DBZ-175 Alternate Proposal

Motivation

Proposed Approach

Rejected Alternatives
Snapshot All Tables
Use Separate Connectors

Pause Reading the Binlog During Snapshot of Additional Tables

Snapshot While Continuing to Read the Binlog
Use Separate Connect Tasks
Use Pseudo Connect Tasks

Motivation

The Debezium MySQL connector can be used to capture a snapshot of data in a MySQL server
plus all subsequent inserts, updates, and deletes of rows within that server’s tables. The
connector requires no special columns or schema changes, but can instead do this with any and
all tables, regardless of their schema. The connector taps into MySQL'’s replication mechanism,
which involves the MySQL server recording the changes within its binlog that can be read by
other MySQL servers that replicate those same changes. The Debezium MySQL connector is in
effect another MySQL replica, except that the Debezium connector records the changes in
Kafka topics, where they can be read and processed by any number of stream processing
applications. As long as the MySQL connector runs, it will continue to capture the changes and
write the to the Kafka topics.

When a new Debezium MySQL connector is deployed, the database filter and table filter dictate
which of the tables in the MySQL server are to be captured. When the connector starts, it first
performs an initial snapshot to capture the current state of each table whose fully-qualified name
satisfies the configured filter. When the snapshot is complete, the connector then proceeds to
read the MySQL binlog, processing only those events in the binlog that correspond to the same
tables that were copied in the snapshot. The connector can detect when new tables are added,
and it uses the filters and the table’s fully qualified names to determine whether the table is to
be captured or ignored.



Each of the resulting Kafka topics is a stream of change events that describe the initial state of
all rows in the particular table followed by all changes to the rows in the same order they were
made in the MySQL database. The stream can be used to replicate the complete contents of
the table.

Once the connector has been running, however, it is not currently feasible to change the
connector’s filter to include existing tables that were previously excluded. Yes, one can easily
stop the connector, change the filters in the configuration to include additional tables, and restart
the connector. The connector begins reading the binlog where it previously left off, and it does
include events for the newly added tables. However, the connector currently doesn’t perform an
initial snapshot of the newly added tables, which means the corresponding topics are missing
the events that describe the rows that existed at the time the connector was restarted. In other
words, the change data stream for the newly-added tables is incomplete and of far less value.

We would like to change the Debezium MySQL connector to handle this case by producing the
complete change event streams for the additional tables. Of course, this requires performing an
initial snapshot of the additional tables, and these may take some time to complete, especially
when the additional tables have large numbers of rows. So the challenge becomes how to do
this snapshotting while also continuing to process the binlog for the original set of tables.

Proposed Approach

The existing MySQL connector has several Reader components that encapsulate different
logic. One of these is the SnapshotReader that knows how to perform a snapshot. Another is
the BinlogReader that knows how to read the binlog. There is also a ChainedReader thatis
simply a list of other readers that are run sequentially. Each Reader can be given a function
that it will call when it has completed its work.

Normally when the MySglConnectorTask starts up for the first time it creates and then starts
a ChainedReader with the following readers:

ChainedReader (SnapshotReader — BinlogReader)
where — denotes sequential execution. When the MySglConnectorTask starts up and it
determines that snapshot is not required, it creates and then starts a ChainedReader with just

one BinlogReader:

ChainedReader (BinlogReader)



We will add a few other types of readers and make a few more changes to support the
concurrent snapshot process, with the end result being the task can create the following
ChainedReader when it determines that the filters have changed and it needs to perform a
snapshot with the newly added tables:

ChainedReader (ParallelSnapshotReader — ReconcilingBinlogReader — BinlogReader):

Here, the ParallelSnapshotReader is actually a composite Reader that will simultaneously
read the binlog as normal for the original set of tables and perform a snapshot of the
newly-added tables followed by reading the binlog for just those tables. After the snapshot is
complete, there are two threads reading the binlog: the first is reading the binlog and is
theoretically close to the head of the binlog, and the second is reading the binlog from the point
the snapshot was started. Eventually, both will be reading the binlog near the head of the binlog,
and when they are they should both stop and the ReconcilingBinlogReader takes over.
We cannot guarantee that both readers have stopped at the same point, so the purpose of the
ReconcilingBinlogReader is to reconcile these two positions into a single position in the
binlog. When this is complete, the normal binlog reader starts up and runs continuously.

The rest of this section outlines the steps required to get to this point.

Step 1: Ability to stop reading the binlog

The first change is to modify the BinlogReader to accept a BinlogReader.Predicate
function that it can use to detect whether to keep reading the binlog given the most recently
read binlog filename and position. By default, the BinlogReader will have a no-op function
that always returns true to reflect the current functionality. Note that when the reader stops, it
should invoke the reader’'s completion handler that was registered via the reader’s
uponCompletion (Runnable) method.

Step 2: Create BinlogReader.Predicate function to stop near a
specified position in the binlog

The next change is to implement the BinlogReader.Predicate function that will return true
as long as the supplied “current” filename/position is not within a fixed distance of a specified
“stop” filename/position. This function should allow the “stop” filename/position to be set from a
different thread (so using volatile).

Step 3: Create ReconcilingBinlogReader

This new class is a Reader that implements the two cases identified by WePay: either the table
snapshot binlog position, A, is slightly ahead or behind that the binlog reader, B. So, this reader



needs to just read the binlog from A to B or B to A, filtering the events appropriately. This
implementation can use a BinlogReader and a custom BinlogReader.Predicate
function to stop the binlog reading at point A or B.

Step 4: Add ParallelSnapshotReader

This class is a Reader that will run a slightly more complex graph of readers. It will
simultaneously start a normal BinlogReader to read the binlog with the original set of tables,
and a ChainedReader composed of a SnapshotReader to perform the snapshot of the
added tables followed by a ReconcilingBinlogReader.

ParallelSnapshotReader:
BinlogReader
ChainedReader (SnapshotReader — BinlogReader)

This reader will configure the snapshot branch’s BinlogReader with a Predicate function that
will stop it when it has (nearly) reached the BinlogReader’s current position (e.g., each time

the BinlogReader’s current position is recorded, the Predicate function’s “stop” position will
be updated). Therefore, while the BinlogReader will continue until it is stopped, the
ChainedReader will eventually stop once the snapshot has completed and the binlog has
been read up to a point near where the BinlogReader should be.

Step 5: Update the MySqglConnectorTask

When the task determines that new tables have been added and need to be snapshot, it will
create a ChainedReader with the following structure:

ChainedReader (ParallelSnapshotReader — ReconcilingBinlogReader — BinlogReader):
rather than just the current options of:

ChainedReader (SnapshotReader — BinlogReader)

or:

ChainedReader (BinlogReader)

Change 6: Change the offsets
These readers need to write offsets that are aware of the different states. TBD.



Rejected Alternatives

There were several alternative approaches that were initially considered but were ultimately
rejected.

Snapshot All Tables

This approach works with the existing, unmodified connector. Each time additional tables are to
be captured, the existing connector is stopped, its configuration is changed to include the
additional tables and a new connector name, and the connector is then started. The new
connector name means that the previously stored offsets will not be used, and so the connector
begins a new snapshot of all of the tables.

The time required to perform the snapshot is a function of the total number of records in all of
the tables. Therefore, this approach is relatively effective when the tables are small, but it
becomes unattractive when the tables are larger. Another disadvantage is that snapshot is not
required for the tables that had been generated before the configuration change, and this will
result in excess and unnecessary writes to the corresponding topics.

Use Separate Connectors

Another approach that works with the existing, unmodified connector is to use a new connector
to capture the additional tables. This may be acceptable once or twice, but it becomes unwieldy
if this happens more frequently, as the number of connectors simply continues to grow.

Pause Reading the Binlog During Snapshot of Additional Tables

The approach required modifying the connector to recognize that additional tables were
included in the filter, and to perform the initial snapshot of those tables before starting to read
the binlog for the complete set of tables. While this is a relatively straightforward change, this
approach had a number of significant disadvantages. First, it requires modifying some of the
core (and complicated) snapshot logic. Second, because the snapshot would be performed at a
different binlog position the where the connector last left off, when the snapshot is complete the



connector would first have to read the binlog with only the previous set of tables until it reached
the new snapshot binlog position, at which point it would have to now include events for all of
the tables. Finally, this results in the connector not reading the binlog and producing changes
during the snapshot, which for large tables can be a significant amount of time.

Snapshot While Continuing to Read the Binlog

This approach is similar to the previous one, except that the connector continues to read the
binlog while it is performing a snapshot. In fact, this is similar to the proposed approach, except
that the implementation would involve changing the internals of the existing connector in a less
desirable way than the proposed approach.

Use Separate Connect Tasks

This goal of this approach was to reuse as much of the existing connector codebase as
possible, and to rely upon the Connect task mechanism to run the normal binlog reader task
and the auxiliary snapshot+binlog reader task in parallel. Once the auxiliary task reaches the
head of the binlog, it would request Connect perform a task reconfiguration, at which point the
tasks are stopped and the connector is prompted to compute new task configuration. If the
Connector were able to read the offsets (see
https://issues.apache.org/jira/browse/KAFKA-4794), then the Connector could detect that the
auxiliary task completed and only a single task need to be started. (The single task does need
to reconcile the slightly different binlog positions, but this would be a simple short-lived step that
could be accomplished with a “ReconciliationReader”.) However, that is not currently possible
with Apache Kafka 1.0.

Use Pseudo Connect Tasks

This approach is similar to the previous approach, except that since the Connect API doesn’t let
the Connector read the offsets and determine the tasks, we instead have to do this ourselves.
This would involve creating an uber SourceTask implementation that knows whether to run one
or two of the tasks, and how to reconcile them. The advantage of this approach is that it would
lend itself to migrating to letting Connect manage the tasks once KAFKA-4794 has been
completed. However, it’s still not quite as simple as the proposed approach, and would require
changes down the road to have Connect manage the tasks.



