into your Red Hat OpenShift cluster. The source code is in the Git repository at
https://github.com/RedHatTraining/DO328-apps in the customer, preference, and
recommendation directories.

Each service deployment uses a unique service account. Mutual TLS is enabled and
enforced within the secure-authc project. You can examine the full deployment file

in the ~/D0328/labs/secure-authc/app-deployment.yaml file. In the app-
deployment .yaml file, note that each Deployment resource specifies a unique service
account. Additionally, examine the Policy and DestinationRule resources.

[student@workstation ~]$ lab secure-authc start

https://github.com/RedHatTraining/DO328-apps

Chapter 8 | Securing an OpenShift Service Mesh
P 1. Loginto OpenShift and verify that the application is ready.

11. Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted. ..

1.3. Change to project secure-authc:

[student@workstation ~]$ oc project secure-authc
Now using project "secure-authc" on server ...

14. Verify that pods are in the Running state:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
customer-5f9bb4676-2g4f6 2/2 Running 0 11s
preference-748787ff89-fnxt8 2/2 Running 0 11s
recommendation-78588b5ff9-wx52s 2/2 Running 0] 11s

15. Save the ingress-gateway route host name with the /secure-authc endpoint
into a variable:

[student@workstation ~]$ INGRESS_HOST=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/secure-authc)

1.6. Verify that the service responds using the INGRESS_HOST variable:

[student@workstation ~]$ curl $INGRESS_HOST
customer => preference => recommendation vi from 'f11be97f1ddo': 1

P 2. \Verify that there is no restriction on pod communication. Any pod in the mesh can
communicate with any other pod in the secure-authc project.

21. Create a new project named curl:

[student@workstation ~]$ oc new-project curl
Now using project "curl" on server ...
...output omitted. ..

2.2. Addthe curlprojectinto the servicemeshmemberroll resource:

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc patch smmr default -n istio-system \
> --type='json' -p='[{"op": "add", "path": "/spec/members/0", "value":"curl"}]'
servicemeshmemberroll.maistra.io/default patched

Alternatively, use the ~/D0328/labs/secure-authc/patch-smmr. sh script.

2.3. Deploy the sleep application into the cur 1 project:

[student@workstation ~]$ oc create -f ~/D0328/labs/secure-authc/sleep.yml
service/sleep created
deployment.apps/sleep created

The sleep pod is a container with the sleep command as its execution command.
You can view the source code in the Git repository at https://github.com/
RedHatTraining/DO328-apps in the sleep directory.

2.4. After the sleep pod changes into the Ready state, issue a request from the sleep
pod to the customer service:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \

> curl -s customer.secure-authc.svc.cluster.local:8080

Defaulting container name to sleep.

Use 'oc describe pod/sleep-556b5fc57c-725w7 -n curl' to see all of the containers

in this pod.
customer => preference => recommendation v1 from 'f11b097f1dde': 2

The sleep pod can reach the customer service in a different namespace.

2.5. Change to the secure-authc project:

[student@workstation ~]$ oc project secure-authc
Now using project "secure-authc" on server ...
...output omitted. ..

2.6. lIssue arequest from the recommendation pod to the customer pod:

[student@workstation ~]$ oc exec $(oc get pod -1 app=recommendation -o name) -- \

> curl -s customer:8080

Defaulting container name to recommendation.

Use 'oc describe pod/recommendation-78588b5ff9-wx52s -n secure-authc' to see all
of the containers in this pod.

customer => preference => recommendation v1 from 'f11be97f1ddo': 3

P 3. Restrict access to the customer pod using the following information:

» The customer pod is accessible only by the istio-ingressgateway-service-
account service account.

+ The customer pod is accessible only at the port 8080.
« The customer pod is accessible only using the GET method.

3.1. Prepare the AuthorizationPolicy resource. You can view the prepared policy
customer-policy.yamlin the ~/D0328/solutions/secure-authc directory.

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ cat > customer-policy.yaml << EOF
> apiVersion: "security.istio.io/vibetal"
> kind: "AuthorizationPolicy"
> metadata:
> name: "get-customer"
spec:
selector:
matchLabels:
app: customer"
rules:
- from:
- source:
principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]

vV V.V V V V V V

> to:

> - operation:"

> methods: ["GET"]
> ports: ["8080"]
> EOF

© This policy targets all pods with the label app=customer.
© Requests from the istio-ingressgateway-service-account identity are
permitted.

© Requests from the permitted source are restricted to method GET on port 8086.

3.2. Create the policy:

[student@workstation ~]$ oc create -f customer-policy.yaml
authorizationpolicy.security.istio.io/get-customer created

3.3. Issue arequest from the recommendation pod to the customer pod to test the
policy enforcement:

[student@workstation ~]$ oc exec $(oc get pod -1 app=recommendation -o name) -- \
> curl -s customer:8080

Defaulting container name to recommendation.

Use 'oc describe pod/recommendation-78588b5ff9-wx52s -n secure-authc' to see all
of the containers in this pod.

RBAC: access denied

Note
E It takes a couple seconds before the authorization policy settings propagate into
the Envoy proxy of the customer pod.

If the request succeeds, try to issue the same request again after 5-10 seconds.

P 4. Repeat the previous step to restrict communication for the preference and
recommendation pods.

4]. Restrict communication for the preference pod using the following information:

Chapter 8 | Securing an OpenShift Service Mesh

« The preference pod is accessible only by the customer pod with identity
customer-sa.

+ The preference pod is accessible only at the 8080 port.
+ The preference pod is accessible only using the GET method.

The solution file is provided at ~/D0328/solutions/secure-authc/
preference-policy.yaml

4.2. Restrict communication for the recommendation pod using the following
information:

+ The recommendation pod is accessible only by the preference pod with
identity preference-sa.

+ The recommendation podis accessible only at the 8080 port.
+ The recommendation pod is accessible only using the GET method.

The solution file is provided at ~/D0328/solutions/secure-authc/
recommendation-policy.yaml.

P 5. Fordevelopment and testing, make the customer pod accessible from any other pod in
the curl project.

51. Changeinto the curl project:

[student@workstation ~]$ oc project curl
Now using project "curl" on server ...
...output omitted

5.2. Verify that pods in the cur 1 project cannot communicate with the customer pod.

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \

> curl -s customer.secure-authc.svc.cluster.local:8080

Defaulting container name to sleep.

Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers
in this pod.

RBAC: access denied

5.3. Prepare the AuthorizationPolicy resource:

[student@workstation ~]$ cat > curl-customer-policy.yaml << EOF
> apiVersion: "security.istio.io/vibetal"
> kind: "AuthorizationPolicy"
> metadata:
> name: "curl-get-customer"

namespace: "secure-authc"
spec:

selector:

matchLabels:
app: customer
rules:

V V.V V V V

Chapter 8 | Securing an OpenShift Service Mesh

> - from:
- source:
namespaces: ["curl"]

The curl-customer-policy.yaml file is available in the ~/D0328/solutions/
secure-authc directory.

5.4. Create the policy:

[student@workstation ~]$ oc create -f curl-customer-policy.yaml
authorizationpolicy.security.istio.io/curl-get-customer created

5.5. Verify that pods in the cur 1 project can now communicate with the customer pod:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \

> curl -s customer.secure-authc.svc.cluster.local:8080

Defaulting container name to sleep.

Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers

in this pod.
customer => preference => recommendation vl from 'f11be97f1ddo': 4

5.6. Verify that pods in the cur 1 project cannot communicate with other pods in the
secure-authc project:

[student@workstation ~]$ oc exec $(oc get pods -o name) -- \
> curl -s preference.secure-authc.svc.cluster.local:8080

Defaulting container name to sleep.
Use 'oc describe pod/sleep-556b5fc57c-jvm9b -n curl' to see all of the containers

in this pod.
RBAC: access denied
Finish
On the workstation machine, use the lab command to complete this exercise. This is important
to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-authc finish

This concludes the guided exercise.

Chapter 8 | Securing an OpenShift Service Mesh

» Lab
Securing an OpenShift Service Mesh

Performance Checklist
In this lab, you will secure the provided application using the OpenShift Service Mesh
authorization policies.

Outcomes

You should be able to:

- Enable and verify mutual TLS.

- Configure authorization policies based on service identity.

+ Restrict service communication using authorization policies based on HTTP attributes,
such as HTTP verbs, ports, and endpoints.

Before You Begin

To perform this exercise, ensure you have:

+ A configured and running OpenShift cluster.

+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.
The source code is in the Git repository at https://github.com/RedHatTraining/D0O328-apps
in the exchange-application directory.

The exchange application consists of the following services:
+ Frontend

+ Currency

+ Exchange

+ History

You can examine the services in the secure-mesh project. The application is available using
the istio-ingressgateway route at the /frontend endpoint.

Additionally, the Tab command also deploys the dashboard application into your Red Hat
OpenShift cluster. The dashboard application provides information about availability of the
exchange application services in the service mesh.

The dashboard source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps in the dashboard directory.

The dashboard application consists of the following services:

+ Frontend

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 8 | Securing an OpenShift Service Mesh

+ Backend

You can examine the services in the dashboard project. The application is available using
the istio-ingressgateway route at the /dashboard endpoint.

[student@workstation ~]$ lab secure-mesh start

Secure the exchange application according to the following specifications:

« The frontend service is accessible only from the istio-ingressgateway service, using only
GET requests on port 3000.

+ The exchange service is accessible only from the istio-ingressgateway service on port
8080 on the following endpoints:

- POST /currencies
- POST /exchangeRate/singleCurrency
- POST /exchangeRate/historicalData
« The currency and history services are accessible only from the secure-mesh project.

After you secure the exchange application, it should be accessible on the /frontend endpoint of
the istio-ingressgateway route. However, it should not be accessible to any other services
in the service mesh. Consequently, the dashboard application should mark all services with status
Down, and unavailable.

1. Loginto OpenShift and verify that the application is ready.

2. Configure prerequisites for identity-based service-to-service restriction.
3. Restrict access to the frontend service.

4. Restrict access to the exchange service.

5. Restrict access to the currency and history services.
Evaluation

Grade your work by running the 1lab secure-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab secure-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mesh finish

This concludes the lab.

Chapter 8 | Securing an OpenShift Service Mesh

» Solution

Securing an OpenShift Service Mesh

Performance Checklist

In this lab, you will secure the provided application using the OpenShift Service Mesh
authorization policies.

Outcomes
You should be able to:

+ Enable and verify mutual TLS.
+ Configure authorization policies based on service identity.

+ Restrict service communication using authorization policies based on HTTP attributes,
such as HTTP verbs, ports, and endpoints.

Before You Begin

To perform this exercise, ensure you have:
+ A configured and running OpenShift cluster.

+ Alinstalled and running OpenShift Service Mesh in the OpenShift cluster.

As the student user on the workstation machine, use the lab command to prepare your
system for this lab.

The lab command deploys the exchange application into your Red Hat OpenShift cluster.
The source code is in the Git repository at https://github.com/RedHatTraining/DO328-apps
in the exchange-application directory.

The exchange application consists of the following services:
+ Frontend

+ Currency

+ Exchange

+ History

You can examine the services in the secure-mesh project. The application is available using
the istio-ingressgateway route at the /frontend endpoint.

Additionally, the lab command also deploys the dashboard application into your Red Hat
OpenShift cluster. The dashboard application provides information about availability of the
exchange application services in the service mesh.

The dashboard source code is in the Git repository at https://github.com/RedHatTraining/
DO328-apps in the dashboard directory.

The dashboard application consists of the following services:

https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps
https://github.com/RedHatTraining/DO328-apps

Chapter 8 | Securing an OpenShift Service Mesh

+ Frontend

+ Backend

You can examine the services in the dashboard project. The application is available using
the istio-ingressgateway route at the /dashboard endpoint.

[student@workstation ~]$ lab secure-mesh start

Secure the exchange application according to the following specifications:

+ The frontend service is accessible only from the istio-ingressgateway service, using only
GET requests on port 3000.

+ The exchange service is accessible only from the istio-ingressgateway service on port
8080 on the following endpoints:

- POST /currencies
- POST /exchangeRate/singleCurrency
- POST /exchangeRate/historicalData

« The currency and history services are accessible only from the secure-mesh project.

After you secure the exchange application, it should be accessible on the /frontend endpoint of
the istio-ingressgateway route. However, it should not be accessible to any other services
in the service mesh. Consequently, the dashboard application should mark all services with status
Down, and unavailable.

1. Loginto OpenShift and verify that the application is ready.

11, Run the following command to load the environment variables created in the first
guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. Change to project secure-mesh:

[student@workstation ~]$ oc project secure-mesh
Now using project "secure-mesh" on server ...

14. Verify that pods are in the Running state:

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
currency-566cddc8c6-jtd5g 2/2 Running 0 13s
exchange-66b78bf65c-s72gv 2/2 Running 0 13s
frontend-5648fbb85f-td5dg 2/2 Running 0 13s
history-54b5c9d476-rk4pd 2/2 Running 0 13s

15. Save the ingress-gateway route host name with the /frontend endpointinto a
variable:

[student@workstation ~]$ FRONTEND=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/frontend)

1.6. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

1.7. Save the ingress-gateway route hostname with the /dashboard endpoint into a
variable:

[student@workstation ~]$ DASHBOARD=$(oc get route -n istio-system \
> istio-ingressgateway -o jsonpath='{.spec.host}'/dashboard)

1.8. Verify that all the services are accessible using the DASHBOARD variable:

[student@workstation ~]$ firefox $DASHBOARD

2. Configure prerequisites for identity-based service-to-service restriction.

21. Enable mutual TLS:

[student@workstation ~]$ oc patch smcp basic-install -n istio-system \
> --type merge -p '{"spec":{"istio":{"global":{"mtls":{"enabled": true}}}}}'
servicemeshcontrolplane.maistra.io/basic-install patched

3. Restrict access to the frontend service.

31. Prepare the authorization policy. You can view the complete get-frontend.yaml file
in the ~/D0328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > get-frontend.yaml << EOF
apiVersion: "security.istio.io/vibetal"
kind: "AuthorizationPolicy"
metadata:

name: "get-frontend"
spec:

selector:

matchLabels:

>
>
>
>
>
>
>
> app: frontend

Chapter 8 | Securing an OpenShift Service Mesh

rules:
- from:
- source:
principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]

>
>
>
>

> - to:

> - operation:

> methods: ["GET"]
> ports: ["3000"]
> EOF

3.2. Apply the authorization policy:

[student@workstation ~]$ oc create -f get-frontend.yaml
authorizationpolicy.security.istio.io/get-frontend created

3.3. Verify that the application responds using the FRONTEND variable:

[student@workstation ~]$ firefox $FRONTEND

3.4. Verify that the Frontend Service service is unavailable in the dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

4. Restrict access to the exchange service.

4)]. Prepare the authorization policy. You can view the complete exchange . yam1 file in
the ~/D0328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > exchange.yaml << EOF
> apiVersion: "security.istio.io/vilbetal"
> kind: "AuthorizationPolicy"
> metadata:
> name: "exchange"
> spec:
> selector:
> matchLabels:
> app: exchange
> rules:
> - from:
> - source:
> principals: ["cluster.local/ns/istio-system/sa/istio-ingressgateway-
service-account"]
- to:
- operation:
methods: ["POST"]
ports: ["8080"]
paths: ["/currencies", "/exchangeRate/singleCurrency", "/exchangeRate/
historicalData"]
> EOF

vV V. V V V

4.2. Apply the authorization policy:

Chapter 8 | Securing an OpenShift Service Mesh

[student@workstation ~]$ oc create -f exchange.yaml
authorizationpolicy.security.istio.io/exchange created

4.3. Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history
On the Historical Data page, click Submit.

4.4, Verify that the Exchange page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/exchange
On the Exchange page, click Submit.

45. Verify that the Gateway Service service is unavailable in the dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

Restrict access to the currency and history services.

51. Addanew label, ns-restricted, to each of the service deployments. Alternatively,
you can use the add- labels. sh script in the ~/D0328/solutions/secure-mesh
directory.

[student@workstation ~]$ oc patch deployment history --type='json' \

> -p="[{"op": "add", "path": "/spec/template/metadata/labels/ns-restricted",
"value":"true"}]'

deployment.apps/history patched

[student@workstation ~]$ oc patch deployment currency --type='json' \

> -p="[{"op": "add", "path": "/spec/template/metadata/labels/ns-restricted",
"value":"true"}]'

deployment.apps/currency patched

5.2. Verify that both currency and history pods are labeled using the ns-restricted
label, and are in the Running state:

[student@workstation ~]$ oc get pods -1 ns-restricted

NAME READY STATUS RESTARTS AGE
currency-65b7dbdc75-2smhv ~ 2/2 Running 0 28s
history-64bf7cf7d5-mnmré6 2/2 Running 0 44s

5.3. Prepare the authorization policy. You can view the complete ns-restricted.yaml
file in the ~/D0328/solutions/secure-mesh directory.

[student@workstation ~]$ cat > ns-restricted.yaml << EOF
> apiVersion: "security.istio.io/vilbetal"

> kind: "AuthorizationPolicy"

> metadata:

> name: "ns-restricted"

> spec:

Chapter 8 | Securing an OpenShift Service Mesh

> selector:

> matchLabels:

> "ns-restricted": "true"

> rules:

> - from:

> - source:

> namespaces: ["secure-mesh"]
> EOF

5.4. Apply the authorization policy:

[student@workstation ~]$ oc create -f ns-restricted.yaml
authorizationpolicy.security.istio.io/ns-restricted created

5.5. \Verify that the Historical Data page of the application works. Open the page:

[student@workstation ~]$ firefox $FRONTEND/history
On the Historical Data page, click Submit.
5.6. Verify that the Exchange page of the application works. Open the page:
[student@workstation ~]$ firefox $FRONTEND/exchange

On the Exchange page, click Submit.

5.7. Verify that the History Service and Currency Service services are unavailable in the
dashboard application:

[student@workstation ~]$ firefox $DASHBOARD

Evaluation

Grade your work by running the lab secure-mesh grade command from your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab secure-mesh grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab secure-mesh finish

This concludes the lab.

Chapter 8 | Securing an OpenShift Service Mesh

Summary

In this chapter, you learned:
+ How OpenShift Service Mesh enables you to adopt DevSecOps practices.
+ Configuring and troubleshooting mutual TLS (mTLS).

+ Securing microservices by restricting service-to-service communication using the deny-by-
default pattern.

D0O328-5SM1.1-en-2-20200910 w

For use by |Jamie Longmuir jlongmui jlongmui@redhat.com

-
1
L L)

oyright © 2020 Red Hat, Inc.

D0O328-SM1.1-en-2-20200910

Chapter 9

Comprehensive Review

Goal Review tasks from Building Resilient Microservices ¢
with Istio and Red Hat OpenShift Service Mesh
Objectives * Review tasks from Building Resilient .
Microservices with Istio and Red Hat OpenShift 4
Service Mesh
'
Sections + Comprehensive Review of Red Hat OpenShift
Service Mesh (and Lab) i

”I
—
Lab Building Resilient Microservices

!

D0O328-5SM1.1-en-2-20200910

w7

Chapter 9 | Comprehensive Review

Comprehensive Review

Objectives

After completing this section, you should be able to demonstrate knowledge and skills learned in
Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh .

Reviewing Building Resilient Microservices with Istio
and Red Hat OpenShift Service Mesh

Before beginning the comprehensive review for this course, you should be comfortable with the
topics covered in each chapter.

You can refer to earlier sections in the textbook for extra study.

Chapter 1, Introducing Red Hat OpenShift Service Mesh

Describe the basic concepts of microservice architecture and Red Hat OpenShift Service Mesh.

+ Describe the basic concepts behind a distributed architecture and Red Hat OpenShift Service
Mesh.

+ Describe the fundamental architecture of OpenShift Service Mesh components.

Chapter 2, Installing Red Hat OpenShift Service Mesh
Deploy Red Hat OpenShift Service Mesh on OpenShift Container Platform.

Install Red Hat OpenShift Service Mesh on Red Hat OpenShift Container Platform.

Chapter 3, Observing a Service Mesh

Trace and visualize an OpenShift Service Mesh with Jaeger and Kiali.
« Configure distributed tracing to track service traffic.
+ Collect and inspect critical metrics with Prometheus and Grafana.

+ Monitor and visualize service interactions with Kiali.

Chapter 4, Controlling Service Traffic

Manage and route traffic with Red Hat OpenShift Service Mesh
+ Manage and route traffic with Red Hat OpenShift Service Mesh.
+ Route traffic to services in a mesh, based on request headers.

+ Control egress traffic to access external services.

Chapter 5, Releasing Applications with OpenShift Service
Mesh

Release applications with canary and mirroring release strategies.

Chapter 9 | Comprehensive Review

+ Release application services with a safe canary rollout.

+ Deploy a "mirror" service to test a new service with a realistic load.

Chapter 6, Testing Service Resilience with Chaos Testing
Test the resiliency of an OpenShift Service Mesh with Chaos Testing.

+ Create test errors to identify weaknesses in your application.

+ Create a delay in your services to test for weaknesses in your application.

Chapter 7, Building Resilient Services

Leverage OpenShift Service Mesh strategies for creating resilient services.
+ Describe the strategies for creating resilient services with Service Mesh.
+ Configure time-outs to maintain service reliability.

+ Configure a service retry to maintain service reliability.

+ Configure a circuit breaker pattern to maintain service reliability.

Chapter 8, Securing an OpenShift Service Mesh

Secure and encrypt services in your application with Red Hat OpenShift Service Mesh.
+ Describe how Citadel manages identities.
+ Configure Mutual TLS to secure intra-service communication.

- Configure restriction on services communication in OpenShift Service Mesh.

Chapter 9 | Comprehensive Review

» Lab
Building Resilient Microservices

Performance Checklist

In this review, you will deploy the "Adopt a Pup" application to OpenShift and configure
Red Hat OpenShift Service Mesh to manage the traffic and security aspects of the
application. You will also configure the service mesh to be more resilient against delays,
timeouts, and failures.

Outcomes
You should be able to:

+ Deploy the "Adopt a Pup" application to OpenShift and enable Red Hat OpenShift Service
Mesh to control the incoming and outgoing traffic.

+ Secure the application by configuring access control and allowing only encrypted
communication between microservices.

+ Configure the service mesh to perform canary releases and dark launches for testing new
features of the application.

- Configure the service mesh to make the application more resilient using timeouts, retries,
and circuit breakers.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

+ The Istio CLI (istioct1).

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise, and prepare the lab:

[student@workstation ~]$ lab comprehensive-review start

Instructions

The start script creates a new project named adoptapup and deploys all services except the
adoption service. The news service deploys in a separate project named adoptapup-news.

The architecture of the "Adopt a Pup" application is as follows:

Chapter 9 | Comprehensive Review

Service Mesh

animal

v

A

S7 ot S
—P VAN ronten adoption

MongoDB

A4
A4

User Service Mesh
Gateway

v

shelter

v

» notification

4,____________________________.

news email

Figure 9.1: Adopt a Pup

The application consists of the following microservices:

animal
Manages a set of pups that can be adopted. Each pup belongs to a particular animal shelter.

shelter
Manages several animal shelters that take care of pups until they are adopted. A shelter can
have one or more pups.

notification
Manages notifications that are sent to potential owners of pups. The notification service
handles multiple notifications, such as emails and text messages. Currently, only notifications
by email are supported.

email
Sends emails to users. The service mesh does not manage this service.

adoption
This service processes user requests for adoption. It is responsible for data validation and
verifying that the user is eligible to adopt a pup.

news
This service periodically informs users about news regarding shelters and animals. This service
is deployed in a separate project. The service mesh does not manage this service.

frontend
This service provides the web user interface for the application.

mongodb
The details for pups, shelters, and adoptions are stored in this MongoDB database.

D0O328-5SM1.1-en-2-20200910 w

Chapter 9 | Comprehensive Review

The start script deployed these services using YAML files located in the /home/student/
D0328/1labs/comprehensive-review folder.

The start script deployed the MongoDB database and preloaded shelter and animal data into the
database.

S Note
Name all virtual service resources created in the adoptapup project as service-vs,

where service is the service name, for example, adoption-vs and animal-vs.

Name all destination rule resources created in the adoptapup project as service-dr,
where service is the service name, for example adoption-dr and animal-dr.

Name all service accounts created in the adoptapup project as service-sa, where
service is the service name, for example adoption-saand animal-sa.

Perform the following tasks:

1.

Log in to OpenShift as the developer user and inspect the deployed microservices in the
adoptapup and adoptapup-news projects. Verify that all the microservices, except the
adoption microservice, are deployed and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

Verify that the data has been successfully loaded into MongoDB using the check -
mongo . sh script in the /home/student/D0328/labs/comprehensive-review folder.
If data is successfully loaded, you will see the raw JSON data from the database as follows:

[student@workstation ~]$ sh ~/D0328/1labs/comprehensive-review/check-mongo.sh
Login successful.

You have access to the following projects ...output omitted...

* adoptapup
...output omitted. ..
Checking if animal data is loaded into MongoDB...

{ "_id" : "d52a8d58-9024-49dd-92b6-d443c6049ffe", "animalName" : "Gus" ...output
omitted. ..
...output omitted. ..

Checking if shelter data is loaded into MongoDB...

{ "_id" : "e038ae3c-592f-403e-9233-4b6eeab30e3c", '"shelterName" : "Denver
Doggos" ...output omitted...
...output omitted. ..

If the data is not loaded, then run the load-mongo . sh script in the /home/student/
D0328/1labs/comprehensive-review folder, and then rerun the check-mongo. sh
script to verify success.

Create a service mesh gateway named adoptapup-gateway to allow external traffic to flow
into the service mesh. Configure the gateway to listen for HTTP requests on port 80.

Deploy the adoption service in the adoptapup project. Ensure that it is managed by
Red Hat OpenShift Service Mesh.

Chapter 9 | Comprehensive Review

The container image for the adoption service is available at quay.io/redhattraining/
ossm-adoption-service:1.0. The container serves requests on port 8080.

Name the OpenShift deployment and service resource as adoption, and then add a label
app: adoption to the relevant resources. This service listens on port 8080.

Name the virtual service as adoption-vs. Configure the virtual service so that all requests
to the /adoption endpoint, relative to the service mesh gateway URL, are routed to the
adoption service.

Using a web browser, access the front end user interface at the /frontend endpoint relative
to the gateway URL. Verify that you can browse shelters and animals from the navigation
pane.

Warning

A If you have restarted your classroom VMs, or redeployed the MongoDB database
pod after running the start script, then you must run the load-mongo . sh script
as discussed in a previous step. You must do this because the MongoDB pod uses
ephemeral storage and it does not persist data between restarts.

5. Click News in the navigation panel. The front end fails to fetch data from the news service
(external to the service mesh).

Configure the service mesh to allow the front end service to fetch the latest news from the
news service.

6. Version 2 of the frontend service introduces some user interface changes. The container
image for version 2 is available at quay.io/redhattraining/ossm-adopt-a-pup-
webapp:2.0.

Deploy version 2 of the frontend service as follows:
+ Configure service mesh to route 80% of traffic to version 1and the remainder to version 2.

+ The container name and deployment name should be called frontend-v2. Add the label
version: v2 to the relevant resources.

Verify that the navigation panel background color is red in version 2, but not in version 1.

Note

E You might have to refresh your browser several times before you can see the user
interface changes. It can take some time for the page from version 2 to render as it
loads the static assets (CSS and JavaScript files) for the first time.

7. Version 2 of the animal service focuses on improving performance. The container image for
version 2 is available at quay .io/RedHatTraining/ossm-animal-service:2.0.

Deploy version 2 of the animal service as follows:

+ The container name and deployment name should be called animal-v2. Add the label
version: v2 to the relevant resources.

+ Configure service mesh to mirror traffic from version 1to version 2. Version 2 is not yet
ready for production deployment, so responses to clients must still be sent exclusively from

version 1.

+ Verify that traffic is mirrored and that you see the output from version 2 in the generated
logs.

Chapter 9 | Comprehensive Review

8. Introduce a 3-second delay for all responses from the shelter service. Verify that you see
delayed responses when you click Our Shelters in the navigation panel.

9. Configure network connections for the adoption service to retry failed requests consistent
with the following policies:

+ Configure the service mesh to allow 3 retry attempts. Each retry waits at most 5 seconds
before timing out.

+ Retries must be triggered only when the response contains an HTTP status code of 500
and above.

10. Configure a circuit breaker for the adoption service as follows:
+ Allow 3 consecutive errors within 10 seconds before breaking the circuit.

+ Allow T minute of recovery after the circuit breaks before activating the service to receive
requests.

M. Configure connection pooling for the notification service as follows:
+ Allow only 5 concurrent connections at any given time to prevent overloading this service.

+ Allow only 1request per connection.

12. Secure the services in the service mesh as follows:

+ Ensure that traffic sent from the animal and shelter services to the MongoDB
database is encrypted. Enable mutual authentication between these services and the
MongoDB database.

« Configure the service mesh so that only the shelter service and version 1 of the animal
service are authorized to communicate with the MongoDB database.

Name your resource mongodb-auth-policy.

Evaluation

Grade your work by running the lab comprehensive-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab comprehensive-review grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

Chapter 9 | Comprehensive Review

» Solution

Building Resilient Microservices

Performance Checklist

In this review, you will deploy the "Adopt a Pup" application to OpenShift and configure
Red Hat OpenShift Service Mesh to manage the traffic and security aspects of the
application. You will also configure the service mesh to be more resilient against delays,
timeouts, and failures.

Outcomes

You should be able to:

+ Deploy the "Adopt a Pup" application to OpenShift and enable Red Hat OpenShift Service
Mesh to control the incoming and outgoing traffic.

+ Secure the application by configuring access control and allowing only encrypted
communication between microservices.

+ Configure the service mesh to perform canary releases and dark launches for testing new
features of the application.

- Configure the service mesh to make the application more resilient using timeouts, retries,
and circuit breakers.

Before You Begin

To perform this exercise, ensure you have access to:

+ A configured and running OpenShift cluster.

+ Aninstalled and running OpenShift Service Mesh in the OpenShift cluster.
+ The OpenShift CLI (/usr/local/bin/oc).

+ The Istio CLI (istioct1).

As the student user on the workstation machine, use the lab command to validate the
prerequisites for this exercise, and prepare the lab:

[student@workstation ~]$ lab comprehensive-review start

Instructions

The start script creates a new project named adoptapup and deploys all services except the
adoption service. The news service deploys in a separate project named adoptapup-news.

The architecture of the "Adopt a Pup" application is as follows:

Chapter 9 | Comprehensive Review

Service Mesh

animal

v

A

S7 ot S
—P VAN ronten adoption

MongoDB

A4
A4

User Service Mesh
Gateway

v

shelter

v

» notification

4,____________________________.

news email

Figure Error.1: Adopt a Pup

The application consists of the following microservices:

animal
Manages a set of pups that can be adopted. Each pup belongs to a particular animal shelter.

shelter
Manages several animal shelters that take care of pups until they are adopted. A shelter can
have one or more pups.

notification
Manages notifications that are sent to potential owners of pups. The notification service
handles multiple notifications, such as emails and text messages. Currently, only notifications
by email are supported.

email
Sends emails to users. The service mesh does not manage this service.

adoption
This service processes user requests for adoption. It is responsible for data validation and
verifying that the user is eligible to adopt a pup.

news
This service periodically informs users about news regarding shelters and animals. This service
is deployed in a separate project. The service mesh does not manage this service.

frontend
This service provides the web user interface for the application.

mongodb
The details for pups, shelters, and adoptions are stored in this MongoDB database.

w D0O328-5SM1.1-en-2-20200910

Chapter 9 | Comprehensive Review

The start script deployed these services using YAML files located in the /home/student/
D0328/1labs/comprehensive-review folder.

The start script deployed the MongoDB database and preloaded shelter and animal data into the
database.

E Note
Name all virtual service resources created in the adoptapup project as service-vs,
where service is the service name, for example, adoption-vs and animal-vs.

Name all destination rule resources created in the adoptapup project as service-dr,
where service is the service name, for example adoption-dr and animal-dr.

Name all service accounts created in the adoptapup project as service-sa, where
service is the service name, for example adoption-saand animal-sa.

Perform the following tasks:

1. Loginto OpenShift as the developer user and inspect the deployed microservices in the
adoptapup and adoptapup-news projects. Verify that all the microservices, except the
adoption microservice, are deployed and running.

Remember to set the environment variables in the /usr/local/etc/ocp4.config file.

11, Run the following command to load the environment variables in the /usr/local/
etc/ocp4.configfile:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

12. Login to OpenShift:

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_API}

Login successful.

...output omitted...

1.3. If you are working with a different OpenShift project, set the current project to
adoptapup:

[student@workstation ~]$ oc project adoptapup
Now using project "adoptapup" on server ...output omitted...

14. Verify that the pods for the microservices deployed by the start script are Running:

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
animal-v1-588956¢cfhb5-88k9r 2/2 Running 0] 30m
email-65bbdb599b-f75k8 1/1 Running 0] 30m
frontend-v1-5f4965ff7d-ngfjz 2/2 Running 0 30m
mongodb-574f8cch9c-98fpq 2/2 Running 0] 30m
notification-5c7fd8bccf-nwndv 2/2 Running 0 30m
shelter-76dccc9cbc-rws47 2/2 Running 0] 30m

Chapter 9 | Comprehensive Review

15. Verify that the pod for the news microservice in the adoptapup - news project is
Running:

[student@workstation ~]$ oc get pods -n adoptapup-news
NAME READY STATUS RESTARTS AGE
news-6f7c8d4486-sn2pb 1/1 Running 0 32m

2. Verify that the data has been successfully loaded into MongoDB using the check-
mongo . sh script in the /home/student/D0328/labs/comprehensive-review folder.
If data is successfully loaded, you will see the raw JSON data from the database as follows:

[student@workstation ~]$ sh ~/D0328/1labs/comprehensive-review/check-mongo.sh
Login successful.

You have access to the following projects ...output omitted...

* adoptapup
...output omitted...
Checking if animal data is loaded into MongoDB...

{ "_id" : "d52a8d58-9024-49dd-92b6-d443c6049ffe", "animalName" : "Gus" ...output
omitted. ..
...output omitted...

Checking if shelter data is loaded into MongoDB...

{ "_id" : "e038ae3c-592f-403e-9233-4b6eeab30e3c", "shelterName" : "Denver
Doggos" ...output omitted...
...output omitted...

If the data is not loaded, then run the load-mongo . sh script in the /home/student/
D0328/1labs/comprehensive-review folder, and then rerun the check-mongo. sh
script to verify success.

3. Create a service mesh gateway named adoptapup-gateway to allow external traffic to flow
into the service mesh. Configure the gateway to listen for HTTP requests on port 80.

31. Create a gateway.yaml file with the following contents. You can also copy the
content from the /home/student/D0328/solutions/comprehensive-review/
gateway.yaml file.

apiVersion: networking.istio.io/vilalpha3
kind: Gateway
metadata:
name: adoptapup-gateway
spec:
selector:
istio: ingressgateway

servers:
- port:

number: 80

name: http

Chapter 9 | Comprehensive Review

protocol: HTTP
hosts:

_ nxn

3.2. Create the gateway using the oc create command.

[student@workstation ~]$ oc create -f gateway.yaml
gateway.networking.istio.io/adoptapup-gateway created

Deploy the adoption service in the adoptapup project. Ensure that it is managed by
Red Hat OpenShift Service Mesh.

The container image for the adoption service is available at quay.io/redhattraining/
ossm-adoption-service:1.0. The container serves requests on port 8080.

Name the OpenShift deployment and service resource as adoption, and then add a label
app: adoption to the relevant resources. This service listens on port 8080.

Name the virtual service as adoption-vs. Configure the virtual service so that all requests
to the /adoption endpoint, relative to the service mesh gateway URL, are routed to the
adoption service.

Using a web browser, access the front end user interface at the /frontend endpoint relative
to the gateway URL. Verify that you can browse shelters and animals from the navigation
pane.

Warning
A If you have restarted your classroom VMs, or redeployed the MongoDB database
pod after running the start script, then you must run the load-mongo . sh script
as discussed in a previous step. You must do this because the MongoDB pod uses
ephemeral storage and it does not persist data between restarts.

4]1. Create a YAML file named adoption-service.yaml with the following contents.
You can also copy the YAML snippets from the /home/student/D0328/
solutions/comprehensive-review/adoption-service.yaml file.

Start by creating the deployment resource:

apiVersion: apps/vi
kind: Deployment
metadata:
name: adoption
spec:
selector:
matchLabels:
app: adoption
replicas: 1
template:
metadata:
labels:
app: adoption
annotations:

sidecar.istio.io/inject:

spec:
containers:
- name: adoption

"true"

Chapter 9 | Comprehensive Review

image: quay.io/redhattraining/ossm-adoption-service:1.0
imagePullPolicy: Always
ports:

- containerPort: 8080

Add the YAML snippet for creating a service

apiVersion: vi

kind: Service

metadata:
labels:

app: adoption

name: adoption
spec:
ports:

- port: 8080
protocol: TCP
targetPort: 8080

selector:

app: adoption

Finally, create the virtual service as follows:

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: adoption-vs
spec:
hosts:
wkn
gateways:
- adoptapup-gateway
http:
- match:
- uri:
prefix: /adoption
route:
- destination:
host: adoption
port:
number: 8080

Save your changes.

4.2. Create deployment, service, and virtual service resources.

[student@workstation ~]$ oc create -f adoption-service.yaml
deployment.apps/adoption created

service/adoption created
virtualservice.networking.istio.io/adoption-vs created

4.3. Before continuing to the next step, verify that the adoption service pod is Running.

Chapter 9 | Comprehensive Review

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE

adoption-658c6fbch4-jnnrm 2/2 Running 0 15m
...output omitted...

44. Runtheoc get route command to get the service mesh gateway URL.

[student@workstation ~]$ GW_URL=$(oc get route istio-ingressgateway \
> -n istio-system -o jsonpath='{.spec.host}')

45. Access the front end for the "Adopt a Pup" application using the Firefox browser.

[student@workstation ~]$ firefox http://${GW_URL}/frontend &

4.6. Click Adoptable Animals to see a list of pups that are available for adoption.

& Adopt A Pup a | ar
« ¢ @ @ istio-ingressgateway-istio-system.apps.ocp4.example.com/frontend/animals
Animals
Adoptable Animals These animals are waiting for you!
Adoptable Animals i
Theo Winston

Management

Click Our Shelters to see a list of shelters. Click Details on the Our Shelters page to
see details about the shelter, and to view the list of pups available in the shelter.

D0O328-5SM1.1-en-2-20200910 w

Chapter 9 | Comprehensive Review

& Adopt A Pup x |+

<« ¢ o @ istio-ingressgateway-istio-system.apps.ocp4.example.com/frontend/shelters

Shelters &

Qur shelters

+ Denver Doggos

» Minneapolis Mutts

R n @0 @

5. Click News in the navigation panel. The front end fails to fetch data from the news service

(external to the service mesh).

Configure the service mesh to allow the front end service to fetch the latest news from the

news service.

51, Get the route URL for the news service.

[student@workstation ~]$ oc get route news -n adoptapup-news
...output omitted...
...output omitted...

NAME HOST/PORT
news news-adoptapup-news.apps.ocp4.example.com

5.2. The front end is unable to fetch news items from the news service, which runs outside
the service mesh in a separate project. Create a service entry resource named news to

allow service mesh to fetch data from the external news service.

Create a file named news-serviceentry.yaml with the following content. Add the
host name that you gathered from the oc get route command in the previous step.

You can also copy the YAML content from the /home/student/D0328/solutions/

comprehensive-review/news-serviceentry.yaml file.

apiVersion: networking.istio.io/vilalpha3
kind: ServiceEntry
metadata:
name: news
spec:
hosts:
- news-adoptapup-news.apps.ocp4.example.com
ports:
- name: http-80
number: 80
protocol: http

5.3. Create a service entry resource.

[student@workstation ~]$ oc create -f news-serviceentry.yaml

serviceentry.networking.istio.io/news created

Chapter 9 | Comprehensive Review

5.4. Wait for a few seconds for the configuration to propagate. Refresh the News page
from the navigation panel. You should now see news items fetched from the news
service.

Animal News
Latest animal news!
ok
Timestamp story
157845430 At this time, there is no evidence that animals play a significant role in spreading the virus that causes
2 COVID-19.
Management

1582278201 Dogs are being taught to smell coronavirus in patients.

1583351796 Vaccinate your pup regularly.

Note
S The news items are displayed randomly. Your list of items may differ from the
example.

6. Version 2 of the frontend service introduces some user interface changes. The container
image for version 2 is available at quay.io/redhattraining/ossm-adopt-a-pup-
webapp:2.0.

Deploy version 2 of the frontend service as follows:
+ Configure service mesh to route 80% of traffic to version 1and the remainder to version 2.

+ The container name and deployment name should be called frontend-v2. Add the label
version: v2 to the relevant resources.

Verify that the navigation panel background color is red in version 2, but not in version 1.

Note

S You might have to refresh your browser several times before you can see the user
interface changes. It can take some time for the page from version 2 to render as it
loads the static assets (CSS and JavaScript files) for the first time.

6.1. Make a copy of the /home/student/D0328/1labs/comprehensive-review/
frontend-service-vi1.yaml file.

[student@workstation ~]$ cp ~/D0328/labs/comprehensive-review/frontend-service-
vi.yaml \
> ~/frontend-service-v2.yaml

6.2. Delete the Service and VirtualService resource definitions (lines 41-73) from
the frontend-service-v2.yaml file. Version 2 includes only the Deployment
resource.

6.3. Change the frontend-service-v2.yaml file for deploying version 2 as follows:

Chapter 9 | Comprehensive Review

apivVersion: apps/vi
kind: Deployment
metadata:
labels:
app: frontend
version: v2
name: frontend-v2
spec:
selector:
matchLabels:
app: frontend
version: v2
replicas: 1
template:
metadata:
labels:
app: frontend
version: v2
annotations:
sidecar.istio.io/inject: "true"
spec:
containers:
- name: frontend-v2
image: quay.io/redhattraining/ossm-adopt-a-pup-webapp:2.0
...output omitted. ..

6.4. Deploy version 2 of the frontend service.

[student@workstation ~]$ oc create -f frontend-service-v2.yaml
deployment.apps/frontend-v2 created

6.5. Verify that the pod for version 2 is Running before continuing to the next step.

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
...output omitted. ..

frontend-v1-5f4965ff7d-ngfjz 2/2 Running 0] 2h

frontend-v2-5449f5d8bc-c2f18 2/2 Running 0] 74s

...output omitted. ..

6.6. Create the destination rule resource for the frontend service. Create a file named
frontend-dest-rule.yaml with YAML content as follows. You can also copy the
YAML from the /home/student/D0328/solutions/comprehensive-review/
frontend-dest-rule.yamlfile.

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: frontend-dr
spec:
host: frontend
subsets:

Chapter 9 | Comprehensive Review

- name: vl
labels:
version: vl
- name: v2
labels:
version: v2

6.7. Create the destination rule resource.

[student@workstation ~]$ oc create -f frontend-dest-rule.yaml
destinationrule.networking.istio.io/frontend-dr created

6.8. Edit the virtual service resource for the frontend service.

[student@workstation ~]$ oc edit vs frontend-vs

Configure weighted routing as follows:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
name: frontend-vs
namespace: adoptapup
spec:
gateways:
- adoptapup-gateway
hosts:
Iy
http:
- match:
- uri:
prefix: /frontend
route:
- destination:
host: frontend
subset: vi
port:
number: 3000
weight: 80
- destination:
host: frontend
subset: v2

port:
number: 3000
weight: 20

Save your changes to the virtual service. Wait approximately 30 seconds while the
deployment changes propagate through the service mesh.

6.9. Click Home in the navigation panel, and then refresh the page multiple times until you
see the background color change to red.

Chapter 9 | Comprehensive Review

& Adopt A Pup X |+

<« c & (@ istio-ingressgateway-istio-system.apps.ocp4.example.com/frontend/

Adopt a Pup
Hello! This is the main page to adopt a pup.

Motificatio

Create Animal

7. Version 2 of the animal service focuses on improving performance. The container image for
version 2 is available at quay.io/RedHatTraining/ossm-animal-service:2.0.

Deploy version 2 of the animal service as follows:

+ The container name and deployment name should be called animal-v2. Add the label
version: v2 to the relevant resources.

+ Configure service mesh to mirror traffic from version 1to version 2. Version 2 is not yet
ready for production deployment, so responses to clients must still be sent exclusively from
version 1.

+ Verify that traffic is mirrored and that you see the output from version 2 in the generated
logs.

71. Make a copy of the /home/student/D0328/labs/comprehensive-review/
animal-service-vi1.yaml file.

[student@workstation ~]$ cp ~/D0328/labs/comprehensive-review/animal-service-
vi.yaml \
> ~/animal-service-v2.yaml

7.2. Delete the Service and VirtualService resource definitions (lines 28-60) from
the animal-service-v2.yaml file. Version 2 includes only the Deployment
resource.

W D0O328-5SM1.1-en-2-20200910

Chapter 9 | Comprehensive Review

7.3.
follows:

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app:
version:

animal
v2
name: animal-v2
spec:
selector:
matchLabels:
app:
version: v2
replicas: 1
template:
metadata:
labels:
app:
version: v2

animal

animal

annotations:
sidecar.istio.io/inject:
spec:
containers:

- name: animal-v2

Make changes to the animal-service-v2.yaml file for deploying version 2 as

"true"

image: quay.io/redhattraining/ossm-animal-service:2.0

...output omitted. ..

7.4. Deploy version 2 of the animal service.

[student@workstation ~]$ oc create -f animal-service-v2.yaml
deployment.apps/animal-v2 created

7.5. Verify that the pod for version 2 is Running before continuing to the next step.

[student@workstation ~]$ oc get
NAME

...output omitted...
animal-v1-588956¢cTh5-88k9r
animal-v2-7c8fff7686-z1lhfs
...output omitted...

...output omitted...

76.

pods

READY STATUS RESTARTS AGE
2/2 Running 0 3h
2/2 Running 0 10m

Create the destination rule resource for the animal service. Create a file named

animal-dest-rule.yaml with YAML content as follows. You can also copy the
YAML from the /home/student/D0328/solutions/comprehensive-review/
animal-dest-rule.yaml file.

apiVersion: networking.istio.io/vilalpha3

kind: DestinationRule
metadata:

name: animal-dr

Chapter 9 | Comprehensive Review

spec:
host: animal
subsets:
- name: vi
labels:
version: vi
- name: v2
labels:
version: v2

7.7. Create the destination rule resource.

[student@workstation ~]$ oc create -f animal-dest-rule.yaml
destinationrule.networking.istio.io/animal-dr created

7.8. Edit the virtual service resource for the animal service.

[student@workstation ~]$ oc edit vs animal-vs

Configure mirroring for the animal service as follows:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:

name: animal-vs

namespace: adoptapup

spec:
gateways:
- adoptapup-gateway
hosts:

Vo

http:
- match:

- uri:
prefix: /animals

route:

- destination:
host: animal
subset: vi
port:

number: 8080
weight: 100
mirror:

host: animal
subset: v2

Save your changes to the virtual service. Wait approximately 30 seconds while the
deployment changes propagate through the service mesh.

79. Click Adoptable Animals in the navigation panel, and then refresh the page multiple
times to verify that the list of adoptable animals displays without errors.

710. Inspect the logs for version 2 and verify that requests sent to version 1 of the animal
service are mirrored. You should see logs for incoming requests.

Chapter 9 | Comprehensive Review

[student@workstation ~]$ oc logs animal-v2-7c8fff7686-z1hfs \

> -c animal-v2

...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
through animal-v2...

...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
through animal-v2...

...output omitted...animalservice.AnimalController : Getting 5 adoptable animals
through animal-v2...

...output omitted...

8. Introduce a 3-second delay for all responses from the shelter service. Verify that you see
delayed responses when you click Our She'lters in the navigation panel.

8.1. Edit the virtual service resource for the shelter microservice.

[student@workstation ~]$ oc edit vs shelter-vs

8.2. Add a 3-second delay to all responses as follows:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:
annotations:
name: shelter-vs
namespace: adoptapup
spec:
gateways:
- adoptapup-gateway
hosts:
Vo
http:
- match:
- uri:
prefix: /shelters
route:
- destination:
host: shelter
port:
number: 8080
fault:
delay:
percentage:
value: 100
fixedDelay: 3000ms

Save your changes. Wait approximately 30 seconds for the service mesh to propagate
the changes.

8.3. Click Our Shelters in the navigation panel, and then refresh the page multiple times.
Verify that the list of shelters displays after a 3-second delay.

Click Details next to one of the shelters. Verify that shelter details display after a 3-
second delay.

Chapter 9 | Comprehensive Review

9. Configure network connections for the adoption service to retry failed requests consistent
with the following policies:

+ Configure the service mesh to allow 3 retry attempts. Each retry waits at most 5 seconds
before timing out.

+ Retries must be triggered only when the response contains an HTTP status code of 500
and above.

9.1. Edit the virtual service resource for the adoption microservice.

[student@workstation ~]$ oc edit vs adoption-vs

9.2. Add configuration for retries as follows:

apiVersion: networking.istio.io/vilalpha3
kind: VirtualService
metadata:

name: adoption-vs

namespace: adoptapup

spec:
gateways:
- adoptapup-gateway
hosts:
vk
http:
- match:
- uri:
prefix: /adoption
route:
- destination:
host: adoption
port:
number: 8080
retries:
attempts: 3

perTryTimeout: 5s
retryon: 5xx

Save your changes.
10. Configure a circuit breaker for the adoption service as follows:
+ Allow 3 consecutive errors within 10 seconds before breaking the circuit.

+ Allow T minute of recovery after the circuit breaks before activating the service to receive
requests.

10.1. Create the destination rule resource for the adoption microservice in a file named
adoption-chb.yaml as follows. You can also copy the YAML snippet from the /home/
student/D0328/solutions/comprehensive-review/adoption-cb.yaml file.

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:

Chapter 9 | Comprehensive Review

name: adoption-dr
spec:
host: adoption
trafficPolicy:
outlierDetection:

consecutiveErrors: 3
interval: 10s
baseEjectionTime: 1m

Save your changes.

10.2. Create the destination rule resource.

[student@workstation ~]$ oc create -f adoption-cb.yaml
destinationrule.networking.istio.io/adoption-dr created

M. Configure connection pooling for the notification service as follows:
+ Allow only 5 concurrent connections at any given time to prevent overloading this service.
+ Allow only 1request per connection.

1.1, Create the destination rule resource for the notification microservice in a file
named notification-pool.yaml as follows. You can also copy the YAML snippet
from the /home/student/D0328/solutions/comprehensive-review/
notification-pool.yaml file.

apiVersion: networking.istio.io/vilalpha3
kind: DestinationRule
metadata:
name: notification-dr
spec:
host: notification
trafficPolicy:
connectionPool:
tcp:
maxConnections: 5
http:
maxRequestsPerConnection: 1

Save your changes.

1.2. Create the destination rule resource.

[student@workstation ~]$ oc create -f notification-pool.yaml
destinationrule.networking.istio.io/notification-dr created
12. Secure the services in the service mesh as follows:

+ Ensure that traffic sent from the animal and shelter services to the MongoDB
database is encrypted. Enable mutual authentication between these services and the
MongoDB database.

- Configure the service mesh so that only the shelter service and version 1 of the animal
service are authorized to communicate with the MongoDB database.

Chapter 9 | Comprehensive Review

Name your resource mongodb-auth-policy.

12.1. Create service accounts for the shelter and animal services.

[student@workstation ~]$ oc create serviceaccount animal-sa
serviceaccount/animal-sa created

[student@workstation ~]$ oc create serviceaccount shelter-sa
serviceaccount/shelter-sa created

12.2. Assign the service accounts to pod deployments.

[student@workstation ~]$ oc set serviceaccount deployment animal-vl animal-sa
deployment.apps/animal-v1l serviceaccount updated

[student@workstation ~]$ oc set serviceaccount deployment shelter shelter-sa
deployment.apps/shelter serviceaccount updated

12.3. Assigning a service account to a deployment terminates the current pod and creates a
new pod. Verify that the pods for the shelter and animal services are Running.

[student@workstation ~]$ oc get pods

NAME READY STATUS RESTARTS AGE
...output omitted...
animal-v1-7b6487966f-d5gdb 2/2 Running 0 54s
...output omitted...
shelter-84fcc987c9-n8n5t 2/2 Running 0 21s

12.4. Enable mutual authentication for the mongodb service.

Create a file named mongodb-dr . yaml with the following content. You can
also copy the YAML content from the /home/student/D0328/solutions/
comprehensive-review/mongodb-dr.yaml file.

apiVersion: "networking.istio.io/vilalpha3"
kind: "DestinationRule"
metadata:

name: "mongodb-dr"

namespace: "adoptapup"

spec:
host: "mongodb.adoptapup.svc.cluster.local"
trafficPolicy:
tls:

mode: ISTIO_MUTUAL

12.5. Create the destination rule resource for the mongodb service:

[student@workstation ~]$ oc create -f mongodb-dr.yaml
destinationrule.networking.istio.io/mongodb-dr created

12.6. Enable mutual authentication for the shelter service.

Create a file named shelter-dr.yaml with the following content. You can
also copy the YAML content from the /home/student/D0328/solutions/
comprehensive-review/shelter-dr.yaml file.

Chapter 9 | Comprehensive Review

apiVersion: "networking.istio.io/vlalpha3"
kind: "DestinationRule"
metadata:

name: "shelter-dr"

namespace: "adoptapup"

spec:
host: "shelter.adoptapup.svc.cluster.local"
trafficPolicy:
tls:

mode: ISTIO_MUTUAL

12.7. Create the destination rule resource for the shelter service:

[student@workstation ~]$ oc create -f shelter-dr.yaml
destinationrule.networking.istio.io/shelter-dr created

12.8. Edit the destination rule resource for the animal service and enable mutual
authentication.

[student@workstation ~]$ oc edit dr animal-dr

Add the following trafficPolicy attribute:

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:

name: animal-dr

namespace: adoptapup
...output omitted. ..
spec:

host: animal

subsets:

...output omitted. ..

trafficPolicy:

tls:
mode: ISTIO_MUTUAL

12.9. Configure authorization policies to allow only the animal and shelter services to
communicate with MongoDB.

Create a file named mongodb-security-policy.yaml with the following contents.
You can also copy the YAML content from the /home/student/D0328/solutions/
comprehensive-review/mongodb-security-policy.yaml file.

apiVersion: "security.istio.io/vilbetal"
kind: "AuthorizationPolicy"
metadata:

name: "mongodb-auth-policy"
spec:

selector:

matchLabels:
app: mongodb

Chapter 9 | Comprehensive Review

rules:
- from:
- source:
principals: ["cluster.local/ns/adoptapup/sa/animal-sa"]
- source:
principals: ["cluster.local/ns/adoptapup/sa/shelter-sa"]
to:
- operation:
ports: ["27017"]

12.10. Create the authorization policy resources.

[student@workstation ~]$ oc create -f mongodb-security-policy.yaml
authorizationpolicy.security.istio.io/mongodb-auth-policy created

12.11. Verify that the animal and shelter services can fetch data from MongoDB. Click
Adoptable Animals and Our Shelters in the navigation pane and verify that the list
of animals and shelters is displayed.

Evaluation

Grade your work by running the lab comprehensive-review grade command from your
workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab comprehensive-review grade
Finish
On the workstation machine, use the lab command to complete this exercise. This is important

to ensure that resources from previous exercises do not impact upcoming exercises.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

Appendix A

Appendix

Goal Describe how to create a Quay.io account,
installing Red Hat OpenShift Service Mesh using
the CLI, and troubleshooting tips

Sections + Installing Red Hat OpenShift Service Mesh with
the CLI

Creating a Quay Account
Troubleshooting Tips

'/

D0O328-5SM1.1-en-2-20200910

Appendix A | Appendix

Installing Red Hat OpenShift Service
Mesh with the CLI

Objectives

After completing this section, you should be able to install OpenShift Service Mesh on Red Hat
OpenShift Container Platform with the CLI

Installing OpenShift Service Mesh Using the CLI

You can also install OpenShift Service Mesh using the oc CLI. To install operators, you must have
cluster-admin privileges.

Log in Red Hat OpenShift using an account with cluster-admin privileges.

[user@host ~]$ oc login -u USER -p PASSWORD OCP4 API

Installing the Elasticsearch Operator

The installation of the Elasticsearch Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace
to the Elasticsearch Operator, for example, elasticsearch.yaml.

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:
name: elasticsearch-operator
namespace: openshift-operators
spec:
channel: “4.3“‘9
name: elasticsearch-operatore’
source: redhat-operators"
sourceNamespace: openshift-marketplace
installPlanApproval: Automatic

Namespace used to install the operator.
Stream of operator versions.

Name of the operator to subscribe.
Source that provides the operator.

0000

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f elasticsearch.yaml
subscription.operators.coreos.com/elasticsearch-operator created

3. Check the status of the Operator installation.

Appendix A | Appendix

[user@host ~]$ oc describe sub elasticsearch-operator \
> -n openshift-operators

Name: elasticsearch-operator

Namespace: openshift-operators

...output omitted...

Message: all available catalogsources are healthy

...output omitted...

Installing the Jaeger Operator

Installing the Jaeger Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace
to the Jaeger Operator, for example, jaegeryaml.

apiVersion: operators.coreos.com/vialphal
kind: Subscription
metadata:
name: jaeger-product
namespace: openshift-operators
spec:
name: jaeger-product
source: redhat-operators
sourceNamespace: openshift-marketplace
channel: "stable"
installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f jaeger.yaml
subscription.operators.coreos.com/jaeger-product created

3. Check the status of the Operator installation.

[user@host ~]$%$ oc describe sub jaeger-product \
> -n openshift-operators

Name: jaeger-product

Namespace: openshift-operators

...output omitted. ..

Message: all available catalogsources are healthy

...output omitted. ..

Installing the Kiali Operator

Installing the Kiali Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators namespace
to the Kiali Operator, for example, kiali.yaml.

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:

Appendix A | Appendix

name: kiali-ossm
namespace: openshift-operators
spec:
name: kiali-ossm
source: redhat-operators
sourceNamespace: openshift-marketplace
channel: "stable"
installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f kiali.yaml
subscription.operators.coreos.com/kiali-ossm created

3. Check the status of the Operator installation.

[user@host ~]$ oc describe sub kiali-ossm \
> -n openshift-operators

Name: kiali-ossm

Namespace: openshift-operators

...output omitted...

Message: all available catalogsources are healthy

...output omitted...

Installing the OpenShift Service Mesh Operator

Installing the OpenShift Service Mesh Operator involves the following steps:

1. Create a Subscription object YAML file to subscribe the openshift-operators
namespace to the Red Hat OpenShift Service Mesh Operator, for example, service-mesh-
subscription.yaml.

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:
name: servicemeshoperator
namespace: openshift-operators
spec:
channel: '1.0'
name: servicemeshoperator
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Automatic

2. Create the Subscription object applying the YAML file.

[user@host ~]$ oc apply -f service-mesh-subscription.yaml
subscription.operators.coreos.com/servicemeshoperator created

3. Check the status of the Operator installation.

Appendix A | Appendix

[user@host ~]$ oc describe sub servicemeshoperator \
> -n openshift-operators

Name: servicemeshoperator
Namespace: openshift-operators
...output omitted...
Message: all available catalogsources are healthy

...output omitted...

Creating the OpenShift Service Mesh Control Plane

Red Hat recommends that you deploy the control plan in a separate project. The following
describes how to deploy the control plane using the CLI.

1. Login Red Hat OpenShift as a developer user.

[user@host ~]$ oc login -u USER -p PASSWORD RHT_OCP4_API

2. Create a project, for example, istio-system.

[user@host ~]$ oc new-project istio-system
Now using project "istio-system" on server "https://api.ocp4.example.com:6443".
...output omitted...

3. Create aServiceMeshControlPlane object YAML file, for example, istio-basic-
installation.yaml.

apiVersion: maistra.io/vi1
kind: ServiceMeshControlPlane
metadata:
name: basic-install (1]
namespace: istio-system (2]
spec:
istio:
gateways: (3]
istio-egressgateway:
autoscaleEnabled: false
istio-ingressgateway:
autoscaleEnabled: false
mixer:
policy:
autoscaleEnabled: false
telemetry:
autoscaleEnabled: false
pilot:
autoscaleEnabled: false
traceSampling: 100

kiali:
enabled: true
grafana: (6
enabled: true
tracing:

Appendix A | Appendix

enabled: true
jaeger:
template: all-in-one

Name assigned to the Control Plane.

Namespace where the Control Plane is deployed.

Istio gateways configuration. Disables autoscaling on the ingress and egress gateways.
Pilot configuration. Disables autoscaling and sets the percentage of trace sampling.
Kiali configuration. Enables Kiali to visualize traffic in the Service Mesh.

Grafana configuration. Enables Grafana to analyze and monitor the Service Mesh.
Jaeger configuration. Enables Jaeger to trace traffic in the Service Mesh.

Q000000

4. Deploy the control plane.

[user@host ~]% oc create -n istio-system \
> -f istio-basic-installation.yaml
servicemeshcontrolplane.maistra.io/basic-install created

5. Check the status of the control plane installation.

[user@host ~]$ oc get smcp -n istio-system
NAME READY
basic-install True

You must create a new ServiceMeshMemberRo1l1l for each new control plane installation. To
create a new ServiceMeshMemberRo1ll:

1. Create a ServiceMeshControlPlane object YAML file, for example, service-mesh-
member-rollyaml.

apiVersion: maistra.io/vi
kind: ServiceMeshMemberRoll
metadata:

name: default

namespace: istio-system
spec:

members:

- a-project

The control plane manages projects listed as members.

2. Deploy the ServiceMeshMemberRol1l.

[user@host ~]$ oc create -n istio-system \
> -f service-mesh-member-roll.yaml
servicemeshmemberroll.maistra.io/default created

Adding or Removing a Project from the Control Plane

Only projects listed on the ServiceMeshMemberRo1l1l are managed by the service mesh. To add
or remove a project from the control plane:

1. Login Red Hat OpenShift Container.

Appendix A | Appendix
2. Edit the ServiceMeshMemberRol1l resource.

[user@host ~]$ oc edit smmr -n istio-system

3. Modify the YAML to add or remove project members and save the changes.

D0O328-5SM1.1-en-2-20200910

Appendix A | Appendix

Creating a Quay Account

Objectives

After completing this section, you should be able to describe how to create a Quay account, and
public container image repositories for labs in the course

Creating a Quay Account

You need a Quay account to create one or more public container image repositories for the labs
in this course. If you already have a Quay account, you can skip the steps to create a new account
listed in this appendix.

| Important
— If you already have a Quay account, ensure that you only create public container

image repositories for the labs in this course. The lab grading scripts and
instructions require unauthenticated access to pull container images from the
repository.

To create a new Quay account, perform the following steps:

1. Navigate to https://quay.io using a web browser.

2. Click Signinin the upper-right corner (next to the search bar).

3. On the Signin page, you can log in using your Google or GitHub credentials (created in
Appendix A).

(0 QUAY

Figure A.1: Sign in using Google or GitHub credentials.

Alternatively, click Create Account to create a new account.

W D0O328-5SM1.1-en-2-20200910

https://quay.io

Appendix A | Appendix

Sign in to Quay Container Registry

Forgot Password?

Figure A.2: Creating a new account

4. If you chose to skip the Google or GitHub log-in method and instead opted to create a new
account, you will receive an email with instructions on how to activate your Quay account.
Verify your email address and then sign in to the Quay website with the username and
password you provided during account creation.

5. After you have logged in to Quay you can create new image repositories by clicking Create
New Repository on the Repositories page.

L e ‘ rsriniva =

+ Create New Repository

Users and Organizations

Create New Organization

{0 QUAY Enterprise Leam More >

Figure A.3: Creating a new image repository

Alternatively, click the plusicon (+) in the upper-right corner (to the left of the bell icon), and
then click New Repository.

D0O328-5SM1.1-en-2-20200910 w

Appendix A | Appendix

New Organization

& New Repository

Users and Organizations

psitory

Create New Organization

{0 QUAY tnterprise Lea More >

Figure A.4: Creating a new image repository

6. Enter a name for the repository as per your lab instructions. Ensure that you select the
Public, and Empty Repository options.

€ Repositories Create New Reposit

Container Image Repository~| /|| mypublicrepo

Click to set repository description

© o' Public
Anyone can see and pfill from this repository. You choose who can push.

& Private

You choose whe can see, pull and push from/to this repository.

|o

Initialize from a Dockerfile

P|D

Link to a GitHub Repository Push

@ 2

Link to a Bitbucket Repository Push

Link to a GitLab Repository Push

8 <

Link to a Custom Git Repository Push

Figure A.5: Creating a new image repository

Click Create Public Repository to create the repository.

References

Getting Started with Quay.io
https://docs.quay.io/solution/getting-started.html

W D0O328-5SM1.1-en-2-20200910

https://docs.quay.io/solution/getting-started.html

Appendix A | Appendix

Troubleshooting Tips

Objectives

After completing this section, you should be able to troubleshoot and resolve general issues for
labs in the course

OpenShift Log In Failure

Logging in as the OpenShift developer or admin user may sometimes fail with the following
errors:

- error: EOF
- error: net/http: TLS handshake timeout

- Error from server (InternalError): Internal error occurred: unexpected
response: 503

You may also see a lab start script printing a FAIL message when it tries to log in to OpenShift.

+ If you experience this issue after you started your VMs, then wait a few minutes until all the
OpenShift services are started and ready, and then try logging in again.

« Logintotheutility VM as the lab user, and inspect the status of your OpenShift nodes
using the oc get nodes command.

[student@workstation ~]$ ssh lab@utility

[lab@utility ~]$ oc get nodes

NAME STATUS ROLES AGE VERSION
masteroQ1l Ready master,worker 28d v1.17.1+3f6f406d
master02 Ready master,worker 28d v1l.17.1+3f6f406d
master@3 Ready master,worker 28d v1l.17.1+3f6f406d

workerol Ready worker 28d v1l.17.1+3f6f406d
worker02 Ready worker 28d v1.17.1+3f6f406d
worker03 Ready worker 28d v1l.17.1+3f6f406d

All your nodes should be in Ready state.

Service Mesh Installation Issues

Your Red Hat OpenShift Service Mesh installation may fail due to transient network issues, or
timeouts.

+ Runthe lab uninstall-mesh start script to clean up the failed install, and retry your
installation. You can also run the lab install-mesh solve script to perform an automated

install of service mesh.

+ Verify that a service mesh control plane named basic-installis created by running the oc
get smcp -n istio-systemcommand.

Appendix A | Appendix

NAME READY STATUS ...output omitted...
basic-install 9/9 InstallSuccessful ...output omitted...

Verify that a service mesh member roll resource named defau'lt is created by running the oc
get smmr -n istio-systemcommand.

NAME READY STATUS AGE
default 0/0 Configured 4m46s

The oc get pods -n istio-systemcommand should show all pods in running state.

NAME READY STATUS RESTARTS AGE

grafana-5756fc9795-kwbt9 2/2 Running 0] 6m3s
istio-citadel-6d5f6954b-7vt8n 1/1 Running 0] 7m57s
istio-egressgateway-686897485c-hbstt 1/1 Running 0] 6m23s
istio-galley-7d785cd74-jmv65 1/1 Running 0] 7m18s
istio-ingressgateway-69d89fbdfc-z87nh 1/1 Running 0] 6m23s
istio-pilot-774dbf49b8-4dvbj 2/2 Running 0] 6m36s
istio-policy-548f54dc4f-5whzv 2/2 Running 0] 7m

istio-sidecar-injector-55f45f76b5-rm8bx 1/1 Running 0] 6m17s
istio-telemetry-85c546dc76-thr7m 2/2 Running 0] m

jaeger-799ff9bcc7-1rl4r 2/2 Running 0 7m18s
kiali-5d7f76d45d-pdct2 1/1 Running 0] 5m30s
prometheus-79fb5bf69d-rz7hd 2/2 Running 0] 7m38s

Envoy Proxy Sidecar Injection Failures

Run the oc get pods command in your project, and verify that you can see two containers (2/2)
in Running state. If you see only one container for service mesh managed applications, it means
proxy sidecar injection failed.

If you do not see the Envoy proxy sidecar injected into applications deployed on service mesh,
then verify the following:

You have added your project to the service mesh member roll resource.

Run the oc get smmr default -n istio-system -o yamlcommand and verify that
your project appears in the member list.

You have added the sidecar.istio.io/inject annotation in the applications deployment
resource and set its value to "true".

Run the oc delete pod pod_name to delete the pod. OpenShift will spawn a new pod and
re-inject the sidecar proxy.

Project Deletion Failure in Lab Scripts

You are asked to run the lab finish script after you complete each lab. This script may sometimes
fail to delete the OpenShift project due to timeouts, and you may see a FAIL message being
displayed.

You can safely ignore this message. Verify if the project still exists, and then manually delete the
project using the oc delete project command.

	Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh
	Table of Contents
	Document Conventions
	Introduction
	DO328 Building Resilient Microservices with Istio and Red Hat OpenShift Service Mesh
	Orientation to the Classroom Environment
	Internationalization

	Chapter 1. Introducing Red Hat OpenShift Service Mesh
	Guided Exercise: Creating a Lab Environment
	Describing OpenShift Service Mesh Concepts
	Quiz: Introducing OpenShift Service Mesh
	Describing the OpenShift Service Mesh Architecture
	Quiz: Describing the OpenShift Service Mesh Architecture
	Guided Exercise: Verifying OpenShift Credentials
	Summary

	Chapter 2. Installing Red Hat OpenShift Service Mesh
	Installing Red Hat OpenShift Service Mesh
	Guided Exercise: Install OpenShift Service Mesh
	Summary

	Chapter 3. Observing a Service Mesh
	Tracing Services with Jaeger
	Guided Exercise: Tracing Services with Jaeger
	Collecting Service Metrics
	Guided Exercise: Collecting Service Metrics
	Observing Service Interactions with Kiali
	Guided Exercise: Observing Service Interactions with Kiali
	Lab: Observing an OpenShift Service Mesh
	Summary

	Chapter 4. Controlling Service Traffic
	Managing Service Connections with Envoy and Pilot
	Guided Exercise: Exposing a Service
	Routing Traffic Based on Request Headers
	Guided Exercise: Routing Traffic Based on Request Headers
	Accessing External Services
	Guided Exercise: Accessing External Services
	Lab: Controlling Service Traffic
	Summary

	Chapter 5. Releasing Applications with OpenShift Service Mesh
	Deploying an Application with Canary Releases
	Guided Exercise: Deploying an Application with Canary Releases
	Deploying an Application with a Mirror Launch
	Guided Exercise: Deploying an Application with a Mirror Launch
	Lab: Releasing Applications with OpenShift Service Mesh
	Summary

	Chapter 6. Testing Service Resilience with Chaos Testing
	Throwing HTTP Errors
	Guided Exercise: Throwing HTTP Errors
	Creating Delays in Services
	Guided Exercise: Creating Service Delays
	Lab: Testing Service Resilience with Chaos Testing
	Summary

	Chapter 7. Building Resilient Services
	Describing Strategies for Resilient Services with OpenShift Service Mesh
	Quiz: Describing Strategies for Resilient Services with OpenShift Service Mesh
	Configuring Time-outs
	Guided Exercise: Configuring Time-outs
	Configuring Retry
	Guided Exercise: Configuring Retry
	Configuring a Circuit Breaker
	Guided Exercise: Configuring a Circuit Breaker
	Lab: Building Resilient Services
	Summary

	Chapter 8. Securing an OpenShift Service Mesh
	Describing the Role of Citadel in OpenShift Service Mesh
	Quiz: Describing the Role of Citadel in OpenShift Service Mesh
	Configuring Mutual TLS
	Guided Exercise: Configuring Mutual TLS
	Defining Service to Service Authorization
	Guided Exercise: Configuring Service to Service Authorization
	Lab: Securing an OpenShift Service Mesh
	Summary

	Chapter 9. Comprehensive Review
	Comprehensive Review
	Lab: Building Resilient Microservices

	Appendix A. Appendix
	Installing Red Hat OpenShift Service Mesh with the CLI
	Creating a Quay Account
	Troubleshooting Tips

