
k8s Service, shows the IP and port that is being exposed
within the cluster. Visually it should be associated with
the things that it is routing to.

OpenShift Deployment, shows when and why the
deployment was triggered, visually associated with
what is running in the deployment

k8s/OS Pod Template (what am I actually running),
shows what image is running. if the image came from
OS build process then it includes build info. Shows
source info that went into the build when it is known.

k8s Pods, the actual instances of the pod template
including a minimal amount of status (state, IP,
etc).

Structural overview of k8s and OpenShift resources
What’s being shown:

Example of the same visualization
applied to only k8s resources.

Structural overview of k8s and OpenShift resources - complex scenarios

Service (routing to frontend web port for Deployment Config A, Deployment Config B, and a random pod)

OS Deployment Configuration A OS Deployment Configuration B

Most recent OS Deployment of
Deployment Config A

Pod template (Image 123)

Pod Pod Pod

Older active OS Deployment of
Deployment Config A

Pod template

Pod Pod Pod

Oldest active OS Deployment of
Deployment Config A

Pod template

Pod Pod Pod

Most recent OS Deployment of
Deployment Config B

Pod template (Image 456)

Pod Pod Pod

Older active OS Deployment of
Deployment Config B

Pod template (Image 456)

Pod Pod Pod

Oldest active OS Deployment of
Deployment Config B

Pod template (Image 456)

Pod Pod Pod

When viewing k8s resources
without OS concepts, things
that are routed to by the service
should still all be visually
connected by the service.

SIngleton pod whose label matches the
service’s label selector

Pod

Pod template (Image 789)

Service (routing to admin port on
Dep Config A only)

A single k8s service may route
to similar but different pods.
One example includes multiple
deployment configurations
during an A/B test.

Multiple services may route to the same set of running pods, in this case
the services should be stacked.

Vertical relationships between
deployments should indicate time, with the
most recently deployed deployments
within a deployment configuration being
the most important.

Clicking on a specific resource
navigates to the detailed information
and status for that resource (service,
image, build, source, pod, etc). In
OS navigation structure this would
be underneath Browse

Interaction with the overview

Possible extension points within the overview

Additional details for what is
running in the pods. Ex: if we know
it is a JBoss image and that it has
Camel routes configured then inject
a link to view the Camel routes

Area beneath the deployment may provide suggestions. Ex: I am running the Rails image but I have no
database images running in my project, suggest setting up a DB service.

Entire sections could be
swapped out with other visual
representations. Pod template,
pod details, etc

Navigating the console

Structural overview (default tab when
going to a project)

Pipelines. This includes build
pipelines (source -> build -> image),
known environment pipelines (dev ->
test -> production)

Metrics and monitoring. This
includes both container level system
resource monitoring and extended
monitoring details such as JVM
monitoring (think threads, etc) and
event bus monitoring.

Events (timeline), important things
happening within your project.

Logs. Viewing the logs for your
running containers. Viewing logs for
your already completed or running
builds.

Browse. Dig down into lists of
resources for any resource type.
Ex: I want to look at a list of all the
pods in my project

Membership. View/edit the users/teams
that have access to this project and its
resources.

Settings. General settings for the
project.

Switch between projects, the
current selected left tab is
maintained when switching

Filter the current view by labels

Secondary navigation column will only
appear as needed. Example shown is
the secondary nav for Browse.

Additional wireframes live in the OpenShift Origin repo

https://github.com/openshift/origin/tree/master/docs/proposals/wireframes

