
Fuse Mediation Router
Expression and Predicate Languages

Version 2.7
March 2011

The experts in open source integration and messaging

Expression and Predicate Languages

Version 2.7
March 2011

Expression and Predicate Languages
Version 2.7

Publication date 22 Mar 2011
Copyright © 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Legal Notices

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology–Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledments
Fuse Mediation Router v2.6.0 incorporates Apache Jakarta Commons DBCP v1.3 from the Apache Foundation. Such technology
is subject to the following terms and conditions: Apache Software License Version 1.1 Copyright (c) 2000 The Apache Software
Foundation. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The
end-user documentation included with the redistribution, if any, must include the following acknowledgment: “This product
includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache"

http://www.apache.org/

and "Apache Software Foundation" must not be used to endorse or promote products derived from this software without prior
written permission. For written permission, please contact apache&apache.org1. 5. Products derived from this software may not
be called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation, please see http://www.apache.org/.
Portions of this software are based upon public domain software originally written at the National Center for Supercomputing
Applications, University of Illinois, Urbana-Champaign.

1 mailto:apache@apache.org

mailto:apache@apache.org
http://www.apache.org/
mailto:apache@apache.org

Table of Contents
1. Introduction ... 11

Overview of the Languages ... 12
How to Invoke an Expression Language ... 13
Languages for Expressions and Predicates .. 16

2. The Simple Language ... 27
Java DSL ... 28
Spring DSL ... 29
Expressions .. 30
Predicates .. 32
Variable Reference ... 34
Operator Reference .. 36

3. The File Language ... 39
When to Use the File Language ... 40
File Variables .. 42
Examples ... 44

4. The XPath Language .. 47
Java DSL ... 48
Spring DSL ... 50
XPath Injection .. 52
XPath Builder ... 54
Expressions .. 56
Predicates .. 61
Using Variables and Functions .. 62
Variable Namespaces .. 64
Function Reference ... 65

7Fuse Mediation Router Expression and Predicate Languages Version 2.7

Fuse Mediation Router Expression and Predicate Languages Version 2.78

List of Tables
1.1. Expression and Predicate Languages 12
2.1. Variables for the Simple Language ... 34
2.2. Operators for the Simple Language .. 36
2.3. Conjunctions for Simple Language Predicates 37
3.1. Variables for the File Language ... 42
4.1. Predefined Namespaces for @XPath 52
4.2. Operators for the XPath Language ... 61
4.3. XPath Variable Namespaces ... 64
4.4. XPath Custom Functions ... 65

9Fuse Mediation Router Expression and Predicate Languages Version 2.7

Fuse Mediation Router Expression and Predicate Languages Version 2.710

Chapter 1. Introduction
This chapter provides an overview of all the expression languages supported by Fuse Mediation Router.

Overview of the Languages ... 12
How to Invoke an Expression Language ... 13
Languages for Expressions and Predicates .. 16

11Fuse Mediation Router Expression and Predicate Languages Version 2.7

Overview of the Languages

Table of expression and predicate
languages

Table 1.1 on page 12 gives an overview of the different syntaxes for invoking
expression and predicate languages.

Table 1.1. Expression and Predicate Languages

ArtifactAnnotationXML ElementFluent DSL MethodStatic MethodLanguage

Camel core@BeanmethodEIP().method()bean()Bean

Camel core@ConstantconstantEIP().constant()constant()Constant

camel-juel@ELelEIP().el()el()EL

camel-groovy@GroovygroovyEIP().groovy()groovy()Groovy

Camel core@HeaderheaderEIP().header()header()Header

camel-script@JavaScriptjavaScriptEIP().javaScript()javaScript()JavaScript

camel-josql@SQLsqlEIP().sql()sql()JoSQL

camel-jxpath@JXPathjxpathEIP().jxpath()NoneJXPath

camel-mvel@MVELmvelNonemvel()MVEL

camel-ognl@OGNLognlEIP().ognl()ognl()OGNL

camel-script@PHPphpEIP().php()php()PHP

Camel core@PropertypropertyEIP().property()property()Property

camel-script@PythonpythonEIP().python()python()Python

camel-script@RubyrubyEIP().ruby()ruby()Ruby

Camel core@SimplesimpleEIP().simple()simple()Simple/File

camel-spring@SpELspelNonespel()SpEL

Camel core@XPathxpathEIP().xpath()xpath()XPath

camel-saxon@XQueryxqueryEIP().xquery()xquery()XQuery

Fuse Mediation Router Expression and Predicate Languages Version 2.712

Chapter 1. Introduction

How to Invoke an Expression Language

Prerequisites Before you can use a particular expression language, you must ensure that
the required JAR files are available on the classpath. If the language you want
to use is not included in the Apache Camel core, you must add the relevant
JARs to your classpath.

If you are using the Maven build system, you can modify the build-time
classpath simply by adding the relevant dependency to your POM file. For
example, if you want to use the Ruby language, add the following dependency
to your POM file:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<!-- Use the same version as your Camel core version -->
<version>${camel.version}</version>

</dependency>

Approaches to invoking As shown in Table 1.1 on page 12, there are several different syntaxes for
invoking an expression language, depending on the context in which it is
used. You can invoke an expression language:

• "As a static method" on page 13.

• "As a fluent DSL method" on page 14.

• "As an XML element" on page 14.

• "As an annotation" on page 15.

As a static method Most of the languages define a static method that can be used in any context
where an org.apache.camel.Expression type or an
org.apache.camel.Predicate type is expected. The static method takes
a string expression (or predicate) as its argument and returns an Expression
object (which is usually also a Predicate object).

For example, to implement a content-based router that processes messages
in XML format, you could route messages based on the value of the
/order/address/countryCode element, as follows:

13Fuse Mediation Router Expression and Predicate Languages Version 2.7

How to Invoke an Expression Language

from("SourceURL")
.choice
.when(xpath("/order/address/countryCode = 'us'"))
.to("file://countries/us/")

.when(xpath("/order/address/countryCode = 'uk'"))
.to("file://countries/uk/")

.otherwise()
.to("file://countries/other/")

.to("TargetURL");

As a fluent DSL method The Java fluent DSL supports another style of invoking expression languages.
Instead of providing the expression as an argument to an Enterprise Integration
Pattern (EIP), you can provide the expression as a sub-clause of the DSL
command. For example, instead of invoking an XPath expression as
filter(xpath("Expression")), you can invoke the expression as,
filter().xpath("Expression").

For example, the preceding content-based router can be re-implemented in
this style of invocation, as follows:

from("SourceURL")
.choice
.when().xpath("/order/address/countryCode = 'us'")
.to("file://countries/us/")

.when().xpath("/order/address/countryCode = 'uk'")
.to("file://countries/uk/")

.otherwise()
.to("file://countries/other/")

.to("TargetURL");

As an XML element You can also invoke an expression language in Spring, by putting the
expression string inside the relevant XML element.

For example, the XML element for invoking XPath in Spring is xpath (which
belongs to the standard Apache Camel namespace). You can use XPath
expressions in a Spring DSL content-based router, as follows:

<from uri="file://input/orders"/>
<choice>
<when>
<xpath>/order/address/countryCode = 'us'</xpath>
<to uri="file://countries/us/"/>

</when>
<when>

Fuse Mediation Router Expression and Predicate Languages Version 2.714

Chapter 1. Introduction

<xpath>/order/address/countryCode = 'uk'</xpath>
<to uri="file://countries/uk/"/>

</when>
<otherwise>
<to uri="file://countries/other/"/>

</otherwise>
</choice>

As an annotation Language annotations are used in the context of bean integration (see "Bean
Integration" in Implementing Enterprise Integration Patterns). The annotations
provide a convenient way of extracting information from a message or header
and then injecting the extracted data into a bean's method parameters.

For example, consider the bean, myBeanProc, which is invoked as a predicate
of the filter() EIP. If the bean's checkCredentialsmethod returns true,
the message is allowed to proceed; but if the method returns false, the
message is blocked by the filter. The filter pattern is implemented as follows:

// Java
MyBeanProcessor myBeanProc = new MyBeanProcessor();

from("SourceURL")
.filter().method(myBeanProc, "checkCredentials")
.to("TargetURL");

The implementation of the MyBeanProcessor class exploits the @XPath
annotation to extract the username and password from the underlying XML
message, as follows:

// Java
import org.apache.camel.language.XPath;

public class MyBeanProcessor {
boolean void checkCredentials(

@XPath("/credentials/username/text()") String user,
@XPath("/credentials/password/text()") String pass

) {
// Check the user/pass credentials...
...

}
}

The @XPath annotation is placed just before the parameter into which it gets
injected. Notice how the XPath expression explicitly selects the text node, by
appending /text() to the path, which ensures that just the content of the
element is selected, not the enclosing tags.

15Fuse Mediation Router Expression and Predicate Languages Version 2.7

How to Invoke an Expression Language

http://fusesource.com/docs/router/2.6/eip/eip.pdf
http://fusesource.com/docs/router/2.6/eip/eip.pdf

Languages for Expressions and Predicates

Overview To provide greater flexibility when parsing and processing messages, Fuse
Mediation Router supports language plug-ins for various scripting languages.
For example, if an incoming message is formatted as XML, it is relatively easy
to extract the contents of particular XML elements or attributes from the
message using a language such as XPath. The Fuse Mediation Router
implements script builder classes, which encapsulate the imported languages.
Each language is accessed through a static method that takes a script
expression as its argument, processes the current message using that script,
and then returns an expression or a predicate. To be usable as an expression
or a predicate, the script builder classes implement the following interfaces:

org.apache.camel.Expression<E>
org.apache.camel.Predicate<E>

In addition to this, the ScriptBuilder class (which wraps scripting languages
such as JavaScript) inherits from the following interface:

org.apache.camel.Processor

This implies that the languages associated with the ScriptBuilder class
can also be used as message processors.

Bean You can also use Java beans to evaluate predicates and expressions. For
example, to evaluate the predicate on a filter using the isGoldCustomer()
method on the bean instance, myBean, you can use a rule like the following:

from("SourceURL")
.filter().method("myBean", "isGoldCustomer")
.to("TargetURL");

For full details of bean integration, see "Bean Integration" in Implementing
Enterprise Integration Patterns.

Constant The constant language is a trivial built-in language that is used to specify a
plain text string. This makes it possible to provide a plain text string in any
context where an expression type is expected. For example, to set the
username header to the value, Jane Doe:

Fuse Mediation Router Expression and Predicate Languages Version 2.716

Chapter 1. Introduction

http://fusesource.com/docs/router/2.6/eip/eip.pdf

from("SourceURL")
.setHeader("username", constant("Jane Doe"))
.to("TargetURL");

EL The Unified Expression Language (EL) enables you to construct predicates
and expressions in a router rule. The EL was originally specified as part of
the JSP 2.1 standard (JSR-245), but it is now available as a standalone
language. Fuse Mediation Router integrates with JUEL 1, which is an open
source implementation of the EL language.

To use the el() static method in your application code, include the following
import statement in your Java source files:

import static org.apache.camel.language.juel.JuelExpression.el;

File The File language is an extension to the Simple language that can only be
used in conjunction with a File consumer endpoint or an FTP consumer
endpoint. Because it is an extension to the simple language, it is invoked
using the simple() method in the Java DSL and using the simple element
in the Spring DSL.

For example, to resequence the exchanges read by a File consumer, so that
the exchanges are alphabetically ordered by file name, you can define a route
as follows:

from("file://target/filelanguage/")
.resequence(simple("file:name"))
.to("TargetURL");

A more elegant approach, however, is to use the File endpoint's built-in sortBy
option, which takes a simple expression as its value. Using the sortBy option,
you can ensure that files are processed in alphabetical order, as follows:

from("file://target/filelanguage/?sortBy=file:name")
.to("TargetURL");

1 http://juel.sourceforge.net/

17Fuse Mediation Router Expression and Predicate Languages Version 2.7

Languages for Expressions and Predicates

http://juel.sourceforge.net/
http://juel.sourceforge.net/

For full details of the File language, see "The File Language" on page 39.

Groovy The Groovy2 scripting language enables you to construct predicates and
expressions in a route. To use the groovy() static method in your application
code, include the following import statement in your Java source files:

import static org.apache.camel.builder.camel.script.Script
Builder.*;

Header The header language provides a convenient way of accessing header values
in the current message. When you supply a header name, the header language
performs a case-insensitive lookup and returns the corresponding header
value.

For example, to resequence incoming exchanges according to the value of a
TimeStamp header, you can define a route as follows:

from("SourceURL")
.resequence(header("TimeStamp"))
.to("TargetURL");

JavaScript The JavaScript3 scripting language enables you to construct predicates and
expressions in a route (see ECMAScript4). To use the javaScript() static
method in your application code, include the following import statement in
your Java source files:

import static org.apache.camel.builder.camel.script.Script
Builder.*;

JoSQL The JoSQL (SQL for Java objects) language enables you to evaluate predicates
and expressions in Fuse Mediation Router. JoSQL employs a SQL-like query
syntax to perform selection and ordering operations on data from in-memory
Java objects—however, JoSQL is not a database. In the JoSQL syntax, each
Java object instance is treated like a table row and each object method is
treated like a column name. Using this syntax, it is possible to construct
powerful statements for extracting and compiling data from collections of Java
objects. For details, see http://josql.sourceforge.net/.

2 http://groovy.codehaus.org/
3 http://developer.mozilla.org/en/docs/JavaScript
4 http://www.ecmascript.org/

Fuse Mediation Router Expression and Predicate Languages Version 2.718

Chapter 1. Introduction

http://groovy.codehaus.org/
http://developer.mozilla.org/en/docs/JavaScript
http://www.ecmascript.org/
http://josql.sourceforge.net/
http://groovy.codehaus.org/
http://developer.mozilla.org/en/docs/JavaScript
http://www.ecmascript.org/

To use the sql() static method in your application code, include the following
import statement in your Java source files:

import static org.apache.camel.builder.sql.SqlBuilder.sql;

JXPath The JXPath language enables you to invoke Java beans using the Apache
Commons JXPath5 language. The JXPath language has a similar syntax to
XPath, but instead of selecting element or attribute nodes from an XML
document, it invokes methods on an object graph of Java beans. If one of the
bean attributes returns an XML document (a DOM/JDOM instance), however,
the remaining portion of the path is interpreted as an XPath expression and
is used to extract an XML node from the document. In other words, the JXPath
language provides a hybrid of object graph navigation and XML node selection.

When you invoke a JXPath expression in Fuse Mediation Router, the following
bean instances are pre-defined:

this

The current exchange is the root object.

in

The current In message (equivalent to this.in).

out

The current Out message (equivalent to this.out).

For example, if the body of the current In message contains the following
XML fragment:

<person>
<name surname="Bloggs" firstName="Joe"/>

</person>

You can test the value of the surname attribute using the following JXPath
expression:

5 http://commons.apache.org/jxpath/

19Fuse Mediation Router Expression and Predicate Languages Version 2.7

Languages for Expressions and Predicates

http://commons.apache.org/jxpath/
http://commons.apache.org/jxpath/
http://commons.apache.org/jxpath/

from("SourceURL")
.filter().jxpath("in/body/person/name/@surname='Bloggs'")
.to("TargetURL");

MVEL The MVEL6 langauge is a dynamically-typed object graph navigation language
(similar to OGNL and Groovy). You use the MVEL dot syntax to invoke Java
methods, for example:

getRequest().getBody().getFamilyName()

Because MVEL is dynamically typed, it is unnecessary to cast the message
body instance (of Object type) before invoking the getFamilyName()
method. You can also use an abbreviated syntax for invoking bean attributes,
for example:

request.body.familyName

When you invoke an MVEL expression in Fuse Mediation Router, the following
variables and bean instances are pre-defined:

DescriptionTypeVariable

The current exchange is the root object.Exchangethis

The current exchange.Exchangeexchange

The current exchange's ID.StringexchangeId

The exchange exception (if any).Throwableexception

The fault message (if any).Messagefault

The exchange's In message.Messagerequest

The exchange's Out message (if any).Messageresponse

The exchange properties.Mapproperties

The exchange property keyed by Name.Objectproperty(Name)

The exchange property keyed by Name,

converted to the type, Type.

Typeproperty(Name,

Type)

6 http://mvel.codehaus.org/

Fuse Mediation Router Expression and Predicate Languages Version 2.720

Chapter 1. Introduction

http://mvel.codehaus.org/
http://mvel.codehaus.org/

For example, to select only those messages whose Country header has the
value USA, you can use the following MVEL expression:

from("SourceURL")
.filter().mvel("request.headers.Country == 'USA'")
.to("TargetURL");

OGNL The OGNL (Object Graph Navigation Language)7 enables you to define
predicates and expressions in a router rule.

To use the ognl() static method in your application code, include the
following import statement in your Java source files:

import static org.apache.camel.language.ognl.OgnlExpres
sion.ognl;

PHP The PHP8 scripting language enables you to construct predicates and
expressions in a route. To use the php() static method in your application
code, include the following import statement in your Java source files:

import static org.apache.camel.builder.camel.script.Script
Builder.*;

Property The property language provides a convenient way of accessing exchange
properties. When you supply a key that matches one of the property names,
the property language returns the corresponding value.

For example, to implement the recipient list pattern when the
listOfEndpoints exchange property contains the recipient list, you could
define a route as follows:

from("direct:a").recipientList(property("listOfEndpoints"));

Python The Python9 scripting language enables you to construct predicates and
expressions in a route. To use the python() static method in your application
code, include the following import statement in your Java source files:

7 http://www.ognl.org/
8 http://www.php.net/
9 http://www.python.org/

21Fuse Mediation Router Expression and Predicate Languages Version 2.7

Languages for Expressions and Predicates

http://www.ognl.org/
http://www.php.net/
http://www.python.org/
http://www.ognl.org/
http://www.php.net/
http://www.python.org/

import static org.apache.camel.builder.camel.script.Script
Builder.*;

Ruby The Ruby10 scripting language enables you to construct predicates and
expressions in a route. To use the ruby() static method in your application
code, include the following import statement in your Java source files:

import static org.apache.camel.builder.camel.script.Script
Builder.*;

Simple The simple language is a basic expression and predicate language built into
the router core. This language is particularly useful, if you need to eliminate
dependencies on third-party libraries during testing. To use the simple
language in your Java application code, include the following import statement
in your Java source files:

import static org.apache.camel.language.simple.SimpleLan
guage.simple;

For full details of the simple language, see "The Simple Language"
on page 27.

SpEL The Spring Expression Language (SpEL)11 is an object graph navigation
language provided with Spring 3, which can be used to construct predicates
and expressions in a route. A notable feature of SpEL is the ease with which
you can access beans from the registry.

When you invoke an SpEL expression in Fuse Mediation Router, the following
variables and bean instances are pre-defined:

DescriptionTypeVariable

The current exchange is the root object.Exchangethis

The current exchange.Exchangeexchange

The current exchange's ID.StringexchangeId

The exchange exception (if any).Throwableexception

10 http://www.ruby-lang.org/
11 http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#expressions

Fuse Mediation Router Expression and Predicate Languages Version 2.722

Chapter 1. Introduction

http://www.ruby-lang.org/
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#expressions
http://www.ruby-lang.org/
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#expressions

DescriptionTypeVariable

The fault message (if any).Messagefault

The exchange's In message.Messagerequest

The exchange's Out message (if any).Messageresponse

The exchange properties.Mapproperties

The exchange property keyed by Name.Objectproperty(Name)

The exchange property keyed by Name,

converted to the type, Type.

Typeproperty(Name,

Type)

The SpEL expressions must use the placeholder syntax, #{SpelExpression},
so that they can be embedded in a plain text string (in other words, SpEL has
expression templating enabled).

For example, to select only those messages whose Country header has the
value USA, you can use the following SpEL expression:

from("SourceURL")
.filter().spel("#{request.headers['Country'] == 'USA'}")
.to("TargetURL");

You can also use the SpEL expression in Spring DSL, as follows:

<route>
<from uri="SourceURL"/>
<filter>
<spel>#{request.headers['Country'] == 'USA'}}</spel>
<to uri="TargetURL"/>

</filter>
</route>

The following example shows how to embed SpEL expressions within a plain
text string:

from("SourceURL")
.setBody(spel("Hello #{request.body}! What a beautiful

#{request.headers['dayOrNight']}"))
.to("TargetURL");

SpEL can also look up beans in the registry (typically, the Spring registry),
using the @BeanID syntax. For example, given a bean with the ID,
headerUtils, and the method, count() (which counts the number of

23Fuse Mediation Router Expression and Predicate Languages Version 2.7

Languages for Expressions and Predicates

headers on the current message), you could use the headerUtils bean in
an SpEL predicate, as follows:

#{@headerUtils.count > 4}

XPath The XPath language enables you to select parts of the current message, when
the message is in XML format. To use the xpath() static method in your
application code, include the following import statement in your Java source
files:

import static org.apache.camel.builder.xml.XPathBuilder.xpath;

You can pass an XPath expression to xpath() as a string argument. The
XPath expression implicitly acts on the message content and returns a node
set as its result. Depending on the context, the return value is interpreted
either as a predicate (where an empty node set is interpreted as false) or as
an expression. For example, if you are processing an XML message with the
following content:

<person user="paddington">
<firstName>Paddington</firstName>
<lastName>Bear</lastName>
<city>London</city>
</person>

Then you could choose which endpoint to route the message to, based on
the content of the city element, using the following rule:

from("file:src/data?noop=true").
choice().
when(xpath("/person/city = 'London'")).to("file:target/mes

sages/uk").
otherwise().to("file:target/messages/others");

Where the return value of xpath() is treated as a predicate in this example.

XQuery The XQuery language enables you to select parts of the current message,
when the message is in XML format. XQuery is a superset of the XPath
language; hence, any valid XPath expression is also a valid XQuery expression.
To use the xquery() static method in your application code, include the
following import statement in your Java source files:

import static org.apache.camel.builder.saxon.XQueryBuild
er.xquery;

Fuse Mediation Router Expression and Predicate Languages Version 2.724

Chapter 1. Introduction

You can pass an XQuery expression to xquery() in several ways. For simple
expressions, you can pass the XQuery expressions as a string
(java.lang.String). For longer XQuery expressions, you might prefer to
store the expression in a file, which you can then reference by passing a
java.io.File argument or a java.net.URL argument to the overloaded
xquery() method. The XQuery expression implicitly acts on the message
content and returns a node set as the result. Depending on the context, the
return value is interpreted either as a predicate (where an empty node set is
interpreted as false) or as an expression.

25Fuse Mediation Router Expression and Predicate Languages Version 2.7

Languages for Expressions and Predicates

Fuse Mediation Router Expression and Predicate Languages Version 2.726

Chapter 2. The Simple Language
The simple language is a language that was developed in Apache Camel specifically for the purpose of accessing
and manipulating the various parts of an exchange object. The language is not quite as simple as when it was
originally created and it now features a comprehensive set of logical operators and conjunctions.

Java DSL ... 28
Spring DSL ... 29
Expressions .. 30
Predicates .. 32
Variable Reference ... 34
Operator Reference .. 36

27Fuse Mediation Router Expression and Predicate Languages Version 2.7

Java DSL

Simple expressions in Java DSL In the Java DSL, there are two styles for using the simple() command in a
route. You can either pass the simple() command as an argument to a
processor, as follows:

from("seda:order")
.filter(simple("in.header.foo"))
.to("mock:fooOrders");

Or you can call the simple() command as a sub-clause on the processor,
for example:

from("seda:order")
.filter()
.simple("in.header.foo")
.to("mock:fooOrders");

Placeholder syntax If you are embedding a simple expression inside a plain text string, you must
use the placeholder syntax, ${Expression}. For example, to embed the
in.header.name expression in a string:

simple("Hello ${in.header.name}, how are you?")

Fuse Mediation Router Expression and Predicate Languages Version 2.728

Chapter 2. The Simple Language

Spring DSL

Simple expressions in Spring DSL In the Spring DSL, you can use a simple expression by putting inside a simple
element. For example, to define a route that performs filtering based on the
contents of the foo header:

<route id="simpleExample">
<from uri="seda:orders"/>
<filter>
<simple>in.header.foo</simple>
<to uri="mock:fooOrders"/>

</filter>
</route>

Placeholder syntax If you are embedding a simple expression inside a plain text string, you must
use the placeholder syntax, ${Expression}. For example, to embed the
in.header.name expression in a string:

<simple>Hello ${in.header.name}, how are you?</simple>

Sometimes—for example, if you have enabled Spring property placeholders
or OSGi blueprint property placeholders—you might find that the
${Expression} syntax clashes with another property placeholder syntax. In
this case, you can disambiguate the placeholder using the alternative syntax,
$simple{Expression}, for the simple expression. For example:

<simple>Hello $simple{in.header.name}, how are you?</simple>

29Fuse Mediation Router Expression and Predicate Languages Version 2.7

Spring DSL

Expressions

Overview The simple language provides various elementary expressions that return
different parts of a message exchange. For example, the expression,
simple("header.timeOfDay"), would return the contents of a header called
timeOfDay from the incoming message.

Contents of a single variable You can use the simple language to define string expressions, based on the
variables provided. For example, you can use a variable of the form,
in.header.HeaderName, to obtain the value of the HeaderName header, as
follows:

simple("in.header.foo")

Variables embedded in a string You can embed simple variables in a string expression, but in this case you
must enclose the variables in ${ } (when you reference a variable on its own,
the enclosing braces are optional)—for example:

simple("Received a message from ${in.header.user} on
$(date:in.header.date:yyyyMMdd}.")

date and bean variables As well as providing variables that access all of the different parts of an
exchange (see Table 2.1 on page 34), the simple language also provides
special variables for formatting dates, date:command:pattern, and for
calling bean methods, bean:beanRef. For example, you can use the date
and the bean variables as follows:

simple("Todays date is ${date:now:yyyyMMdd}")
simple("The order type is ${bean:orderService?method=getOrder
Type}")

OGNL expressions The Object Graph Navigation Language1 (OGNL) is a notation for invoking
bean methods in a chain-like fashion. If a message body contains a Java
bean, you can easily access its bean properties using OGNL notation. For
example, if the message body is a Java object with a getAddress() accessor,

1 http://www.opensymphony.com/ognl/

Fuse Mediation Router Expression and Predicate Languages Version 2.730

Chapter 2. The Simple Language

http://www.opensymphony.com/ognl/
http://www.opensymphony.com/ognl/

you can access the Address object and the Address object's properties as
follows:

simple("${body.address}")
simple("${body.address.street}")
simple("${body.address.zip}")
simple("${body.address.city}")

Where the notation, ${body.address.street}, is shorthand for
${body.getAddress.getStreet}.

OGNL null-safe operator You can use the null-safe operator, ?., to avoid encountering null-pointer
exceptions, in case the body does not have an address. For example:

simple("${body?.address?.street}")

If the body is a java.util.Map type, you can look up a value in the map
with the key, foo, using the following notation:

simple("${body[foo]?.name}")

OGNL list element access You can also use square brackets notation, [k], to access the elements of a
list. For example:

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

The last keyword returns the index of the last element of a list. For example,
you can access the second last element of a list, as follows:

simple("${body.address.lines[last-1]}")

31Fuse Mediation Router Expression and Predicate Languages Version 2.7

Expressions

Predicates

Overview You can construct predicates by testing expressions for equality. For example,
the predicate, simple("${header.timeOfDay} == '14:30'"), tests
whether the timeOfDay header in the incoming message is equal to 14:30.

Syntax You can also test various parts of an exchange (headers, message body, and
so on) using simple predicates. Simple predicates have the following general
syntax:

${LHSVariable} Op RHSValue

Where the variable on the left hand side, LHSVariable, is one of the variables
shown in Table 2.1 on page 34 and the value on the right hand side,
RHSValue, is one of the following:

• Another variable, ${RHSVariable}.

• A string literal, enclosed in single quotes, ' '.

• A string literal, not enclosed in quotes (no spaces allowed).

• A numeric constant.

• The null object, null.

The simple language always attempts to convert the RHS value to the type
of the LHS value.

Examples For example, you can perform simple string comparisons and numerical
comparisons as follows:

simple("${in.header.user} == 'john'")
simple("${in.header.user} == john") // Quotes are optional
here

simple("${in.header.number} > 100")
simple("${in.header.number} > '100'") // String literal can
be converted to integer

You can test whether the left hand side is a member of a comma-separated
list, as follows:

Fuse Mediation Router Expression and Predicate Languages Version 2.732

Chapter 2. The Simple Language

simple("${in.header.type} not in 'gold,silver'")

You can test whether the left hand side matches a regular expression, as
follows:

simple("${in.header.number} regex '\d{4}'")

You can test the type of the left hand side using the is operator, as follows:

simple("${in.header.type} is 'java.lang.String'")
simple("${in.header.type} is String") // You can abbreviate
java.lang. types

You can test whether the left hand side lies in a specified numerical range,
as follows:

simple("${in.header.number} range 100..199")

Conjunctions You can also combine predicates using the logical conjunctions, and and or.

For example, here is an expression using the and conjunction:

simple("${in.header.title} contains 'Camel' and ${in.head
er.type} == 'gold'")

And here is an expression using the or conjunction:

simple("${in.header.title} contains 'Camel' or ${in.head
er.type} == 'gold'")

33Fuse Mediation Router Expression and Predicate Languages Version 2.7

Predicates

Variable Reference

Table of variables Table 2.1 on page 34 shows all of the variables supported by the simple
language.

Table 2.1. Variables for the Simple Language

DescriptionTypeVariable

The exchange's ID value.StringexchangeId

The In message ID value.Stringid

The In message body. Supports OGNL expressions.Objectbody

The In message body. Supports OGNL expressions.Objectin.body

The Out message body.Objectout.body

The Inmessage body, converted to the specified type. All types, Type, must

be specified using their fully-qualified Java name, except for the types:
byte[], String, Integer, and Long. The converted body can be null.

TypebodyAs(Type)

The Inmessage body, converted to the specified type. All types, Type, must

be specified using their fully-qualified Java name, except for the types:

TypemandatoryBodyAs(Type)

byte[], String, Integer, and Long. The converted body is expected to

be non-null.

The In message's HeaderName header. Supports OGNL expressions.Objectheader.HeaderName

The In message's HeaderName header.Objectheaders.HeaderName

The In message's HeaderName header. Supports OGNL expressions.Objectin.header.HeaderName

The In message's HeaderName header. Supports OGNL expressions.Objectin.headers.HeaderName

The Out message's HeaderName header.Objectout.header.HeaderName

The Out message's HeaderName header.Objectout.headers.HeaderName

The Key header, converted to the specified type. All types, Type, must be

specified using their fully-qualified Java name, except for the types: byte[],

String, Integer, and Long. The converted value can be null.

TypeheaderAs(Key,Type)

The PropertyName property on the exchange.Objectproperty.PropertyName

Fuse Mediation Router Expression and Predicate Languages Version 2.734

Chapter 2. The Simple Language

DescriptionTypeVariable

The SysPropertyName Java system property.Stringsys.SysPropertyName

The SysEnvVar system environment variable.Stringsysenv.SysEnvVar

Either the exception object from Exchange.getException() or, if this

value is null, the caught exception from the Exchange.EXCEPTION_CAUGHT

property; otherwise null. Supports OGNL expressions.

Stringexception

If an exception is set on the exchange, returns the value of
Exception.getMessage(); otherwise, returns null.

Stringexception.message

If an exception is set on the exchange, returns the value of
Exception.getStackTrace(); otherwise, returns null. Note: The simple

Stringexception.stacktrace

language first tries to retrieve an exception from
Exchange.getException(). If that property is not set, it checks for a

caught exception, by calling
Exchange.getProperty(Exchange.CAUGHT_EXCEPTION).

A date formatted using a java.text.SimpleDateFormat2 pattern. The following
commands are supported: now, for the current date and time;

Stringdate:command:pattern

header.HeaderName, or in.header.HeaderName to use a java.util.Data3

object in the HeaderName header from the In message;

out.header.HeaderName to use a java.util.Data4 object in the HeaderName

header from the Out message;

Invokes a method on the referenced bean. To specify a method name, you
can either append a dot, ., followed by the method name; or you can use

the ?method=methodName syntax.

Objectbean:beanRef

The value of the Key property placeholder (see ????).Stringproperties:Key

The value of the Key property placeholder, where the location of the

properties file is given by Location (see ????).

Stringproperties:Location:Key

The name of the current thread.StringthreadName

2 http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
3 http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
4 http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html

35Fuse Mediation Router Expression and Predicate Languages Version 2.7

Variable Reference

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html

Operator Reference

Table of operators The complete set of operators for simple language predicates is shown in
Table 2.2 on page 36.

Table 2.2. Operators for the Simple Language

DescriptionOperator

Equals.==

Greater than.>

Greater than or equals.>=

Less than.<

Less than or equals.<=

Not equal to.!=

Test if LHS string contains RHS string.contains

Test if LHS string does not contain RHS string.not contains

Test if LHS string matches RHS regular expression.regex

Test if LHS string does not match RHS regular expression.not regex

Test if LHS string appears in the RHS comma-separated
list.

in

Test if LHS string does not appear in the RHS
comma-separated list.

not in

Test if LHS is an instance of RHS Java type (using Java
instanceof operator).

is

Test if LHS is not an instance of RHS Java type (using Java
instanceof operator).

not is

Test if LHS number lies in the RHS range (where range has
the format, min...max).

range

Fuse Mediation Router Expression and Predicate Languages Version 2.736

Chapter 2. The Simple Language

DescriptionOperator

Test if LHS number does not lie in the RHS range (where
range has the format, min...max).

not range

Combining predicates The conjunctions shown in Table 2.3 on page 37 can be used to combine
two or more simple language predicates.

Table 2.3. Conjunctions for Simple Language Predicates

DescriptionOperator

Combine two predicates with logical and. Since Fuse Mediation
Router 2.5, it is possible to combine more than two predicates
with this operator.

and

Combine two predicates with logical inclusive or. Since Fuse
Mediation Router 2.5, it is possible to combine more than two
predicates with this operator.

or

For example, you could use the and conjunction to combine two predicate
expressions as follows:

${header.foo} >= 0 and ${header.foo} < 100

37Fuse Mediation Router Expression and Predicate Languages Version 2.7

Operator Reference

Fuse Mediation Router Expression and Predicate Languages Version 2.738

Chapter 3. The File Language
The file language is an extension to the simple language, not an independent language in its own right. But the
file language extension can only be used in conjunction with File or FTP endpoints.

When to Use the File Language ... 40
File Variables .. 42
Examples ... 44

39Fuse Mediation Router Expression and Predicate Languages Version 2.7

When to Use the File Language

Overview The file language is an extension to the simple language which is not always
available. You can use it under the following circumstances:

• "In a File or FTP consumer endpoint" on page 40.

• "On exchanges created by a File or FTP consumer" on page 41.

In a File or FTP consumer
endpoint

There are several URI options that you can set on a File or FTP consumer
endpoint, which take a file language expression as their value. For example,
in a File consumer endpoint URI you can set the fileName, move, preMove,
moveFailed, and sortBy options using a file expression.

In a File consumer endpoint, the fileName option acts as a filter, determining
which file will actually be read from the starting directory. If a plain text string
is specified (for example, fileName=report.txt), the File consumer reads
the same file each time it is updated. You can make this option more dynamic,
however, by specifying a simple expression. For example, you could use a
counter bean to select a different file each time the File consumer polls the
starting directory, as follows:

file://target/filelanguage/bean/?file
Name=${bean:counter.next}.txt&delete=true

Where the ${bean:counter.next} expression invokes the next() method
on the bean registered under the ID, counter.

The move option is used to move files to a backup location after then have
been read by a File consumer endpoint. For example, the following endpoint
moves files to a backup directory, after they have been processed:

file://target/filelanguage/?move=backup/${date:now:yyyyMM
dd}/${file:name.noext}.bak&recursive=false

Where the ${file:name.noext}.bak expression modifies the original file
name, replacing the file extension with .bak.

You can use the sortBy option to specify the order in which file should be
processed. For example, to process files according to the alphabetical order
of their file name, you could use the following File consumer endpoint:

file://target/filelanguage/?sortBy=file:name

Fuse Mediation Router Expression and Predicate Languages Version 2.740

Chapter 3. The File Language

To process file according to the order in which they were last modified, you
could use the following File consumer endpoint:

file://target/filelanguage/?sortBy=file:modified

You can reverse the order by adding the reverse: prefix—for example:

file://target/filelanguage/?sortBy=reverse:file:modified

On exchanges created by a File
or FTP consumer

When an exchange originates from a File or FTP consumer endpoint, it is
possible to apply file language expressions to the exchange throughout the
route (as long as the original message headers are not erased). For example,
you could define a content-based router, which routes messages according
to their file extension, as follows:

<from uri="file://input/orders"/>
<choice>
<when>
<simple>${file:ext} == 'txt'</simple>
<to uri="bean:orderService?method=handleTextFiles"/>

</when>
<when>
<simple>${file:ext} == 'xml'</simple>
<to uri="bean:orderService?method=handleXmlFiles"/>

</when>
<otherwise>
<to uri="bean:orderService?method=handleOtherFiles"/>

</otherwise>
</choice>

41Fuse Mediation Router Expression and Predicate Languages Version 2.7

When to Use the File Language

File Variables

Overview File variables can be used whenever a route starts with a File or FTP consumer
endpoint, which implies that the underlying message body is of java.io.File
type. The file variables enable you to access various parts of the file pathname,
almost as if you were invoking the methods of the java.io.File class (in
fact, the file language extracts the information it needs from message headers
that have been set by the File or FTP endpoint).

Starting directory Some of file variables return paths that are defined relative to a starting
directory, which is just the directory that is specified in the File or FTP
endpoint. For example, the following File consumer endpoint has the starting
directory, ./filetransfer (a relative path):

file:filetransfer

The following FTP consumer endpoint has the starting directory,
./ftptransfer (a relative path):

ftp://myhost:2100/ftptransfer

Naming convention of file
variables

In general, the file variables are named after corresponding methods on the
java.io.File class. For example, the file:absolute variable gives the
value that would be returned by the java.io.File.getAbsolute()method.

Note
This naming convention is not strictly followed, however. For example,
there is no such method as java.io.File.getSize().

Table of variables Table 3.1 on page 42 shows all of the variable supported by the file language.

Table 3.1. Variables for the File Language

DescriptionTypeVariable

The pathname relative to the
starting directory.

Stringfile:name

Fuse Mediation Router Expression and Predicate Languages Version 2.742

Chapter 3. The File Language

DescriptionTypeVariable

The file extension (characters
following the last . character

in the pathname).

Stringfile:name.ext

The pathname relative to the
starting directory, omitting the
file extension.

Stringfile:name.noext

The final segment of the
pathname. That is, the file

Stringfile:onlyname

name without the parent
directory path.

The final segment of the
pathname, omitting the file
extension.

Stringfile:onlyname.noext

The file extension (same as
file:name.ext).

Stringfile:ext

The pathname of the parent
directory, including the starting
directory in the path.

Stringfile:parent

The file pathname, including
the starting directory in the
path.

Stringfile:path

true, if the starting directory

was specified as an absolute
path; false, otherwise.

Booleanfile:absolute

The absolute pathname of the
file.

Stringfile:absolute.path

The size of the referenced file.Longfile:length

Same as file:length.Longfile:size

Date last modified.java.util.Datefile:modified

43Fuse Mediation Router Expression and Predicate Languages Version 2.7

File Variables

Examples

Relative pathname Consider a File consumer endpoint, where the starting directory is specified
as a relative pathname. For example, the following File endpoint has the
starting directory, ./filelanguage:

file://filelanguage

Now, while scanning the filelanguage directory, suppose that the endpoint
has just consumed the following file:

./filelanguage/test/hello.txt

And, finally, assume that the filelanguage directory itself has the following
absolute location:

/workspace/camel/camel-core/target/filelanguage

Given the preceding scenario, the file language variables return the following
values, when applied to the current exchange:

ResultExpression

test/hello.txtfile:name

txtfile:name.ext

test/hellofile:name.noext

hello.txtfile:onlyname

hellofile:onlyname.noext

txtfile:ext

filelanguage/testfile:parent

filelanguage/test/hello.txtfile:path

falsefile:absolute

Fuse Mediation Router Expression and Predicate Languages Version 2.744

Chapter 3. The File Language

ResultExpression

/workspace/camel/camel-core/target/filelanguage/test/hello.txtfile:absolute.path

Absolute pathname Consider a File consumer endpoint, where the starting directory is specified
as an absolute pathname. For example, the following File endpoint has the
starting directory, /workspace/camel/camel-core/target/filelanguage:

file:///workspace/camel/camel-core/target/filelanguage

Now, while scanning the filelanguage directory, suppose that the endpoint
has just consumed the following file:

./filelanguage/test/hello.txt

Given the preceding scenario, the file language variables return the following
values, when applied to the current exchange:

ResultExpression

test/hello.txtfile:name

txtfile:name.ext

test/hellofile:name.noext

hello.txtfile:onlyname

hellofile:onlyname.noext

txtfile:ext

/workspace/camel/camel-core/target/filelanguage/testfile:parent

/workspace/camel/camel-core/target/filelanguage/test/hello.txtfile:path

truefile:absolute

/workspace/camel/camel-core/target/filelanguage/test/hello.txtfile:absolute.path

45Fuse Mediation Router Expression and Predicate Languages Version 2.7

Examples

Fuse Mediation Router Expression and Predicate Languages Version 2.746

Chapter 4. The XPath Language
When processing XML messages, the XPath language enables you to select part of a message, by specifying an
XPath expression that acts on the message's Document Object Model (DOM). You can also define XPath predicates
to test the contents of an element or an attribute.

Java DSL ... 48
Spring DSL ... 50
XPath Injection .. 52
XPath Builder ... 54
Expressions .. 56
Predicates .. 61
Using Variables and Functions .. 62
Variable Namespaces .. 64
Function Reference ... 65

47Fuse Mediation Router Expression and Predicate Languages Version 2.7

Java DSL

Basic expressions You can use xpath("Expression") to evaluate an XPath expression on the
current exchange (where the XPath expression is applied to the body of the
current In message). The result of the xpath() expression is an XML node
(or node set, if more than one node matches).

For example, to extract the contents of the /person/name element from the
current In message body and use it to set a header named user, you could
define a route like the following:

from("queue:foo")
.setHeader("user", xpath("/person/name/text()"))
.to("direct:tie");

Instead of specifying xpath() as an argument to setHeader(), you can use
the fluent builder xpath() command—for example:

from("queue:foo")
.setHeader("user").xpath("/person/name/text()")
.to("direct:tie");

If you want to convert the result to a specific type, specify the result type as
the second argument of xpath(). For example, to specify explicitly that the
result type is String:

xpath("/person/name/text()", String.class)

Namespaces Typically, XML elements belong to a schema, which is identified by a
namespace URI. When processing documents like this, it is necessary to
associate namespace URIs with prefixes, so that you can identify element
names unambiguously in your XPath expressions. Fuse Mediation Router
provides the helper class, org.apache.camel.builder.xml.Namespaces,
which enables you to define associations between namespaces and prefixes.

For example, to associate the prefix, cust, with the namespace,
http://acme.com/customer/record, and then extract the contents of the
element, /cust:person/cust:name, you could define a route like the
following:

import org.apache.camel.builder.xml.Namespaces;
...
Namespaces ns = new Namespaces("cust", "http://acme.com/cus

Fuse Mediation Router Expression and Predicate Languages Version 2.748

Chapter 4. The XPath Language

tomer/record");

from("queue:foo")
.setHeader("user", xpath("/cust:person/cust:name/text()",

ns))
.to("direct:tie");

Where you make the namespace definitions available to the xpath()
expression builder by passing the Namespaces object, ns, as an additional
argument. If you need to define multiple namespaces, use the
Namespace.add() method, as follows:

import org.apache.camel.builder.xml.Namespaces;
...
Namespaces ns = new Namespaces("cust", "http://acme.com/cus
tomer/record");
ns.add("inv", "http://acme.com/invoice");
ns.add("xsi", "http://www.w3.org/2001/XMLSchema-instance");

If you need to specify the result type and define namespaces, you can use
the three-argument form of xpath(), as follows:

xpath("/person/name/text()", String.class, ns)

49Fuse Mediation Router Expression and Predicate Languages Version 2.7

Java DSL

Spring DSL

Basic expressions To evaluate an XPath expression in the Spring DSL, put the XPath expression
inside an xpath element. The XPath expression is applied to the body of the
current In message and returns an XML node (or node set). Typically, the
returned XML node is automatically converted to a string.

For example, to extract the contents of the /person/name element from the
current In message body and use it to set a header named user, you could
define a route like the following:

<beans ...>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="queue:foo"/>
<setHeader headerName="user">
<xpath>/person/name/text()</xpath>

</setHeader>
<to uri="direct:tie"/>

</route>
</camelContext>

</beans>

If you want to convert the result to a specific type, specify the result type by
setting the resultType attribute to a Java type name (where you must specify
the fully-qualified type name). For example, to specify explicitly that the result
type is String:

<xpath resultType="java.lang.String">/per
son/name/text()</xpath>

Namespaces When processing documents whose elements belong to one or more XML
schemas, it is typically necessary to associate namespace URIs with prefixes,
so that you can identify element names unambiguously in your XPath
expressions. Because Spring DSL is itself written in XML, it is possible to use
the standard XML mechanism for associating prefixes with namespace URIs.
That is, you can set an attribute like this: xmlns:Prefix="NamespaceURI".

For example, to associate the prefix, cust, with the namespace,
http://acme.com/customer/record, and then extract the contents of the

Fuse Mediation Router Expression and Predicate Languages Version 2.750

Chapter 4. The XPath Language

element, /cust:person/cust:name, you could define a route like the
following:

<beans ...>

<camelContext xmlns="http://camel.apache.org/schema/spring"

xmlns:cust="http://acme.com/customer/record"
>

<route>
<from uri="queue:foo"/>
<setHeader headerName="user">
<xpath>/cust:person/cust:name/text()</xpath>

</setHeader>
<to uri="direct:tie"/>

</route>
</camelContext>

</beans>

51Fuse Mediation Router Expression and Predicate Languages Version 2.7

Spring DSL

XPath Injection

Parameter binding annotation When using Fuse Mediation Router bean integration to invoke a method on
a Java bean, you can use the @XPath annotation to extract a value from the
exchange and bind it to a method parameter.

For example, consider the following route fragment, which invokes the credit
method on an AccountService object:

from("queue:payments")
.beanRef("accountService","credit")
...

The credit method uses parameter binding annotations to extract relevant
data from the message body and inject it into its parameters, as follows:

public class AccountService {
...
public void credit(

@XPath("/transaction/transfer/receiver/text()")
String name,

@XPath("/transaction/transfer/amount/text()")
String amount

)
{

...
}
...

}

For more information about bean integration, see "Bean Integration" in
Implementing Enterprise Integration Patterns.

Namespaces Table 4.1 on page 52 shows the namespaces that are predefined for XPath.
You can use these namespace prefixes in the XPath expression that appears
in the @XPath annotation.

Table 4.1. Predefined Namespaces for @XPath

PrefixNamespace URI

xsdhttp://www.w3.org/2001/XMLSchema

soaphttp://www.w3.org/2003/05/soap-envelope

Fuse Mediation Router Expression and Predicate Languages Version 2.752

Chapter 4. The XPath Language

http://fusesource.com/docs/router/2.6/eip/eip.pdf

It is not possible to add custom namespaces to use in the @XPath annotation.
If you need to access your own custom namespaces, however, you could
implement your own custom annotation, @MyXPath (you can look at the
source code for org.apache.camel.language.@XPath to see how the
annotation is implemented).

53Fuse Mediation Router Expression and Predicate Languages Version 2.7

XPath Injection

XPath Builder

Overview The org.apache.camel.builder.xml.XPathBuilder class enables you
to evaluate XPath expressions independently of an exchange. That is, if you
have an XML fragment from any source, you can use XPathBuilder to
evaluate an XPath expression on the XML fragment.

Matching expressions Use the matches() method to check whether one or more XML nodes can
be found that match the given XPath expression. The basic syntax for matching
an XPath expression using XPathBuilder is as follows:

boolean matches = XPathBuilder
.xpath("Expression")
.matches(CamelContext, "XMLString");

Where the given expression, Expression, is evaluated against the XML
fragment, XMLString, and the result is true, if at least one node is found that
matches the expression. For example, the following example returns true,
because the XPath expression finds a match in the xyz attribute.

boolean matches = XPathBuilder
.xpath("/foo/bar/@xyz")
.matches(getContext(), "<foo><bar

xyz='cheese'/></foo>"));

Evaluating expressions Use the evaluate() method to return the contents of the first node that
matches the given XPath expression. The basic syntax for evaluating an XPath
expression using XPathBuilder is as follows:

String nodeValue = XPathBuilder
.xpath("Expression")
.evaluate(CamelContext, "XMLString");

You can also specify the result type by passing the required type as the second
argument to evaluate()—for example:

String name = XPathBuilder
.xpath("foo/bar")
.evaluate(context,

"<foo><bar>cheese</bar></foo>", String.class);
Integer number = XPathBuilder

.xpath("foo/bar")

.evaluate(context,

Fuse Mediation Router Expression and Predicate Languages Version 2.754

Chapter 4. The XPath Language

"<foo><bar>123</bar></foo>", Integer.class);
Boolean bool = XPathBuilder

.xpath("foo/bar")

.evaluate(context,
"<foo><bar>true</bar></foo>", Boolean.class);

Using the Saxon parser A prerequisite for using the Saxon parser is that you add a dependency on
the camel-saxon artifact (either adding this dependency to your Maven POM,
if you use Maven, or adding the camel-saxon-2.7.0-fuse-00-00.jar file
to your classpath, otherwise).

The simplest way to enable the Saxon parser is to call the saxon() fluent
builder method. For example, you could invoke the Saxon parser as shown
in the following example:

// Java
// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar,
'_')[2]").saxon();

// evaluate as a String result
String result = builder.evaluate(context,
"<foo><bar>abc_def_ghi</bar></foo>");

55Fuse Mediation Router Expression and Predicate Languages Version 2.7

XPath Builder

Expressions

Result type By default, an XPath expression returns a list of one or more XML nodes, of
org.w3c.dom.NodeList type. You can use the type converter mechanism
to convert the result to a different type, however. In the Java DSL, you can
specify the result type in the second argument of the xpath() command. For
example, to return the result of an XPath expression as a String:

xpath("/person/name/text()", String.class)

In the Spring DSL, you can specify the result type in the resultType attribute,
as follows:

<xpath resultType="java.lang.String">/per
son/name/text()</xpath>

Patterns in location paths You can use the following patterns in XPath location paths:

/people/person

The basic location path specifies the nested location of a particular
element. That is, the preceding location path would match the person
element in the following XML fragment:

<people>
<person>...</person>

</people>

Note that this basic pattern can match multiple nodes—for example, if
there is more than one person element inside the people element.

/name/text()

If you just want to access the text inside by the element, append /text()

to the location path, otherwise the node includes the element's start and
end tags (and these tags would be included when you convert the node
to a string).

/person/telephone/@isDayTime

To select the value of an attribute, AttributeName, use the syntax

@AttributeName. For example, the preceding location path returns true

when applied to the following XML fragment:

Fuse Mediation Router Expression and Predicate Languages Version 2.756

Chapter 4. The XPath Language

<person>
<telephone isDayTime="true">1234567890</telephone>

</person>

*

A wildcard that matches all elements in the specified scope. For example,
/people/person/* matches all the child elements of person.

@*

A wildcard that matches all attributes of the matched elements. For
example, /person/name/@* matches all attributes of every matched

name element.

//

Match the location path at every nesting level. For example, the //name

pattern matches every name element highlighted in the following XML

fragment:

<invoice>
<person>
<name .../>

</person>
</invoice>
<person>
<name .../>

</person>
<name .../>

..

Selects the parent of the current context node. Not normally useful in
the Fuse Mediation Router XPath language, because the current context
node is the document root, which has no parent.

node()

Match any kind of node.

text()

Match a text node.

comment()

Match a comment node.

57Fuse Mediation Router Expression and Predicate Languages Version 2.7

Expressions

processing-instruction()

Match a processing-instruction node.

Predicate filters You can filter the set of nodes matching a location path by appending a
predicate in square brackets, [Predicate]. For example, you can select the
N
th node from the list of matches by appending [N] to a location path. The

following expression selects the first matching person element:

/people/person[1]

The following expression selects the second-last person element:

/people/person[last()-1]

You can test the value of attributes in order to select elements with particular
attribute values. The following expression selects the name elements, whose
surname attribute is either Strachan or Davies:

/person/name[@surname="Strachan" or @surname="Davies"]

You can combine predicate expressions using any of the conjunctions and,
or, not(), and you can compare expressions using the comparators, =, !=,
>, >=, <, <= (in practice, the less-than symbol must be replaced by the <
entity). You can also use XPath functions in the predicate filter.

Axes When you consider the structure of an XML document, the root element
contains a sequence of children, and some of those child elements contain
further children, and so on. Looked at in this way, where nested elements
are linked together by the child-of relationship, the whole XML document
has the structure of a tree. Now, if you choose a particular node in this
element tree (call it the context node), you might want to refer to different
parts of the tree relative to the chosen node. For example, you might want to
refer to the children of the context node, to the parent of the context node,
or to all of the nodes that share the same parent as the context node (sibling
nodes).

An XPath axis is used to specify the scope of a node match, restricting the
search to a particular part of the node tree, relative to the current context
node. The axis is attached as a prefix to the node name that you want to
match, using the syntax, AxisType::MatchingNode. For example, you can
use the child:: axis to search the children of the current context node, as
follows:

Fuse Mediation Router Expression and Predicate Languages Version 2.758

Chapter 4. The XPath Language

/invoice/items/child::item

The context node of child::item is the items element that is selected by
the path, /invoice/items. The child:: axis restricts the search to the
children of the context node, items, so that child::item matches the
children of items that are named item. As a matter of fact, the child::
axis is the default axis, so the preceding example can be written equivalently
as:

/invoice/items/item

But there several other axes (13 in all), some of which you have already seen
in abbreviated form: @ is an abbreviation of attribute::, and // is an
abbreviation of descendant-or-self::. The full list of axes is as follows
(for details consult the reference below):

• ancestor

• ancestor-or-self

• attribute

• child

• descendant

• descendant-or-self

• following

• following-sibling

• namespace

• parent

• preceding

• preceding-sibling

59Fuse Mediation Router Expression and Predicate Languages Version 2.7

Expressions

• self

Functions XPath provides a small set of standard functions, which can be useful when
evaluating predicates. For example, to select the last matching node from a
node set, you can use the last() function, which returns the index of the last
node in a node set, as follows:

/people/person[last()]

Where the preceding example selects the last person element in a sequence
(in document order).

For full details of all the functions that XPath provides, consult the reference
below.

Reference For full details of the XPath grammar, see the XML Path Language, Version
1.01 specification.

1 http://www.w3.org/TR/xpath/

Fuse Mediation Router Expression and Predicate Languages Version 2.760

Chapter 4. The XPath Language

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

Predicates

Basic predicates You can use xpath in the Java DSL or the Spring DSL in a context where a
predicate is expected—for example, as the argument to a filter() processor
or as the argument to a when() clause.

For example, the following route filters incoming messages, allowing a message
to pass, only if the /person/city element contains the value, London:

from("direct:tie")
.filter().xpath("/person/city = 'London'").to("file:tar

get/messages/uk");

The following route evaluates the XPath predicate in a when() clause:

from("direct:tie")
.choice()

.when(xpath("/person/city = 'London'")).to("file:tar
get/messages/uk")

.otherwise().to("file:target/messages/others");

XPath predicate operators The XPath language supports the standard XPath predicate operators, as
shown in Table 4.2 on page 61.

Table 4.2. Operators for the XPath Language

DescriptionOperator

Equals.=

Not equal to.!=

Greater than.>

Greater than or equals.>=

Less than.<

Less than or equals.<=

Combine two predicates with logical and.or

Combine two predicates with logical inclusive or.and

Negate predicate argument.not()

61Fuse Mediation Router Expression and Predicate Languages Version 2.7

Predicates

Using Variables and Functions

Evaluating variables in a route When evaluating XPath expressions inside a route, you can use XPath variables
to access the contents of the current exchange, as well as O/S environment
variables and Java system properties. The syntax to access a variable value
is $VarName or $Prefix:VarName, if the variable is accessed through an XML
namespace.

For example, you can access the In message's body as $in:body and the In
message's header value as $in:HeaderName. O/S environment variables can
be accessed as $env:EnvVar and Java system properties can be accessed as
$system:SysVar.

In the following example, the first route extracts the value of the
/person/city element and inserts it into the city header. The second route
filters exchanges using the XPath expression, $in:city = 'London', where
the $in:city variable is replaced by the value of the city header.

from("file:src/data?noop=true")
.setHeader("city").xpath("/person/city/text()")
.to("direct:tie");

from("direct:tie")
.filter().xpath("$in:city = 'London'").to("file:target/mes

sages/uk");

Evaluating functions in a route In addition to the standard XPath functions, the XPath language defines
additional functions. These additional functions (which are listed in
Table 4.4 on page 65) can be used to access the underlying exchange, to
evaluate a simple expression or to look up a property in the Fuse Mediation
Router property placeholder component.

For example, the following example uses the in:header() function and the
in:body() function to access a head and the body from the underlying
exchange:

from("direct:start").choice()
.when().xpath("in:header('foo') = 'bar'").to("mock:x")
.when().xpath("in:body() = '<two/>'").to("mock:y")
.otherwise().to("mock:z");

Notice the similarity between theses functions and the corresponding
in:HeaderName or in:body variables. The functions have a slightly different

Fuse Mediation Router Expression and Predicate Languages Version 2.762

Chapter 4. The XPath Language

syntax however: in:header('HeaderName') instead of in:HeaderName; and
in:body() instead of in:body.

Evaluating variables in
XPathBuilder

You can also use variables in expressions that are evaluated using the
XPathBuilder class. In this case, you cannot use variables such as $in:body
or $in:HeaderName, because there is no exchange object to evaluate against.
But you can use variables that are defined inline using the variable(Name,
Value) fluent builder method.

For example, the following XPathBuilder construction evaluates the $test
variable, which is defined to have the value, London:

String var = XPathBuilder.xpath("$test")
.variable("test", "London")
.evaluate(getContext(), "<name>foo</name>");

Note that variables defined in this way are automatically entered into the
global namespace (for example, the variable, $test, uses no prefix).

63Fuse Mediation Router Expression and Predicate Languages Version 2.7

Using Variables and Functions

Variable Namespaces

Table of namespaces Table 4.3 on page 64 shows the namespace URIs that are associated with
the various namespace prefixes.

Table 4.3. XPath Variable Namespaces

DescriptionPrefixNamespace URI

Default namespace
(associated with

Nonehttp://camel.apache.org/schema/spring

variables that have no
namespace prefix).

Used to reference
header or body of the

inhttp://camel.apache.org/xml/in/

current exchange's In
message.

Used to reference
header or body of the

outhttp://camel.apache.org/xml/out/

current exchange's Out
message.

Used to reference some
custom functions.

functionshttp://camel.apache.org/xml/functions/

Used to reference O/S
environment variables.

envhttp://camel.apache.org/xml/variables/environment-variables

Used to reference Java
system properties.

systemhttp://camel.apache.org/xml/variables/system-properties

Used to reference
exchange properties.

Undefinedhttp://camel.apache.org/xml/variables/exchange-property

You must define your
own prefix for this
namespace.

Fuse Mediation Router Expression and Predicate Languages Version 2.764

Chapter 4. The XPath Language

Function Reference

Table of custom functions Table 4.4 on page 65 shows the custom functions that you can use in Fuse
Mediation Router XPath expressions. These functions can be used in addition
to the standard XPath functions.

Table 4.4. XPath Custom Functions

DescriptionFunction

Returns the In message body.in:body()

Returns the In message header with name, HeaderName.in:header(HeaderName)

Returns the Out message body.out:body()

Returns the Out message header with name, HeaderName.out:header(HeaderName)

Looks up a property with the key, PropKey (see "Property Placeholders" in

Implementing Enterprise Integration Patterns).

function:properties(PropKey)

Evaluates the specified simple expression, SimpleExp.function:simple(SimpleExp)

65Fuse Mediation Router Expression and Predicate Languages Version 2.7

Function Reference

http://fusesource.com/docs/router/2.6/eip/eip.pdf

Fuse Mediation Router Expression and Predicate Languages Version 2.766

	Expression and Predicate Languages
	Table of Contents
	Chapter 1. Introduction
	Overview of the Languages
	How to Invoke an Expression Language
	Languages for Expressions and Predicates

	Chapter 2. The Simple Language
	Java DSL
	Spring DSL
	Expressions
	Predicates
	Variable Reference
	Operator Reference

	Chapter 3. The File Language
	When to Use the File Language
	File Variables
	Examples

	Chapter 4. The XPath Language
	Java DSL
	Spring DSL
	XPath Injection
	XPath Builder
	Expressions
	Predicates
	Using Variables and Functions
	Variable Namespaces
	Function Reference

