
Red Hat Customer Content
Services

Red Hat A-MQ
7.0
JMS Client

Installing A-MQ 7.0 Interconnect

Red Hat A-MQ 7.0 JMS Client

Installing A-MQ 7.0 Interconnect

Legal Notice

Copyright © 2016 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide provides guidance on installing A-MQ 7.0 Interconnect.

. .

Table of Contents

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT
1.1. INSTALLING JMS CLIENT (RPM INSTALLATION)
1.2. INSTALLING JMS CLIENT (ZIP INSTALLATION)
1.3. JMS CLIENT CONFIGURATION

3
3
5
6

Table of Contents

1

Red Hat A-MQ 7.0 JMS Client

2

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

1.1. INSTALLING JMS CLIENT (RPM INSTALLATION)

1.1.1. Installing OpenJDK on Red Hat Linux

You need to install OpenJDK to run JMS Client which is written in Java.

1. Subscribe to the Base Channel Obtain the OpenJDK from the RHN base channel. (Your
installation of Red Hat Enterprise Linux is subscribed to this channel by default.)

2. To install the OpenJDK, run:

sudo yum install java-1.8.0-openjdk-devel

3. Verify that OpenJDK is now your system default. You can ensure the correct OpenJDK is
set as the system default by following the steps below.

a. As the root user, run：

/usr/sbin/alternatives --config java

b. Select /usr/lib/jvm /jre-1.8.0-openjdk/bin/java.

c. As the root user, run：

 /usr/sbin/alternatives --config javac

d. Select /usr/lib/jvm /java-1.8.0-openjdk/bin/javac.

1.1.2. Downloading JMS Client RPM Packages

The JMS Client RPM Packages for RHEL 6 are available here.

The JMS Client RPM Packages for RHEL 7 are available here.

You should download the following packages

qpid-jms-client

qpid-jms-client

qpid-jms-client-examples

qpid-jms-client-maven-repo

1.1.3. Installing JMS Client

As the root user, use the following command to install JMS Client:

yum install qpid-cpp-client qpid-cpp-client-devel

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

3

https://brewweb.engineering.redhat.com/brew/buildinfo?buildID=482367
https://brewweb.engineering.redhat.com/brew/buildinfo?buildID=482369

Note

The above instructions are only for the Alpha release.

1.1.4. Required Subscriptions

To install the JMS Client packages on Red Hat Enterprise Linux (RHEL), you require subscriptions
to both of the following Red Hat products:

Red Hat JBoss A-MQ 7

RHEL 6 or 7

1.1.5. RPM Repositories

Enable the requisite RPM repository for your version of RHEL, as shown in the following table:

Table 1.1. RPM Repositories for JMS Clients

Platform Version RPM Repository

RHEL 7 a-mq-clients-1-for-rhel-7-server-rpms

RHEL 6 a-mq-clients-1-for-rhel-6-server-rpms

1.1.6. Registering Your System

To install the JMS Client installer, first register the host system using Red Hat Subscription
Manager, and subscribe to the required channels.

1. Register your system with the Content Delivery Network, entering your Customer Portal
user name and password when prompted.

sudo subscription-manager register

2. Find the entitlement pool for the Red Hat JMS 7 Clients director.

sudo subscription-manager list --available --all

3. Use the pool ID located in the previous step to attach the JMS Clients entitlements for
corresponding platforms.

sudo subscription-manager attach --pool=<POOL_ID>

4. Disable all default repositories then enable the required Red Hat Enterprise Linux
repositories.

Red Hat A-MQ 7.0 JMS Client

4

sudo subscription-manager repos --disable=*
sudo subscription-manager repos --enable=a-mq-clients-1-for-rhel-
7-server-rpms --enable=a-mq-clients-1-for-rhel-6-server-rpms --
enable=a-mq-clients-1-for-rhel-5-server-rpms

5. Perform an update on your system to make sure you have the latest base system packages.

sudo yum update -y
reboot

The system is now ready for the director installation.

1.1.7. AMQP JMS A-MQ 1.0 Java Client

Qpid JMS is a complete AMQP JMS 1.0 and JMS 1.1 client built using Qpid Proton.

To install the AMQP JMS A-MQ 1.0, enter the following command as the root user:

yum install qpid-jms-client qpid-jms-client-docs qpid-jms-client-
examples qpid-jms-client-maven-repo

Note

Both AMQP JMS 1.0 and JMS 1.1 clients require Java 1.7 or higher runtime to run.
Ensure the Java version installed on your system is 1.7 or higher.

1.1.8. AMQP C++ Client

To install the AMQP C++ client, enter the following command as the root user:

yum install qpid-cpp-client qpid-cpp-client-devel

1.1.9. Python Language Bindings for AMQP API

To install the Python language bindings for the AMQP API messaging framework, enter the following
command as the root user:

yum install python-qpid-proton python-qpid-proton-doc

1.2. INSTALLING JMS CLIENT (ZIP INSTALLATION)

The ZIP file installation is platform-independent.

1. Download the JMS Client RPM package from here.

2. Extract the package by using the following command:

rpm2cpio qpid-jms-client-zip-0.8.0-1.el6.noarch.rpm | cpio -ivd

You can find the JMS Client ZIP file (apache-qpid-jms-0.8.0.redhat-1-bin.zip) in the

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

5

http://download.eng.bos.redhat.com/brewroot/packages/qpid-jms/0.8.0/1.el6/noarch/qpid-jms-client-zip-0.8.0-1.el6.noarch.rpm

usr/share/java/ directory.

3. Extract the package contents into a directory to which you have full access.

Note

The above instructions are only for the Alpha release.

1.2.1. Downloading the A-MQ Broker ZIP File From the Red Hat Customer
Portal

1. Open a browser and log in to the Red Hat Customer Portal at https://access.redhat.com.

2. Click Downloads.

3. Click Red Hat JBoss Middleware in the Product Downloads list.

4. Select the correct A-MQ version from the Version drop-down menu.

5. Find Red Hat A-MQ JMS Client in the list and click the Download link.

1.2.2. Unpacking the JMS Client ZIP File

Once you have downloaded the JMS Client ZIP installation file, you can install it by extracting the
package contents into a directory to which you have full access.

1.3. JMS CLIENT CONFIGURATION

This section details various configuration options for the client, such as how to configure and create
a JNDI InitialContext, the syntax for its related configuration, and various URI options that can be set
when defining a ConnectionFactory.

1.3.1. Configuring A JNDI InitialContext

Applications use a JNDI InitialContext, itself obtained from an InitialContextFactory, to
look up JMS objects such as ConnectionFactory. The JMS client provides an implementation of
the InitialContextFactory in class
org.apache.qpid.jms.jndi.JmsInitialContextFactory. This can be configured and
used in three main ways:

1. Via the jndi.properties file on the Java Classpath.

By including a file named jndi.properties on the Classpath and setting the
java.naming.factory.initial property to
org.apache.qpid.jms.jndi.JmsInitialContextFactory, the Qpid InitialContextFactory
implementation will be discovered when instantiating InitialContext object.

javax.naming.Context ctx = new javax.naming.InitialContext();

Red Hat A-MQ 7.0 JMS Client

6

https://access.redhat.com

2. Via system properties.

By setting the java.naming.factory.initial system property to value
org.apache.qpid.jms.jndi.JmsInitialContextFactory, the Qpid InitialContextFactory
implementation will be discovered when instantiating InitialContext object.

javax.naming.Context ctx = new javax.naming.InitialContext();

The particular ConnectionFactory, Queue and Topic objects you wish the context to contain are
configured as properties in a file, which is passed using the java.naming.provider.url system
property. The syntax for these properties is detailed below.

3. Programmatically using an environment Hashtable.

The InitialContext can also be configured directly by passing an environment during creation:

Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
javax.naming.Context context = new javax.naming.InitialContext(env);

The particular ConnectionFactory, Queue and Topic objects you wish the context to contain are
configured as properties (the syntax for which is detailed below), either directly within the
environment Hashtable, or in a separate file which is referenced using the
java.naming.provider.url property within the environment Hashtable.

The property syntax used in the properties file or environment Hashtable is as follows: - To define a
ConnectionFactory, use format: connectionfactory.lookupName = URI - To define a Queue,
use format: queue.lookupName = queueName - To define a Topic use format:
topic.lookupName = topicName

As an example, consider the following properties used to define a ConnectionFactory, Queue, and
Topic:

connectionfactory.myFactoryLookup = amqp://localhost:5672
queue.myQueueLookup = queueA
topic.myTopicLookup = topicA

These objects can then be looked up from a Context as follows:

ConnectionFactory factory = (ConnectionFactory)
context.lookup("myFactoryLookup");
Queue queue = (Queue) context.lookup("myQueueLookup");
Topic topic = (Topic) context.lookup("myTopicLookup");

1.3.2. Connection URI

The basic format of the clients Connection URI is:

amqp://hostname:port[?option=value[&option2=value...]]

The client can be configured with a number of different settings using the URI while defining the
ConnectionFactory, these are detailed in the following sections.

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

7

1.3.2.1. JMS Configuration Options

The options apply to the behaviour of the JMS objects such as Connection, Session,
MessageConsumer and MessageProducer.

Table 1.2. JMS Configuration options

Parameter Description

jms.username User name value used to authenticate the
connection

jms.password The password value used to authenticate the
connection

jms.clientID The ClientID value that is applied to the connection

jms.forceAsyncSend Configures whether all Messages sent from a
MessageProducer are sent asynchronously or only
those Message that qualify such as Messages
inside a transaction or non-persistent messages

jms.forceSyncSend Override all asynchronous send conditions and
always sends every Message from a
MessageProducer synchronously

jms.forceAsyncAcks Causes all Message acknowledgments to be sent
asynchronously

jms.alwaysSyncSend Override all asynchronous send conditions and
always sends every Message from a
MessageProducer synchronously.

jms.sendAcksAsync Causes all Message acknowledgments to be sent
asynchronously.

Red Hat A-MQ 7.0 JMS Client

8

jms.localMessageExpiry Controls whether MessageConsumer instances will
locally filter expired Messages or deliver them. By
default this value is set to true and expired
messages will be filtered

jms.localMessagePriority If enabled prefetched messages are reordered
locally based on their given Message priority value.
Default is false.

jms.validatePropertyNames If message property names should be validated as
valid Java identifiers. Default is true.

jms.receiveLocalOnly If enabled receive calls with a timeout will only
check a consumers local message buffer,
otherwise the remote peer is checked to ensure
there are really no messages available if the local
timeout expires before a message arrives. Default
is false, the remote is checked.

jms.receiveNoWaitLocalOnly If enabled receiveNoWait calls will only check a
consumers local message buffer, otherwise the
remote peer is checked to ensure there are really
no messages available. Default is false, the remote
is checked.

jms.queuePrefix Optional prefix value added to the name of any
Queue created from a JMS Session.

jms.topicPrefix Optional prefix value added to the name of any
Topic created from a JMS Session.

jms.closeTimeout Timeout value that controls how long the client
waits on Connection close before returning. (By
default the client waits 15 seconds for a normal
close completion event).

jms.connectTimeout Timeout value that controls how long the client
waits on Connection establishment before returning
with an error. (By default the client waits 15
seconds for a connection to be established before
failing).

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

9

jms.clientIDPrefix Optional prefix value that is used for generated
Client ID values when a new Connection is created
for the JMS ConnectionFactory. The default prefix
is ID:.

jms.connectionIDPrefix Optional prefix value that is used for generated
Connection ID values when a new Connection is
created for the JMS ConnectionFactory. This
connection ID is used when logging some
information from the JMS Connection object so a
configurable prefix can make breadcrumbing the
logs easier. The default prefix is ID:.

jms.messageIDType Controls the type of the Message ID assigned to
messages sent from the client. By default a
generated String value is used on outgoing
messages, other available types are UUID and
UUID_STRING.

These values control how many messages the remote peer can send to the client and be held in a
prefetch buffer for each consumer instance.

Parameter Default Value

jms.prefetchPolicy.queuePrefetch 1000

jms.prefetchPolicy.topicPrefetch 1000

jms.prefetchPolicy.queueBrowserPrefetch 1000

jms.prefetchPolicy.durableTopicPrefetch 1000

Red Hat A-MQ 7.0 JMS Client

10

jms.prefetchPolicy.all Used to set all prefetch values at once. The
RedeliveryPolicy controls how redelivered
messages are handled on the client.

jms.redeliveryPolicy.maxRedeliveries Controls when an incoming message is rejected
based on the number of times it has been
redelivered, the default value is (-1) disabled. A
value of zero would indicate no message
redeliveries are accepted, a value of five would
allow a message to be redelivered five times, etc.

1.3.2.2. TCP Transport Configuration Options

When connected to a remote using plain TCP these options configure the behaviour of the
underlying socket. These options are appended to the connection URI along with the other
configuration options, for example:

amqp://localhost:5672?jms.clientID=foo&transport.connectTimeout=30000

The complete set of TCP Transport options is listed below:

Parameter Default Value

transport.sendBufferSize 64k

transport.receiveBufferSize 64k

transport.trafficClass 0

transport.connectTimeout 60 seconds

transport.soTimeout -1

transport.soLinger -1

transport.tcpKeepAlive False

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

11

transport.tcpNoDelay True

1.3.2.3. SSL Transport Configuration Options

The SSL Transport extends the TCP Transport and is enabled using the amqps URI scheme.
Because the SSL Transport extends the functionality of the TCP based Transport all the TCP
Transport options are valid on an SSL Transport URI.

A simple SSL based client URI is shown below:

amqps://localhost:5673

The complete set of SSL Transport options is listed below:

Parameter Description

transport.keyStoreLocation Default is to read from the system property
"javax.net.ssl.keyStore"

transport.keyStorePassword Default is to read from the system property
"javax.net.ssl.keyStorePassword"

transport.trustStoreLocation Default is to read from the system property
"javax.net.ssl.trustStore"

transport.trustStorePassword Default is to read from the system property
"javax.net.ssl.keyStorePassword"

transport.storeType The type of trust store being used. Default is "JKS".

transport.contextProtocol The protocol argument used when getting an
SSLContext. Default is "TLS".

transport.enabledCipherSuites The cipher suites to enable, comma separated. No
default, meaning the context default ciphers are
used. Any disabled ciphers are removed from this.

Red Hat A-MQ 7.0 JMS Client

12

transport.disabledCipherSuites The cipher suites to disable, comma separated.
Ciphers listed here are removed from the enabled
ciphers. No default.

transport.enabledProtocols The protocols to enable, comma separated. No
default, meaning the context default protocols are
used. Any disabled protocols are removed from
this.

transport.disabledProtocols The protocols to disable, comma separated.
Protocols listed here are removed from the
enabled protocols. Default is "SSLv2Hello,SSLv3".

transport.trustAll Whether to trust the provided server certificate
implicitly, regardless of any configured trust store.
Defaults to false.

transport.verifyHost Whether to verify that the hostname being
connected to matches with the provided server
certificate. Defaults to true.

transport.keyAlias The alias to use when selecting a keypair from the
keystore if required to send a client certificate to the
server. No default.

1.3.2.4. AMQP Configuration Options

These options apply to the behaviour of certain AMQP functionality.

Parameter Description

amqp.idleTimeout The idle timeout in milliseconds after which the
connection will be failed if the peer sends no
AMQP frames. Default is 60000.

amqp.vhost The vhost to connect to. Used to populate the Sasl
and Open hostname fields. Default is the main
hostname from the Connection URI.

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

13

amqp.saslLayer Controls whether connections should use a SASL
layer or not. Default is true.

amqp.saslMechanisms Which SASL mechanism(s) the client should allow
selection of, if offered by the server and usable
with the configured credentials. Comma separated
if specifying more than 1 mechanism. Default is to
allow selection from all the clients supported
mechanisms, which are currently EXTERNAL,
CRAM-MD5, PLAIN, and ANONYMOUS.

amqp.maxFrameSize The max-frame-size value in bytes that is
advertised to the peer. Default is 1048576.

Parameter Description

1.3.2.5. Failover Configuration Options

With failover enabled the client can reconnect to a different broker automatically when the
connection to the current connection is lost for some reason. The failover URI is always initiated with
the failover prefix and a list of URIs for the brokers is contained inside a set of parentheses. The
"jms." options are applied to the overall failover URI, outside the parentheses, and affect the JMS
Connection object for its lifetime.

The URI for failover looks something like the following:

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.maxReconnectAttempts=20

The individual broker details within the parentheses can use the "transport." or "amqp." options
defined earlier, with these being applied as each host is connected to:

failover:(amqp://host1:5672?amqp.option=value,amqp://host2:5672?
transport.option=value)?jms.clientID=foo

The complete set of configuration options for failover is listed below:

Parameter Description

failover.initialReconnectDelay The amount of time the client will wait before the
first attempt to reconnect to a remote peer. The
default value is zero, meaning the first attempt
happens immediately.

Red Hat A-MQ 7.0 JMS Client

14

failover.reconnect Delay Controls the delay between successive
reconnection attempts, defaults to 10 milliseconds.
If the backoff option is not enabled this value
remains constant.

failover.maxReconnect Delay The maximum time that the client will wait
before attempting a reconnect. This value is only
used when the backoff feature is enabled to ensure
that the delay doesn’t not grow too large. Defaults
to 30 seconds as the max time between connect
attempts.

failover.useReconnectBackOff Controls whether the time between reconnection
attempts should grow based on a configured
multiplier. This option defaults to true.

failover.reconnectBackOffMultiplier The multiplier used to grow the reconnection delay
value, defaults to 2.0d.

failover.maxReconnectAttempts The number of reconnection attempts allowed
before reporting the connection as failed to the
client. The default is no limit or (-1).

failover.startupMaxReconnectAttempts For a client that has never connected to a remote
peer before this option control how many attempts
are made to connect before reporting the
connection as failed. The default is to use the value
of maxReconnectAttempts.

failover.warnAfterReconnectAttempts Controls how often the client will log a message
indicating that failover reconnection is being
attempted. The default is to log every 10
connection attempts.

Parameter Description

The failover URI also supports defining nested options as a means of specifying AMQP and
transport option values applicable to all the individual nested broker URI’s, which can be useful to
avoid repetition. This is accomplished using the same "transport." and "amqp." URI options outlined
earlier for a non-failover broker URI but prefixed with failover.nested.. For example, to apply the
same value for the amqp.vhost option to every broker connected to you might have a URI like:

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.nested.amqp.vhost=myhost

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

15

1.3.2.6. Discovery Configuration Options

The client has an optional Discovery module, which provides a customized failover layer where the
broker URIs to connect to are not given in the initial URI, but discovered as the client operates via
associated discovery agents. There are currently two discovery agent implementations, a file
watcher that loads URIs from a file, and a multicast listener that works with ActiveMQ 5 brokers
which have been configured to broadcast their broker addresses for listening clients.

The general set of failover related options when using discovery are the same as those detailed
earlier, with the main prefix updated from failover. to discovery., and with the nested options prefix
used to supply URI options common to all the discovered broker URIs bring updated from
failover.nested. to discovery.discovered. For example, without the agent URI details, a general
discovery URI might look like:

discovery:(<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo

To use the file watcher discovery agent, utilize an agent URI of the form:

discovery:(file:///path/to/monitored-file?updateInterval=60000)

The URI options for the file watcher discovery agent are listed below:

updateInterval Controls the frequency in milliseconds which the file is inspected for change. The
default value is 30000.

To use the multicast discovery agent with an ActiveMQ 5 broker, utilize an agent URI of the form:

discovery:(multicast://default?group=default)

Note that the use of default as the host in the multicast agent URI above is a special value (that is
substituted by the agent with the default "239.255.2.3:6155"). You can change this to specify the
actual IP and port in use with your multicast configuration.

group Controls which multicast group messages are listened for on. The default value is
"default".

1.3.3. Logging

The client makes use of the SLF4J API, allowing users to select a particular logging implementation
based on their needs by supplying a SLF4J binding, such as slf4j-log4j in order to use Log4J. More
details on SLF4J are available from http://www.slf4j.org/.

The client uses Logger names residing within the org.apache.qpid.jms hierarchy, which you can use
to configure a logging implementation based on your needs.

When debugging some issues, it can be useful to enable additional protocol trace logging from the
Qpid Proton AMQP 1.0 library. There are two options to achieve this:

Set the environment variable (not Java system property) PN_TRACE_FRM to true, which will
cause Proton to emit frame logging to stdout.

Add the option amqp.traceFrames=true to your connection URI to have the client add a
protocol tracer to Proton, and configure the
org.apache.qpid.jms.provider.amqp.FRAMES Logger to TRACE level to include the
output in your logs.

Red Hat A-MQ 7.0 JMS Client

16

http://www.slf4j.org/

CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT

17

	Table of Contents
	CHAPTER 1. INSTALLING A-MQ 7.0 INTERCONNECT
	1.1. INSTALLING JMS CLIENT (RPM INSTALLATION)
	1.1.1. Installing OpenJDK on Red Hat Linux
	1.1.2. Downloading JMS Client RPM Packages
	1.1.3. Installing JMS Client
	1.1.4. Required Subscriptions
	1.1.5. RPM Repositories
	1.1.6. Registering Your System
	1.1.7. AMQP JMS A-MQ 1.0 Java Client
	1.1.8. AMQP C++ Client
	1.1.9. Python Language Bindings for AMQP API

	1.2. INSTALLING JMS CLIENT (ZIP INSTALLATION)
	1.2.1. Downloading the A-MQ Broker ZIP File From the Red Hat Customer Portal
	1.2.2. Unpacking the JMS Client ZIP File

	1.3. JMS CLIENT CONFIGURATION
	1.3.1. Configuring A JNDI InitialContext
	1.3.2. Connection URI
	1.3.2.1. JMS Configuration Options
	1.3.2.2. TCP Transport Configuration Options
	1.3.2.3. SSL Transport Configuration Options
	1.3.2.4. AMQP Configuration Options
	1.3.2.5. Failover Configuration Options
	1.3.2.6. Discovery Configuration Options

	1.3.3. Logging

