QO
()
-
-
o
V) |
QD
N
> |
LA-;'

Fuse MQ Enterprise

Using Networks of Brokers

Version 7.0
Febuary 2012

Integration Everywhere

Using Networks of Brokers
Version 7.0

Updated: 21 Feb 2012
Copyright © 2011 FuseSource Corp. All rights reserved.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, Fuse, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents

R 1o T o N 9
2. NetWork CONNECLOTSviiiieiiiiiiiaii s s s e s s e s s s s s s s n s s e s san s ra s s snnsasensnsansnrans 11
3. Dynamic and Static Propagationcooiiiiiiiiiiiiii e e 19
4. Destination FIReringcuonieiei i s s e s s s e e e e enensn 27
5. Using JMS Message SeleCtorsccioiiiiiiiiiiiiiiiiiiiii s s s s ra e rasasa s s s e s s s s sasnssnsnrarnrns 31
6. NetWOrK TOPOIOZIES ...c.cuiiiiiiiiiiiiiiiie ittt e s s e e s s s s s s sa s sasnsasnsnsnannnnnnsnrnrnsnsnnns 35
7. OpHiIMIZING ROULES ...cueieiiiiiiiiiiiiiii e r v v s e e e s s s s s s s s s sasasasasasnsnnnsnnnnnnsnnnen 41
Choosing the Shortest ROULEiuei e e e eeans 42
Suppressing DUPlICate ROULESuiiii e e 45

8. DiSCOVEING BrOKEIScuiiiiiiiiiiiii ittt s tr e e s s s s s s s s s sasasasasasnsasnsnanannensnsnsnsnsnsnsnrns 49
B oo LT YA Y (=Y | - O RREN 50

Fuse Fabric DiSCOVEIY AGENt ... e e e 52

Static DiSCOVEIY AGENT ..o s 53

Multicast DISCOVEIY ABENT ... e 54

ZeroCONT DiSCOVEIY ANt ...t e 56

Dynamic DiSCOVEIY ProtOCOIviiee i e e et e et e e eaaaeas 58
=TT UL o 07 (T 60

L T 0T T S 1 T2 Vol 1oV PN 63
Balancing CoNSUMET LOAMuiinieeii ettt ettt e e e e e ee e e neaen 64
Managing ProdUCEr LOAMouininiiiii e e 69

T 1< PPN 71

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 5

List of Figures

W W WWMNMNNNMN
PwvR O AWM=

oo o
WN — =

o
~

LOONNO
WN—~N+— O

1= LT 6] T4 1-Tox (o | G PP P PSPPIt 13
. Connectors in EACh DiIrCHIONc.ei e e 14
B TUT o 1o 04T =Tt o P PP PUPUPRPSPRPE 15
L MURIPIE CONNECIONS ...ttt ettt aas 16
B o Lo 13T W o FT o o 17
. Dynamic Propagation of QUEUE MESSAZESuuiuieinie et et e e et e e e eaenes 20
. Static Propagation of QUEUE MESSAZESuvuieiinit ittt e e e 22
. Duplex Mode and Static Propagationccooiiiiiiiiiii s 23
L SElf-AVOIdING Pathis ..o s 25
. JMS Message Selectors and Conduit SUDSCHPLIONScviririri e 32
0o 11T gl = (o] gl Fo] o o] Fo} = A PP PPt 35
. HUD and SPOKE TOPOI0ZY . ..uinititit i e 36
B (=TT (o] 0T] o)=Y PP P PPN 37
B 1t T (o] 1o (o =y APPSR 38
. The Complete Graph, Kgo e 39
. Shortest Route in @ Mesh NetWOrK ... e 44
. Duplicate Subscriptions in @ NEetWOIK ..o e 46
. Message Flow when Conduit Subscriptions Enabled ... 65
. Message Flow when Conduit Subscriptions Disabled ... 66
. Load Balancing with the Concentrator TOPOIOZYcuiuenininii e 69

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

List of Tables

4.1. Destination Name WiIlACArdSc.ieuiuiiie e e e e e e e eneaen 27
4.2. Example Destination WildCardsocuiiieiiii i e e e e aen e 28
8.1. Dynamic Discovery Protocol OptioNnsSc.iuieieiiiiii i e 58
8.2. Fanout ProtoCol Optionsi.ieiii e 60

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 7

List of Examples

2.1. Single connector CoONfIGUIAtIoNiu i e e, 13
A 1YY« VY7 1Y oo Vg =Yt o P 14
2.3. Duplex connector Configurationo 15
4.1. Network Connector Using INCIUSIVE FIltEIHNG ... cuuiniii e 28
4.2. Network Connector Using EXCIUSIVE FIltErNGvinieiii e 29
4.3. Combining Exclusive and INCIUSIVE FIEEISeuieiie e ee e 29
5.1. Disabling Conduit SUDSCIIPHIONS . ..eeiii s 33
7.1. Network Connector for Choosing the Shortest ROUEo 42
7.2. Network Connector that Suppresses Duplicate ROUTEScuieieiiiiiii e 45
7.3, SEHHNG @ BroKEI'S ID ...t e 45
8.1. Enabling a Discovery Agent on @ BroKeroiuiiiiii 50
8.2. Fuse Fabric Discovery Agent URI Formato b2
8.3. Client Connection URL using Fuse Fabric DiSCOVEIYuiiiiiiiiiiiiii e ee e b2
8.4. Static Discovery Agent URI FOrmMat . ..o e b3
8.5. Discovery URL using the Static DiSCOVEry AZENtouininiii e b3
8.6. Multicast Discovery Agent URI FOrmat ..o e 54
8.7. Enabling a Multicast Discovery AZent 0n @ BroKeroouiuiiieiii e 54
8.8. Client Connection URL using Multicast DISCOVEIYcviuieiiiiiiii i b5
8.9. Zeroconf Discovery Agent URI FOrMatooiiiiiiiii e 56
8.10. Enabling a Multicast Discovery Agent on @ BroKerco.viieiiiiiiii e 57
8.11. Client Connection URL using ZeroCont DISCOVEIYuiuiuinieeiit e e et e eea e 57
8.12. Dynamic DIisCOVEIY URI ..o e et 58
8.13. Discovery Protocol URI e e 59
8.14. Injecting Transport Options into a Discovered TranSPOrtoveeeienieiieeni e aeenes 59
8.15. FANOUL URI SYNtaX ..vuviiiiiiiii e e e et 60
8.16. Fanout ProtoCol URIeiie e e e et e e a s 61
9.1. Disabling Conduit SUDSCHPLIONSiuieii e e e e ee e e aaenas 66
9.2. Separate Configuration of TOPICS @aNd QUEUESvueeiinieeie et e e ae e aens 67

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 1. Introduction

Distributing your brokers can provide a number of benefits including fault tolerance, load balancing, and network
segmentation. Fuse MQ Enterprise allows you to federate your brokers into a network of brokers so that distributed
brokers can share information and route messages as needed.

Overview

Network of brokers

Dynamic networks

For many applications, using a single message broker is sufficient. However,
there are many cases where using multiple interconnected brokers is more
appropriate. For example, if you need to ensure that your application is
continuously available, if your application needs to process large volumes of
messages, or if your integration solution calls for message processing across
distributed location a network of brokers will work better than a single message
broker.

Fuse MQ Enterprise facilitates these use cases by making it possible to build
up a network of brokers. A network of brokers is a set of two or more brokers
connected together by network connectors. All of the brokers in the network
share information about the clients and destinations each broker hosts. The
connected brokers use this information to route messages through the network.

A network of brokers is created when one broker establishes a network
connector to another broker. Once the network connector is established the
broker that established the connection discovers information about the
destinations being hosted on the other broker and which consumers are
actively listening for messages on the destinations. Using this information,
the first broker can route messages from its producers to consumers on the
connected broker. A simple network of brokers, such as this, spreads load
between the two brokers, allows each broker to be configured for specific
needs, and partitions the producers and consumers.

A network of brokers can be expanded by introducing more brokers to the
network. This allows you to build up sophisticated network topologies. You
can also create bidirectional connections between brokers to allow for more
sophisticated message routing.

To create a robust network, it is important to be able to deploy brokers
dynamically through out your infrastructure. It is also important to be able to
add and remove brokers as needed. Fuse MQ Enterprise facilitates this with
a number of discovery protocols. These protocols allow brokers and clients
to determine a list of active brokers. Brokers can automatically add new

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 9

Chapter 1. Introduction

brokers to a network of brokers and removes inactive brokers. Clients always
have a list of brokers that are available if they need to failover to a new broker.

10 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 2. Network Connectors

The network connector is the glue that binds a network of brokers. They are define the pathways between the
brokers and are responsible for controlling how messages propagate throughout the network.

Overview

Active consumers

Subscriptions

Propagation of subscriptions

Network connectors define the broker-to-broker links that are the basis of a
broker network. This section defines the basic options for configuring network
connectors and explains the concepts that underlie them.

An active consumer is a consumer that is connected to one of the brokers in
the network, has indicated to the broker which topics and queues it wants
to receive messages on, and is ready to receive messages. The broker network
has the ability to keep track of active consumers, receiving notifications
whenever a consumer connects to or disconnects from the network.

In the context of a broker network, a subscription is a block of data that
represents an active consumer's interest in receiving messages on a particular
queue or on a particular topic. Brokers use the subscription data to decide
what messages to send where. Subscriptions, therefore, encapsulate all of
the information that a broker might need to route messages to a consumer,
including JMS selectors and which route to take through the broker network.

Subscriptions are inherently dynamic. If a given consumer disconnects from
the broker network (thus becoming inactive), its associated subscriptions are
automatically cancelled throughout the network.

(@ Note

This usage of the term, subscription, deviates from standard JMS
terminology, where there can be topic subscriptions but there is no
such thing as a queue subscription. In the context of broker networks,
however, we speak of both topic subscriptions and queue
subscriptions.

Both topic subscriptions and queue subscriptions propagate automatically
through a broker network. That is, when a consumer connects to a broker, it
passes its subscriptions to the local broker and the local broker then forwards
the subscriptions to neighbouring brokers. This process continues until the
subscriptions are propagated throughout the broker network.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 11

Chapter 2. Network Connectors

Network connector

Single connector

12

Under the hood, Fuse MQ Enterprise implements subscription propagation
using advisory messages, where an advisory message is a message sent
through one of the special channels known as an advisory topic. An advisory
topic is essentially a reserved JMS topic used for transmitting administrative
messages. All advisory topics have names that start with the prefix,
ActiveMQ.Advisory.

€9 Warning

In order for dynamic broker networks to function correctly, it is
essential that advisory messages are enabled (which they are by
default). Make sure that you do not disable advisory messages on
any broker in the network. For example, if you are configuring your
brokers using XML, make sure that the advisorySupport attribute
on the broker element is not set to false.

In principle, it is possible to configure a static broker network when
advisory messages are disabled. See "Dynamic and Static
Propagation" on page 19 for details.

A broker network is built up by defining directed connections from one broker
to another, using network connectors. The broker that establishes the
connection passes messages to the broker it is connected to. In XML, a
network connector is defined using the networkConnector element, which
is a child of the networkConnectors element.

Figure 2.1 on page 13 shows a single network connector from broker A to
broker B. The arrow on the connector indicates the direction of message
propagation (from A to B). Subscriptions propagate in the opposite direction
(from B to A). Because of the restriction on the direction of message flow in
this network, it is advisable to connect producers only to broker A and
consumers only to broker B. Otherwise, some messages might not be able to
reach the intended consumers.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Figure 2.1. Single Connector

Direction of subscription
propagation

<]

=

Direction of message
propagation

When the connector arrow points from A to B, this implies that the network
connector is actually defined on broker A. For example, the following fragment
from broker A's configuration file shows the network connector that connects
to broker B:

Example 2.1. Single connector configuration

<beans ...>
<broker xmlns="http://activemqg.apache.org/schema/core"
brokerName="brokerA" brokerId="A" ... >

<networkConnectors>
<networkConnector name="1linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
/>

</networkConnectors>

<transportConnectors>
<transportConnector name="openwire" uri="tcp://0.0.0.0:61001"/>
</transportConnectors>
</broker>
</beans>

The networkConnector element in the preceding example sets the following
basic attributes:

name

Identifies this network connector instance uniquely (for example, when
monitoring the broker through JMX). If you define more than one

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 13

Chapter 2. Network Connectors

networkConnector element on a broker, you must set the name in
order to ensure that the connector name is unique within the scope of
the broker.

uri

The discovery agent URI on page 50 that returns which brokers to
connect to. In other words, broker A connects to every transport URI
returned by the discovery agent.

In the preceding example, the static discovery agent URI returns a single
transport URI, tcp://localhost: 61002, which refers to a port opened
by one of the transport connectors on broker B.

networkTTL

The network time-to-live (TTL) attribute specifies the maximum number
of hops that a message can make through the broker network. It is almost
always necessary to set this attribute, because the default value of 1
would only enable a message to make a single hop to a neighboring
broker.

Connectors in each direction Figure 2.1 on page 13 shows a pair of network connectors in each direction:
one from broker A to broker B, and one from broker B to broker A. In this
network, there is no restriction on the direction of message flow and messages
can propagate freely in either direction. It follows that producers and
consumers can arbitrarily connect to either broker in this network.

Figure 2.2. Connectors in Each Direction

® ®

In order to create a connector in the reverse direction, from B to A, define a
network connector on broker B, as follows:

Example 2.2. Two way connector

<beans ...>
<broker xmlns="http://activemqg.apache.org/schema/core"
brokerName="brokerB" brokerId="B"... >

<networkConnectors>

14 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

<networkConnector name="linkToBrokerA"
uri="static: (tcp://localhost:61001)"
networkTTL="3" />
</networkConnectors>

<transportConnectors>
<transportConnector name="openwire" uri="tcp://0.0.0.0:61002" />
</transportConnectors>
</broker>
</beans>

Duplex connector An easier way to enable message propagation in both directions is by enabling
duplex mode on an existing connector. Figure 2.3 on page 15 shows a duplex
network connector defined on broker A (where the dot indicates which broker
defines the network connector in the figure). The duplex connector allows
messages to propagate in both directions, but only one network connector
needs to be defined and only one network connection is created.

Figure 2.3. Duplex Connector

A B

To enable duplex mode on a network connector, simple set the dup1ex attibute
to true. For example, to make the network connector on broker A a duplex
connector, you can configure it as follows:

Example 2.3. Duplex connector configuration

<networkConnectors>
<networkConnector name="1linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
duplex="true" />
</networkConnectors>

@ Tip

Duplex mode is particularly useful for cases where a network
connection must be established across a firewall, because only one
port need be opened on the firewall to enable bi-directional traffic.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 15

Chapter 2. Network Connectors

Multiple connectors

16

@ Tip

Duplex mode works particularly well in a hub and spoke network.
The spokes only need to know about one hub port and the hub does
not need to know any of the spoke addresses (each spoke opens a
duplex network connector to the hub).

It is also possible to establish multiple connectors between brokers, as long
as you observe the rule that each connector has a unique name.

Figure 2.4 on page 16 shows an example where three network connectors
are established from broker A to broker B.

Figure 2.4. Multiple Connectors

A {
() \B

To configure multiple connectors from broker A, use a separate
networkConnector element for each connector and specify a unique name
for each connector, as follows:

<networkConnectors>

<networkConnector name="1ink01lToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"

/>

<networkConnector name="1ink02ToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"

/>

<networkConnector name="1ink03ToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"

/>

</networkConnectors>

Here are some potential uses for creating multiple connectors between brokers:

* Spreading the load amongst multiple connections.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Conduit subscriptions

* Defining separate configuration for topics and queues. That is, you can
configure one network connector to transmit queue subscriptions only and
another network connector to transmit topic subscriptions only.

By default, after passing through a network connector, subscriptions to the
same queue or subscriptions to the same topic are automatically consolidated
into a single subscription known as a conduit subscription.

Figure 2.5 on page 17 shows an overview of how the topic subscriptions
from two consumers, C1 and C2, are consolidated into a single conduit
subscription after propagating from broker B to broker A.

Figure 2.5. Conduit Subscriptions

In this example, each consumer subscribes to the identical topic, t, which
gives rise to the subscriptions, c1:t and c2:t in broker B. Both of these
subscriptions propagate automatically from broker B to broker A. Because
broker A has conduit subscriptions enabled, its network connector consolidates
the duplicate subscriptions, c1:t and c2:t, into a single subscription, B: t.
Now, if a message on topic t is sent to broker A, broker A sends a single
copy of the message to broker B, to honor the conduit subscription, B: t.
Broker B then sends a copy of the message to each consumer, to honor the
topic subscriptions, c1:t and c2:t.

It is essential to enable conduit subscription in order to avoid duplication of
topic messages. Consider what would happen in Figure 2.5 on page 17 if
conduit subscription was disabled. In this scenario, two subscriptions, B:c1:t

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 17

Chapter 2. Network Connectors

18

and B:c2:t, would be registered in broker A. Now, if a message on topic t
is sent to broker A, broker A would send two copies of the message to broker
B, to honor the topic subscriptions, B:c1:t and B:c2:t. Broker B would
then send two copies of the message to each consumer, to honor the topic
subscriptions, c1:t and c2:t. In other words, each consumer would receive
the topic message twice.

Conduit subscriptions can optionally be disabled by setting the
conduitSubscriptions attribute to false on the networkConnector
element. See "Balancing Consumer Load" on page 64 for more details.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 3. Dynamic and Static

Propagation

Because of the special nature of routing in a messaging system, the propagation of messages must be inherently
dynamic. That is, the broker network must keep track of the active consumers attached to the network and the
routing of messages is governed by the real-time transmission of advisory messages (subscriptions). However,
there are cases in which messages need to be propagated in the absence of subscriptions.

Overview

Dynamic propagation

The fundamental purpose of a broker network is to route messages to their
intended recipients, which are consumers that could be attached at any point
in the network. The peculiar difficulty in devising routing rules for a messaging
network is that messages are sent to an abstract destination rather than a
physical destination. In other words, a message might be sent to a specific
queue, but that gives you no clue as to which broker or which consumer that
message should ultimately be sent to. Contrast this with the Internet Protocol
(IP), where each message packet includes a header with an IP address that
references the physical location of the destination host.

Because of the special nature of routing in a messaging system, the
propagation of messages must be inherently dynamic. That is, the broker
network must keep track of the active consumers attached to the network
and the routing of messages is governed by the real-time transmission of
advisory messages (subscriptions).

Figure 3.1 on page 20 illustrates how dynamic propagation works for
messages sent to a queue. The broker connectors in this network are simple
(non-duplex).

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 19

Chapter 3. Dynamic and Static Propagation

Figure 3.1. Dynamic Propagation of Queue Messages
(a)

()} s ()
O OpnOaanC ®

E}@(@

The dynamic message propagation in this example proceeds as follows:

1. As shown in part (a), initially, there are no consumers attached to the
network. A producer, p, connects to broker A and starts sending messages

to a particular queue, TEST . Foo. Because there are no consumers attached

to the network, all of the messages accumulate in broker A. The messages
do not propagate any further at this time.

2. As shown in part (b), a consumer, C, now connects to the network at broker
E and subscribes to the same queue, TEST.Fo0, to which the producer is

sending messages.

20 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Static propagation

3. The consumer's subscription, s, propagates through the broker network,
following the reverse arrow direction, until it reaches broker A.

4. After broker A receives the subscription, s, it knows that it can send the
messages accumulated in the queue, TEST. FoO, to the consumer, C. Based
on the information in the subscription, s, broker A sends messages along
the path ABCE to reach consumer C.

Static propagation refers to message propagation that occurs in the absence
of subscription information. Sometimes, because of the way a broker network
is set up, it can make sense to move messages between brokers, even when
there is no relevant subscription information.

Static propagation is configured by specifying the queue (or queues) that you
want to statically propagate. Into the relevant networkConnector element,
insert staticallyIncludedDestinations as a child element and then list
the queues and topics you want to propagate using the queue and topic
child elements. For example, to specify that messages in the queue, TEST. FOO,
are statically propagated from A to B, you would define the network connector
in broker A's configuration as follows:

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3">
<staticallyIncludedDestinations>
<queue physicalName="TEST.FOO"/>
</staticallyIncludedDestinations>
</networkConnector>
</networkConnectors>

,'] Note

You cannot use wildcards when specifying statically included queue
names or topic names.

Consider the network shown in Figure 3.2 on page 22. This network is set
up so that consumers only attach to broker D or to broker E Messages sent
to the queue, TEST. FoO, are configured to propagate statically on all on all
of the network connectors, (»,B), (B,C), (C,D), and (C,E).

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 21

Chapter 3. Dynamic and Static Propagation

22

Figure 3.2. Static Propagation of Queue Messages

O o1 @ ® o (D)

— e [10] e [10] e [10]

The static message propagation in this example proceeds as follows:

1. Initially, there are no consumers attached to the network. A producer, »,
connects to broker A and sends 10 messages to the queue, TEST. Foo.

2. Because the network connector, (a,B), has enabled static propagation
for the queue, TEST. Foo, the 10 messages on broker A are forwarded to
broker B.

3. Likewise, because the network connector, (8, c), has enabled static
propagation for the queue, TEST.Foo, the 10 messages on broker B are
forwarded to broker C.

4. Finally, because the network connectors, (c,p) and (c, E), have enabled
static propagation for the queue, TEST.F00, the 10 messages on broker

C are alternately sent to broker D and broker E. In other words, the brokers,
D and E, receive every second message. Hence, at the end of the static
propagation, there are 5 messages on broker D and 5 messages on broker
E.

@ Note

Using the preceding static configuration, it is possible for messages
to get stuck in a particular broker. For example, if a consumer now
connects to broker E, it will receive the 5 messages stored on broker

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

E, but it will not receive the 5 messages stored on broker D. The
messages remain stuck on broker D until a consumer connects

directly to it.

It is also possible to use static propagation in combination with duplex
connectors. In this case, messages can propagate statically in either direction
through the duplex connector. For example, Figure 3.3 on page 23 shows
a network of four brokers, B, C, D, and E, linked by duplex connectors. All of
the connectors have enabled static propagation for the queue, TEST. Foo.

Duplex mode and static
propagation

Figure 3.3. Duplex Mode and Static Propagation

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 23

Chapter 3. Dynamic and Static Propagation

Self-avoiding paths

24

In part (a), the producer, P, connects to broker B and sends 10 messages to
the queue, TEsT.Fo0. The static message propagation then proceeds as
follows:

1. Because the duplex connector, {B, c}, has enabled static propagation for
the queue, TEsT.F00, the 10 messages on broker B are forwarded to
broker C.

2. Because the duplex connectors, {c,p} and {c,E}, have enabled static
propagation for the queue, TEST.Foo0, the 10 messages on broker C are

alternately sent to broker D and broker E. At the end of the static
propagation, there are 5 messages on broker D and 5 messages on broker
E.

In part (b), the producer, P, connects to broker C and sends 9 messages to
the queue, TEsT.Fo0. Because static propagation is enabled on all of the
connectors, broker C sends messages alternately to B, D, and E. At the end
of the static propagation, there are 3 messages on broker B, 3 messages on
broker D, and 3 messages on broker E.

Brokers implement a strategy of se/f-avoiding paths in order to prevent
pathalogical routes from occurring in a statically configured broker network.
For example, consider what could happen, if a closed loop occurs in a network
with statically configured duplex connectors. If the brokers followed a strategy
of simply forwarding messages to a neighbouring broker (or brokers), messages
could end up circulating around the closed loop for ever. This does not happen,
however, because the broker network applies a strategy of self-avoiding paths
to static propagation. For example, Figure 3.4 on page 25 shows a network
consisting of three brokers, A, B, and C, linked by statically configured duplex
connectors. The path ABCA forms a closed loop in this network.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Figure 3.4. Self-Avoiding Paths

> [5]

The static message propagation in this example proceeds as follows:

1. The producer, P, connects to broker A and sends 100 messages to the
queue, TEST . FOO.

2. The 100 messages on broker A are alternately sent to broker B and broker
C. The 50 messages sent to broker B are immediately forwarded to broker
C, but at this point the messages stop moving and remain on broker C.
The self-avoiding path strategy dictates that messages can not return to a
broker they have already visited.

3. Similarly, the 50 messages sent from broker A to broker C are immediately
forwarded to broker B, but do not travel any further than that.

brokerld and self-avoiding paths Fuse MQ Enterprise uses broker ID values (set by the broker element's
brokerId attribute) to figure out self-avoiding paths. By default, the broker
ID value is generated dynamically and assigned a new value each time a
broker starts up. If your network topology relies on self-avoiding paths,
however, this default behavior is not appropriate. If a broker is stopped and
restarted, it would rejoin the network with a different broker ID, which confuses
the self-avoiding path algorithm and can lead to stuck messages.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 25

Chapter 3. Dynamic and Static Propagation

In the context of a broker network, therefore, it is recommended that you set
the broker ID explicitly on the broker element, as shown in the following

example:

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="brokerA" brokerId="A"... >

</broker>

@ Note

Make sure you always specify a broker ID that is unique within the
current broker network.

26 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 4. Destination Filtering

One reason to create a network of brokers is to partition message destinations to sub-domains of the network.
Fuse MQ Enterprise can apply filters to destination names to prevent messages for a destination from passing
through a network connector.

Overview Typically, one of the basic tasks of managing a broker network is to partition
the network so that certain queues and topics are restricted to a sub-domain,
while messages on other queues and topics are allowed to cross domains.
This kind of domain management can be achieved by applying filters at certain
points in the network. Fuse MQ Enterprise lets you define filters on network
connectors in order to control the flow of messages throughout the network.

Fuse MQ Enterprise allows you to control the flow of messages in two ways:
* specifying which destinations' messages can pass through a connector

» excluding messages for specific destinations from passing through a
connector

Destination wildcards Destination names are often segmented to denote how they are related. For
example, an application may use the prefix PRICE. sToCK to denote all of the
destinations that handle stock quotes. The application may then further
segment the destination names such that all stock quotes from the New York
Stock Exchange were prefixed with PRICE. sTOCK.NYSE and stock quotes
from NASDAQ used the prefix PRICE. sTOCK.NASDAQ. Using wildcards would
be a natural way to create filters for specific types of destinations.

Table 4.1 on page 27 describes the characters can be used to define wildcard
matches for destination names.

Table 4.1. Destination Name Wildcards

Wildcard | Description

Separates segments in a path name.

* Matches any single segment in a path name.

> Matches any number of segments in a path name.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 27

Chapter 4. Destination Filtering

Filtering destinations by inclusion

28

Table 4.2 on page 28 shows some examples of destination wildcards and
the names they would match.

Table 4.2. Example Destination Wildcards

Destination wildcard What it matches
PRICE.> Any price for any product on any exchange.
PRICE.STOCK.> Any price for a stock on any exchange.

PRICE.STOCK.NASDAQ. * |Any stock price on NASDAQ.

PRICE.STOCK.*.IBM Any IBM stock price on any exchange.

The default behavior of a network connector is to allow messages for all
destinations to pass. You can, however, configure a network connector to
only allow messages for specific destinations to pass. If you use segmented
destination names, you can use wildcards to filter groups of destinations.

You do this by adding a dynamicallyIncludedDestinations child to the
network connector's networkConnector element. The included destinations
are specified using queue and topic children. Example 4.1 on page 28
shows configuration for a network connector that only passes messages
destined for queues with names that match TRaDE. sTock. > and topics with
names that match PRICE.STOCK. >.

Example 4.1. Network Connector Using Inclusive Filtering

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3">
<dynamicallyIncludedDestinations>
<queue physicalName="TRADE.STOCK.>"/>
<topic physicalName="PRICE.STOCK.>"/>
</dynamicallyIncludedDestinations>
</networkConnector>
</networkConnectors>

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Filtering destinations by exclusion

Combining inclusive and exclusive
filters

(1) Important

Once you add the dynamicallyIncludedDestinations to a
network connector's configuration, the network connector will only
pass messages for the specified destinations.

Another way of partitioning a network and create filters is to explicitly specify
a list destinations whose messages are not allowed to pass through a network
connector. If you use segmented destination names, you can use wildcards
to filter groups of destinations.

You do this by adding a excludedbDestinations child to the network
connector's networkConnector element. The excluded destinations are
specified using queue and topic children. Example 4.2 on page 29 shows
configuration for a network connector that blocks messages destined for
queues with names that match TRaDE. sSTOCK.NYSE. * and topics with names
that match PRICE.STOCK.NYSE. *.

Example 4.2. Network Connector Using Exclusive Filtering

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3">
<excludedDestinations>
<queue physicalName="TRADE.STOCK.NYSE.*"/>
<topic physicalName="PRICE.STOCK.NYSE.*"/>
</excludedDestinations>
</networkConnector>
</networkConnectors>

You can combine inclusive and exclusive filtering to create complex network
partitions. Example 4.3 on page 29 shows a network connector that is
configured to transmit stock prices from any exchange except the NYSE and
transmits orders to trade stocks for any exchange except the NYSE.

Example 4.3. Combining Exclusive and Inclusive Filters

<networkConnectors>

<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"

networkTTL="3">

<dynamicallyIncludedDestinations>

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 29

Chapter 4. Destination Filtering

<queue physicalName="TRADE.STOCK.>"/>
<topic physicalName="PRICE.STOCK.>"/>
</dynamicallyIncludedDestinations>
<excludedDestinations>
<queue physicalName="TRADE.STOCK.NYSE.*"/>
<topic physicalName="PRICE.STOCK.NYSE.*"/>
</excludedDestinations>
</networkConnector>
</networkConnectors>

30 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 5. Using JMS Message

Selectors

Fuse MQ Enterprise supports using JMS message selectors to filter messages. When using JMS message selectors
with a network of brokers, you need to be aware of how the message selectors interact with conduit subscriptions.
The interaction can lead to some undesirable outcomes if not properly managed.

Overview

Scenarios that do not work

JMS message selectors allow consumers to filter messages by testing the
contents of a message's JMS header. The selectors are specified when the
consumer connects to a broker and starts listing to messages on a particular
destination. The broker then filters the messages that delivered to the
consumer.

Brokers in a network also use JMS message selectors to determine how
messages are routed. A consumer's message selectors are included in the
subscription information propagated throughout the network. All of the brokers
can then use this information to filter messages before forwarding messages
through a network connector.

The one instance where message selectors are not used is when one or more
consumer subscriptions are combined into a conduit subscription. This means
that the broker receiving the conduit subscription cannot use the message
selectors when determining what messages to forward.

Trouble arises when message selectors are combined with conduit
subscriptions for consumers that are listening on the same queue.

Consider the broker network shown in Figure 5.1 on page 32. Consumers
C1 and C2 subscribe to the same queue and they also define JMS message
selectors. C1 selects messages for which the region header is equal to us.
C2 selects messages for which the region header is equal to emea.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 31

Chapter 5. Using JMS Message Selectors

32

Figure 5.1. JMS Message Selectors and Conduit Subscriptions

region="us' region="emea"

The consumer subscriptions, s1 and s2, automatically propagate to broker
A. Because these subscriptions are both on the same queue broker A combines
the subscriptions into a single conduit subscription, cs, which does not include
any selector details. When the producer P starts sending messages to the
queue, broker A forwards the messages alternately to broker B and broker C
without checking whether the messages satisfy the relevant selectors.

The best case scenario is that, by luck, the messages are forwarded to the
broker with a selector that matches the message. The worst case scenario is
that all of the messages for region emea end up on broker B and all of the
messages for region us end up on broker C. Chances are that the result would
be somewhere in the middle. However, that means that at least some
messages will sit at a broker where they will never be consumed.

If the consumers were both listening to a topic instead of a queue broker A
would send a copy of every message to both networked brokers. All of the
messages would get processed because C1 would consume the messages for
the US region and C2 would consumer the messages for the EMEA region.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Resolving the problem

However, any messages for the EMEA region would sit unconsumed in broker
C and any messages for the US region would sit unconsumed in broker B.

When you are faced with a network of brokers suffering from the effects of
combining conduit subscriptions and message selectors and the consumers
are listening to a queue, the easiest solution is to disable conduit subscriptions
at the network connector where the problem arises.

You disable conduit subscriptions by setting the networkConnector element's
conduitSubscriptions to false. Example 5.1 on page 33 shows
configuration for a network connector with conduit subscriptions disabled.

Example 5.1. Disabling Conduit Subscriptions

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
conduitSubscriptions="false" />
</networkConnectors>

If the problem arises using topics, the solution is more difficult. Disabling
conduit subscriptions will cause more problems. In this case, you will need
to rethink the requirements of your application. If you must use message
selectors with topics in a network of brokers, you have two options:

* ensure that your network topology is such that messages won't be sent to
brokers without appropriate consumers

* ensure that the orphaned messages will not create issues in your application

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 33

34

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 6. Network Topologies

The topology of your network describes the pattern created by the pathways through your network. Different
topologies are appropriate for particular use cases.

Overview The following examples illustrate some of the common topologies encountered
real-world networks:
* "Concentrator topology" on page 35.
* "Hub and spokes topology" on page 36.
* "Tree topology" on page 36.
* "Mesh topology" on page 37.

* "Complete graph" on page 38.

Concentrator topology If you anticipate that your system will have a large number of incoming
connections that would overwhelm a single broker, you can deploy a
concentrator topology to deal with this scenario, as shown in
Figure 6.1 on page 35.

Figure 6.1. Concentrator Topology

-
Ty
-~
-
—
oy
-
-
-
Ty

1
1

A At
1

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 35

Chapter 6. Network Topologies

Hub and spokes topology

Tree topology

36

The idea of the concentrator topology is that you deploy brokers in two (or
more) layers in order to funnel incoming connections into a smaller collection
of services. The first layer consists of a relatively large number of brokers,
with each broker servicing a large number of incoming connections (from
producers P1 to pn). The next layer consists of a smaller number of brokers,
where each broker in the first layer connects to all of the brokers in the second
layer. With this topology, each broker in the second layer can receive messages
from any of the producers.

The hub and spokes, as shown in Figure 6.2 on page 36, is a topology that
is relatively easy to set up and maintain. The edges in this graph are all
assumed to represent duplex network connectors.

Figure 6.2. Hub and Spoke Topology

This topology is relatively robust. The only critical element is the hub node,
so you would need to focus your maintenance efforts on keeping the hub up
and running. Routes are determinate and the diameter of the network is
always 2, no matter how many nodes are added.

The tree, as shown in Figure 6.3 on page 37, is a topology that arises
naturally when a physical network grows in an informal manner.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Figure 6.3. Tree Topology

Mesh topology

For example, if the network under consideration is an ethernet LAN, r could
represent the hub in the basement of the IT department's building and a could
represent a router in the ground floor of another building. If you want to extend
the LAN to the first and second floor of building a, you are unlikely to run
dedicated cables back to the IT hub for each of these floors. It is more likely
that you will simply plug a second tier of routers, a1 and a2, into the existing
router, A, on the ground floor. In this way, you effectively add another layer
to the tree topology.

The mesh, as shown in Figure 6.4 on page 38, is a topology that arises
naturally in a geographic network, when you decide to link together
neighbouring hubs.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 37

Chapter 6. Network Topologies

Complete graph

38

Figure 6.4. Mesh Topology

O—6—0

The diameter of a mesh increases whenever you add a node to its periphery.
You must, therefore, be careful to set the network TTL sufficiently high that
your network can cope with expansion. Alternatively, you could set up some
mechanism for the central management of broker configurations. This would
enable you to increase the network TTL for all of the brokers simultaneously.

In graph theory, the complete graph on n vertices is the graph with n vertices
that has edges joining every pair of vertices. This graph is denoted by the
symbol, k. For example, Figure 6.5 on page 39 shows the graph, k..

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Figure 6.5. The Complete Graph, K

E D

Every complete graph has a diameter of 1. Potentially, a network that is a
complete graph could be difficult to manage, because there are many
connections between broker nodes. In practice, though, it is relatively easy
to set up a broker network as a complete graph, if you define all of the network
connectors to use a multicast discovery agent (see "Multicast Discovery Agent"
on page 54).

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 39

40

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 7. Optimizing Routes

It is possible, depending on your network's topology, that a message will multiple routes through the network.
Fuse MQ Enterprise allows you to configure the network to reduce the number of alternate routes and choose
the optimum route.

Choosing the Shortest ROULEieeii e e e e e e eeen 42
SUpPressing DUPIICAte ROULESeiiee e e e e e e 45

In network topologies such as a hub-and-spoke or a tree there exists a unique
route between any two brokers. For topologies, such as a mesh or a complete
graph, itis possible to have multiple routes between any two brokers. In such
cases, you may need simplify the routing behavior, so that an optimum route
is preferred by the network.

Fuse MQ Enterprise provides two configuration settings that work in
conjunction to refine routing behavior:

* decreaseNetworkConsumerPriority—deprecates the priority of a

network connector based on the number of hops from the message's origin
so that messages are routed along the shortest route

* suppressDuplicateQueueSubscriptions—suppresses duplicate
subscriptions from intermediary brokers so that alternative paths are reduced

@ Tip

To be most effective these properties should be set on all of the
network connectors in the network of brokers.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 41

Chapter 7. Optimizing Routes

Choosing the Shortest Route

Overview

Connector configuration

42

In indeterminate networks, it is typically preferable for messages to take the
shortest route. This reduces the time for the message to reach its destination,
reduces the chances of the message being caught in a broker failure, and

reduces the load on the network. In general, sending messages along to the
nearest possible consumer maximizes the effectiveness of the broker network.

This is accomplished by configuring all of the connectors in your network to
generate route priorities that automatically lowers the route's priority for each
network connector it must traverse In this way the broker's can determine the
shortest route between a message's producer and its consumer. In most cases,
the broker will use the shortest route. However, if the shortest route is under
heavy load, the broker will divert it to the next shortest route.

To ensure that the shortest route is preferred, you need to configure all of the
network connectors in the network to create priority profiles for each of the
possible routes through the network. This is done by setting the
networkConnetor element's decreaseNetworkConsumerPriority attribute
to true.

Example 7.1 on page 42 shows a network connector configured to determine
the shortest route.
Example 7.1. Network Connector for Choosing the Shortest Route

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
decreaseNetworkConsumerPriority="true" />
</networkConnectors>

When decreaseNetworkConsumerPriority is setto true, the route priority
is determined as follows:

* Local consumers (attached directly to the broker) have a priority of 0.
* Network subscriptions have an initial priority of -5.

* The priority of a network subscription is reduced by 1 for every network
hop that it traverses.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Choosing the Shortest Route

(1) Important

If you choose not to enable decreaseNetworkConsumerPriority
on all of the connectors in your network, the brokers will not be able
to accurately determine the shortest route. Some network connectors
will not have the proper starting priority and will not reduce their
priority as required.

Route priority and broker load A broker prefers to send messages to the subscription with the highest priority.
However, if the prefetch buffer for that subscription is full, the broker will
divert messages to the subscription with the next highest priority.

If multiple subscriptions have the same priority, the broker distributes
messages equally between those subscriptions.

Example Figure 7.1 on page 44 illustrates the effect of activating
decreaseNetworkConsumerPriority in a broker network.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 43

Chapter 7. Optimizing Routes

Figure 7.1. Shortest Route in a Mesh Network

€

In this network, there are three alternative routes connecting producer P to
consumer C1: pBAFEC1 (three broker hops), pPBEC1 (one broker hop), and
pPBCDEC1 (three broker hops). When decreaseNetworkConsumerPriority
is enabled, the route pBEC1 has highest priority, so messages from P to C1
are sent along this route unless connector Be's prefetch buffer is full. In the
case where connector BE's prefetch buffer is full messages will be sent to
route PRBAFEC1 and route PRBCDEC1 on an alternating basis.

44 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Suppressing Duplicate Routes

Suppressing Duplicate Routes

Overview

Connector configuration

Broker ID and duplicate routes

Configuring your broker network to prefer the shortest route does not ensure
that routing is deterministic. Under heavy load, the brokers will use the
alternate routes to optimize performance. The danger of this is that if the
message is routed along the longer alternate route and the consumer dies,
the route becomes a dead-end and the message becomes stuck.

Fuse MQ Enterprise allows you to configure your network connectors to
suppress duplicate subscriptions that arise from intermediary brokers. This
has the effect of eliminating alternate paths between the networked brokers
because only direct connections are recognized.

To suppress duplicate subscriptions you set the networkConnector element's
suppressDuplicateQueueSubscriptions attribute to true on all of the
network connectors in you network. Example 7.2 on page 45 shows a network
connector that is configured to suppress duplicate routes.

Example 7.2. Network Connector that Suppresses Duplicate Routes

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
suppressDuplicateQueueSubscriptions="true"/>
</networkConnectors>

Fuse MQ Enterprise uses the brokers' IDs to figure out duplicate routes. In
order for the suppression of duplicate routes to work reliably, you must give
each broker a unique ID by explicitly setting the broker element's brokerId
for each broker in the network. Example 7.3 on page 45 shows configuration
setting a broker's ID.

Example 7.3. Setting a Broker's ID

<broker xmlns="http://activemqg.apache.org/schema/core"
brokerName="brokerA" brokerId="A"... >

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 45

Chapter 7. Optimizing Routes

Example

46

</broker>

Consider the network of brokers, A, B, and C, shown in

Figure 7.2 on page 46. In this scenario, a producer, P, connects to broker
A and a consumer, C1 that subscribes to messages from P connects to broker
B. The network TTL is equal to 2, so two alternative routes are possible:

¢ the short route: PABC1
* long route: PACBC1

Figure 7.2. Duplicate Subscriptions in a Network

If you set decreaseNetworkConsumerPriority t0 true, the short route is
preferred. and messages are propagated along the route paBc1. However,
under heavy load conditions, the short route, paBC1, can become overloaded
and in this case the broker, A, will fall back to the long route, pacBc1. The
problem with this scenario is that when the consumer, C1, shuts down, it
can lead to messages getting stuck on broker C.

Setting suppressbuplicateQueueSubscriptions attribute to true will
suppress the intermediary subscriptions that are generated between A and

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Suppressing Duplicate Routes

B. Because this subscription is suppressed the only route left is pacc1. Routing
becomes fully deterministic.

@ Note

In the example shown in Figure 7.2 on page 46, you could have
suppressed the long route by reducing the network TTL to 1.
Normally, however, in a large network you do not have the option
of reducing the network TTL arbitrarily. The network TTL has to be
large enough for messages to reach the most distant brokers in the
network.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 47

48

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 8. Discovering Brokers

One of the main strengths of a network of brokers is that brokers can be located dynamically through out your
infrastructure. In order for clients and other brokers to be able to interact with a broker, they need some way of
discovering that the broker exists. Fuse MQ Enterprise does this using a combination of discovery agents and
special URI schemes.

B oo LT YA Y=Y | - PP PUSPPPN 50
FUSE FabriC DiSCOVEIY AGENt .ot e e e e e ettt e eaas 52
Static DiSCOVEIY AZENT ..ot e e e 53
Multicast DISCOVEIY AZENT 54
ZEr0CONT DISCOVEIY AT ...ttt 56

Dynamic DiISCOVEIY PrOtOCOI ... vttt e e e e e e e e e e e nenees 58

=T 0 TU LA 07 (T 60

In order for location transparency to work, the members of a messaging
application need a way for discovering each other. In Fuse MQ Enterprise this
is accomplished using two pieces:

* discovery agents—components that advertise the brokers available to other
members of a messaging applicaiton

* discovery URI—a URI that looks up all of the discoverable brokers and
presents them as a list of actual URIs for use by the client or network
connector

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 49

Chapter 8. Discovering Brokers

Discovery Agents

FUSE Fabric DiSCOVEIY ANt .. .eiii ittt et ettt e ees 52
Static DiSCOVEIY AZENT ..ottt 53
MUIICASE DISCOVEIY AN ..ttt et et ettt et e e et e et eenees b4
Zer0oCONT DISCOVEIY AGENT ..ottt ettt 56

A discovery agent is a mechanism that advertises available brokers to clients
and other brokers. When a client, or broker, using a discovery URI starts up
it will look for any brokers that are available using the specified discovery
agent. The clients will update their lists periodically using the same
mechanism.

How a discover agent learns about the available brokers varies between agents.
Some agents use a static list, some use a third party registry, and some rely
on the brokers to provide the information. For discovery agents that rely on
the brokers for information, it is necessary to enable the discovery agent in
the message broker configuration. For example, to enable the multicast
discovery agent on an Openwire endpoint, you edit the relevant
transportConnector element as shown in Example 8.1 on page 50.

Example 8.1. Enabling a Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />
</transportConnectors>

Where the discoveryUri attribute on the transportConnector element
is initialized to multicast://default

@ Tip

If a broker uses multiple transport connectors, you need to configure
each transport connector to use a discovery agent individually. This
means that different connectors can use different discovery
mechanisms or that one or more of the connectors can be
indiscoverable.

Fuse MQ Enterprise currently supports the following discovery agents:

* Fuse Fabric Discovery Agent

50 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Discovery Agents

 Static Discovery Agent
* Multicast Discovery Agent

» Zeroconf Discovery Agent

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 51

Chapter 8. Discovering Brokers

Fuse Fabric Discovery Agent

Overview

URI

Configuring a broker

Configuring a client

! http://fusesource.com/docs/fmc

52

The Fuse Fabric discovery agent uses Fuse Fabric to discover the brokers in
a specified fabric. The discovery agent requires that all of the discoverable
brokers be deployed into a single fabric. When the client attempts to connect
to a broker the agent looks up all of the available brokers in the fabric's
registry.

The Fuse Fabric discovery agent URI conforms to the syntax in
Example 8.2 on page 52.

Example 8.2. Fuse Fabric Discovery Agent URI Format

fabric://FabricID

Where rFabricIpis the ID of the fabric from which the client discovers the
available brokers.

The Fuse Fabric discovery agent requires that the discoverable brokers are
deployed into a single fabric.

The best way to deploy brokers into a fabric is using Fuse Management
Console. For information on using Fuse Management Console see Fuse
Management Console Documentation®.

To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a Fuse Fabric agent URI as shown in
Example 8.3 on page 52.

Example 8.3. Client Connection URL using Fuse Fabric Discovery

discovery:// (fabric://nwBrokers)

A client using the URL in Example 8.3 on page 52 will discover all the brokers
in the nwBrokers fabric and generate a list of brokers to which it can connect.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

http://fusesource.com/docs/fmc
http://fusesource.com/docs/fmc
http://fusesource.com/docs/fmc

Static Discovery Agent

Static Discovery Agent

Overview

Using the agent

Example

The static discovery agent does not truly discover the available brokers. It
uses an explicit list of broker URLs to specify the available brokers. Brokers
are not involved with the static discovery agent. The client only knows about
the brokers that are hard coded into the agent's URI.

The static discovery agent is a client-side only agent. It does not require any
configuration on the brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using
a discovery protocol that uses a static agent URI.

The static discovery agent URI conforms to the syntax in
Example 8.4 on page 53.

Example 8.4. Static Discovery Agent URI Format

static:// (URI1, URI2, URI3, ...)

Example 8.5 on page 53 shows a URL that configures a client to use the
dynamic discovery protocol to connect to one member of a broker pair.
Example 8.5. Discovery URL using the Static Discovery Agent

discovery:// (static:// (tcp://localhost:61716,tcp://local
host:61816))

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 53

Chapter 8. Discovering Brokers

Multicast Discovery Agent

Overview

URI

Configuring a broker

54

The multicast discovery agent uses the IP multicast protocol to find any
message brokers currently active on the local network. The agent requires
that each broker you want to advertise is configured to use the multicast
agent to publish its details to a multicast group. Clients using the multicast
agent as part of the discovery URI they use for connecting to a broker will
use the agent to receive the list of available brokers advertising in the specified
multicast group.

(1) Important

Your local network (LAN) must be configured appropriately for the
IP/multicast protocol to work.

The multicast discovery agent URI conforms to the syntax in
Example 8.6 on page 54.

Example 8.6. Multicast Discovery Agent URI Format

multicast://GroupID

Where Group1p is an alphanumeric identifier. All participants in the same
discovery network must use the same Group1p.

For a broker to be discoverable using the multicast discovery agent, you must
enable the discovery agent in the broker's configuration. To enable the
multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 8.7 on page 54.

Example 8.7. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />
</transportConnectors>

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Multicast Discovery Agent

The broker configured in Example 8.7 on page 54 is discoverable as part of
the multicast group default.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a multicast agent URI as shown in
Example 8.8 on page 55.

Example 8.8. Client Connection URL using Multicast Discovery

discovery:// (multicast://default)

A client using the URL in Example 8.8 on page 55 will discover all the brokers
advertised in the default multicast group and generate a list of brokers to
which it can connect.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 55

Chapter 8. Discovering Brokers

Zeroconf Discovery Agent

Overview

URI

Configuring a broker

The zeroconf discovery agent is derived from Apple’s Bonjour Networking2
technology, which defines the zeroconf protocol as a mechanism for
discovering services on a network. Fuse MQ Enterprise bases its
implementation of the zeroconf discovery agent on JmDSN3, which is a service
discovery protocol that is layered over IP/multicast and is compatible with
Apple Bonjour.

The agent requires that each broker you want to advertise is configured to
use a multicast discovery agent to publish its details to a multicast group.
Clients using the zeroconf agent as part of the discovery URI they use for
connecting to a broker will use the agent to receive the list of available brokers
advertising in the specified multicast group.

(1) Important

Your local network (LAN) must be configured to use IP/multicast for
the zeroconf agent to work.

The zeroconf discovery agent URI conforms to the syntax in
Example 8.9 on page 56.

Example 8.9. Zeroconf Discovery Agent URI Format

zeroconf://GroupID

Where the Group1pis an alphanumeric identifier. All participants in the same
discovery network must use the same GroupIp.

For a broker to be discoverable using the zeroconf discovery agent, you must
enable a multicast discovery agent in the broker's configuration. To enable
the multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 8.10 on page 57.

2 http://developer.apple.com/networking/bonjour/

http://sourceforge.net/projects/jmdns/

56

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/
http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Zeroconf Discovery Agent

Example 8.10. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://NEGroup" />
</transportConnectors>

The broker configured in Example 8.10 on page 57 is discoverable as part
of the multicast group NEGroup.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a zeroconf agent URI as shown in
Example 8.11 on page 57.

Example 8.11. Client Connection URL using Zeroconf Discovery

discovery:// (zeroconf://NEGroup)

A client using the URL in Example 8.11 on page 57 will discover all the
brokers advertised in the NEGroup multicast group and generate a list of
brokers to which it can connect.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 57

Chapter 8. Discovering Brokers

Dynamic Discovery Protocol

Overview The dynamic discovery protocol combines reconnect logic with a discovery
agent to dynamically create a list of brokers to which the client can connect.
The discovery protocol invokes a discovery agent in order to build up a list of
broker URIs. The protocol then randomly chooses a URI from the list and
attempts to establish a connection to it. If it does not succeed, or if the
connection subsequently fails, a new connection is established to one of the
other URIs in the list.

URI syntax Example 8.12 on page 58 shows the syntax for a discovery URI.

Example 8.12. Dynamic Discovery URI

discovery:// (DiscoveryAgentUri) ?0ptions

DiscoveryAgentUri is URI for the discovery agent used to build up the list
of available brokers. Discovery agents are described in "Discovery Agents"
on page 50.

The options, 2options, are specified in the form of a query list. The discovery
options are described in Table 8.1 on page 58. You can also inject transport
options as described in "Setting options on the discovered transports"

on page 59.

@ Tip

If no options are required, you can drop the parentheses from the
URI. The resulting URI would take the form

discovery://DiscoveryAgentUri

Transport options The discovery protocol supports the options described in
Table 8.1 on page 58.

Table 8.1. Dynamic Discovery Protocol Options

Option Default|Description
initialReconnectDelay |10 Specifies, in milliseconds, how long to wait before the first reconnect
attempt.

58 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Dynamic Discovery Protocol

Option Default | Description

maxReconnectDelay 30000

Specifies, in milliseconds, the maximum amount of time to wait between
reconnect attempts.

useExponentialBackOff true

Specifies if an exponential back-off is used between reconnect attempts.

backOffMultiplier 2 Specifies the exponent used in the exponential back-off algorithm.

maxReconnectAttempts 0 Specifies the maximum number of reconnect attempts before an error is
sent back to the client. 0 specifies unlimited attempts.

Sample URI Example 8.13 on page 59 shows a discovery URI that uses a multicast

Setting options on the discovered
transports

discovery agent.

Example 8.13. Discovery Protocol URI

discovery:// (multicast://default)?initialReconnectDelay=100

The list of transport options, options, in the discovery URI can also be used
to set options on the discovered transports. If you set an option not listed in
"Setting options on the discovered transports" on page 59, the URI parser

attempts to inject the option setting into every one of the discovered endpoints.

Example 8.14 on page 59 shows a discovery URI that sets the TCP
connectionTimeout option to 10 seconds.

Example 8.14. Injecting Transport Options into a Discovered Transport

discovery:// (multicast://default) ?connectionTimeout=10000

The 10 second timeout setting is injected into every discovered TCP endpoint.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 59

Chapter 8. Discovering Brokers

Fanout Protocol

Overview

URI syntax

Transport options

Table 8.2. Fanout Protocol Options

The fanout protocol enables a producer to auto-discover broker endpoints
and broadcast topic messages to all of the discovered brokers. The fanout
protocol gives producers a convenient mechanism for broadcasting messages
to multiple brokers that are not part of a network of brokers.

The fanout protocol relies on a discovery agent to build up the list of broker
URIs to which it connects.

Example 8.15 on page 60 shows the syntax for a fanout URI.

Example 8.15. Fanout URI Syntax

fanout:// (DiscoveryAgentUri) ?Options

DiscoveryAgentUri is URI for the discovery agent used to build up the list
of available brokers. Discovery agents are described in "Discovery Agents"
on page 50.

The options, 2options, are specified in the form of a query list. The discovery
options are described in Table 8.2 on page 60. You can also inject transport
options as described in "Setting options on the discovered transports"

on page 59.

@ Tip

If no options are required, you can drop the parentheses from the
URI. The resulting URI would take the form

fanout://DiscoveryAgentUri

The fanout protocol supports the transport options described in
Table 8.2 on page 60.

Option Name Default | Description

initialReconnectDelay |10

Specifies, in milliseconds, how long the transport will wait before the first
reconnect attempt.

60

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Fanout Protocol

Option Name

Default

Description

maxReconnectDelay

30000

Specifies, in milliseconds, the maximum amount of time to wait between
reconnect attempts.

useExponentialBackOff

true

Specifies if an exponential back-off is used between reconnect attempts.

backOffMultiplier

Specifies the exponent used in the exponential back-off algorithm.

maxReconnectAttempts

Specifies the maximum number of reconnect attempts before an error is
sent back to the client. 0 specifies unlimited attempts.

fanOutQueues Specifies whether queue messages are replicated to every connected broker.
For more information see "Applying fanout to queue messages" on page 61.

minAckCount Specifies the minimum number of brokers to which the client must connect
before it sends out messages. For more informaiton see "Minimum number
of brokers" on page 61.

Sample URI Example 8.16 on page 61 shows a discovery URI that uses a multicast

Applying fanout to queue
messages

Minimum number of brokers

discovery agent.

Example 8.16. Fanout Protocol URI

fanout:// (multicast://default)?initialReconnectDelay=100

The fanout protocol replicates topic messages by sending each topic message
to all of the connected brokers. By default, however, the fanout protocol does
not replicate queue messages.

For queue messages, the fanout protocol picks one of the brokers at random
and sends all of the queue messages to that broker. This is a sensible default,
because under normal circumstances, you would not want to create more
than one copy of a queue message.

It is possible to change the default behavior by setting the fanoutQueues
option to true. This configures the protocol so that it also replicates queue
messages.

By default, the fanout protocol does not start sending messages until the
producer has connected to a minimum of two brokers. You can customize
this minimum value using the minAckCount option.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 61

Chapter 8. Discovering Brokers

Using fanout with a broker
network

62

Setting minimum number of brokers equal to the expected number of
discovered brokers ensures that all of the available brokers start receiving
messages at the same time. This ensures that no messages are missed if a
broker starts up after the producer has started sending messages.

You have to be careful when using the fanout protocol with brokers that are
joined in a network of brokers.

The combination of the fanout protocol's broadcasting behavior and the nature
of how messages are propagated through a network of brokers makes it likely
that consumers will receive duplicate messages. If, for example, you joined
four brokers into a network of brokers and connected a consumer listening
for messages on topic hello.jason to broker A and connected a producer
to broker B to send messages to topic hello.jason, the consumer would
get one copy of the messages. If, on the other hand, the producer connects
to the network using the fanout protocol, the producer will connect to every
broker in the network simultaneously and start sending messages. Each of
the four brokers will receive a copy of every message and deliver its copy to
the consumer. So, for each message, the consumer will get four copies.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Chapter 9. Load Balancing

Broker networks can address the problem of load balancing in a messaging system. Consumer load is managed
by changing how network connectors recognize subscriptions. Producer load is managed using different broker

topologies.

Balancing ConsSUMET LOAGot et et et et e e e e e et e e e e aans
Managing ProdUCEr LOAAouiiriiii e e e et et e

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 63

Chapter 9. Load Balancing

Balancing Consumer Load

Overview

Default load behavior

64

Multiple consumers attached to a JMS queue automatically obey competing
consumer semantics. That is, each message transmitted by the queue is
consumed by one consumer only. Hence, if you want to scale up load
balancing on the consumer side, all that you need to do is attach extra
consumers to the queue. The competing consumer semantics of the JMS
queue then automatically ensures that the queue's messages are evenly
distributed amongst the attached consumers.

The default behavior of Fuse MQ Enterprise's conduit subscriptions, however,
can sometimes be detrimental to load balancing on the consumer side. As
described in "Conduit subscriptions" on page 17, conduit subscriptions
concentrate all of the subscriptions from a networked broker into a single
subscription. For topics this behavior optimizes traffic and has no effect on
consumer load. For queues, however, it results in uneven message distribution
which can impede consumer load balancing.

Figure 9.1 on page 65 illustrates how conduit subscriptions can result in
uneven message distribution to the consumers of a queue.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Disabling conduit subscriptions

Balancing Consumer Load

Figure 9.1. Message Flow when Conduit Subscriptions Enabled

Assume that the consumers, C1, C2, and C3, all subscribe to the TEST.F00
queue. Producer, P, connects to Broker A and sends 12 messages to the
TEST.F0O queue. By default conduit subscriptions are enabled and Broker
A sees only a single subscription from Broker B and a single subscription from
consumer C1. So, Broker A sends messages alternately to C1 and B. Assuming
that C1 and B process messages at the same speed, A sends a total of 6
messages to C1 and 6 messages to B.

Broker B sees two subscriptions, from C2 and C3 respectively. So, Broker B
will send messages alternately to C2 and C3. Assuming that both consumers
process messages at equal speed, each consumer receives a total of 3
messages.

In the end, the distribution of messages amongst the consumers is 6, 3, 3,
which is not optimally load balanced. C1 processes twice as many messages
as either C2 or C3.

If you want to improve the load balancing behavior for queues, you can disable
conduit subscriptions by setting the networkConnector element's
conduitSubscriptions to false. Example 9.1 on page 66 shows
configuration for a network connector with conduit subscriptions disabled.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 65

Chapter 9. Load Balancing

Balanced load behavior

66

Example 9.1. Disabling Conduit Subscriptions

<networkConnectors>
<networkConnector name="linkToBrokerB"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
conduitSubscriptions="false" />
</networkConnectors>

€3 Warning

As described in "Conduit subscriptions" on page 17, conduit
subscriptions protect against duplicate topic messages. If you are
using both queues and topics consider using separate network
connectors for queues and topics. See "Separate connectors for
topics and queues" on page 67.

Figure 9.2 on page 66 illustrates the message flow through a queue with
distributed consumers when conduit subscriptions are disabled.

Figure 9.2. Message Flow when Conduit Subscriptions Disabled

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Separate connectors for topics
and queues

Balancing Consumer Load

Assume that the consumers, C1, C2, and C3, all subscribe to the TEsST.Foo
queue. Producer, P, connects to Broker A and sends 12 messages to the
TEST.F00 queue. With conduit subscriptions disabled, Broker A sees both
of the subscriptions on Broker B and a single subscription from consumer
C1. Broker A sends messages alternately to each of the subscriptions.
Assuming that all of the consumers process messages at equal speeds, C1
receives 4 messages and Broker B receives 8 messages.

Broker B sees two subscriptions, from C2 and C3 respectively. So, Broker B
will send messages alternately to C2 and C3. Assuming that both consumers
process messages at equal speed, each consumer receives a total of 4
messages.

In the end, the distribution of messages amongst the consumers is 4, 4, 4,
which is optimally balanced.

If your brokers need to handle both queues and topics, you might need to
disable conduit subscriptions for queues to optimize load balancing, but also
enable conduit subscriptions for topics to avoid duplicate topic messages.

Because the conduitsSubscriptions attribute applies simultaneously to
queues and topics, you cannot configure this using a single network connector.
It is possible to configure topics and queues differently by using multiple
network connectors: one for queues and another for topics.

Example 9.2 on page 67 shows how to configure separate network connectors
for topics and queues. The queuesonly network connector, which has conduit
subscriptions disabled, is equipped with a filter that transmits only queue
messages. The topicsonly network connector, which has conduit
subscriptions enabled, is equipped with a filter that transmits only topic
messages.

Example 9.2. Separate Configuration of Topics and Queues

<networkConnectors>
<networkConnector name="queuesOnly"
uri="static: (tcp://localhost:61002)"
networkTTL="3"
conduitSubscriptions="false">
<dynamicallyIncludedDestinations>
<queue physicalName=">"/>
</dynamicallyIncludedDestinations>
</networkConnector>
<networkConnector name="topicsOnly"
uri="static: (tcp://localhost:61002)"

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 67

Chapter 9. Load Balancing

networkTTL="3">
<dynamicallyIncludedDestinations>
<topic physicalName=">"/>
</dynamicallyIncludedDestinations>
</networkConnector>
</networkConnectors>

68 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Managing Producer Load

Managing Producer Load

Overview

Concentrator topology

For greater scalability on the producer side, you might want to spread the
message load across multiple brokers. For the purpose of spreading the load
across brokers, one of the most useful topologies is the concentrator topology.

Figure 9.3 on page 69 illustrates a two layer network arranged in a
concentrator topology.

Figure 9.3. Load Balancing with the Concentrator Topology

The two layers of brokers manage the producer load as follows:

* The first layer of brokers, A, B, and C, accepts connections from message
producers and specializes in receiving incoming messages.

* The second layer of brokers, X and Y, accepts connections from message
consumers and specializes in sending messages to the consumers.

With this topology, the first layer of brokers, A, B, and C, can focus on
managing a large number of incoming producer connections. The received
messages are consolidated within the brokers before being passed through a
relatively small number of network connectors to the second layer, X and Y.
Assuming the number of consumers is small, the brokers, X and Y, only need
to deal with a relatively small number of connections. If the number of

Fuse MQ Enterprise Using Networks of Brokers Version 7.0 69

Chapter 9. Load Balancing

Client configuration

70

consumers is large, you could add a third layer of brokers to fan out and
handle the consumer connections.

When connecting to a broker network laid out in a concentrator topology,
producers and consumers must be configured to connect to the brokers in
the appropriate layer. In the case of a producer connecting to the concentrator
topology shown in Figure 9.3 on page 69, producers should connect to the
brokers in the first layer: A, B, and C. Consumers should connect to the
brokers in the second layer: X and Y.

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

Index
A

active consumer, 11

B

broker
brokerld, 45
brokerld, 45

C

concentrator topology, 69
conduit subscription
disabling, 33, 65
impact on queues, 64
conduitSubscriptions, 33, 65

D

decreaseNetworkConsumerPriority, 42
destination filtering, 67
by exclusion, 29
by inclusion, 28
destinations
wildcards, 27
discovery agent
Fuse Fabric, 52
multicast, 54
static, 53
zeroconf, 56
discovery protocol
backOffMultiplier, 59
initialReconnectDelay, 58
maxReconnectAttempts, 59
maxReconnectDelay, 59
URI, 58
useExponentialBackOff, 59
discovery URI, 58
discovery://, 58
discoveryUri, 54, 56
dynamicallylncludedDestinations, 28

Fuse MQ Enterprise Using Networks of Brokers Version 7.0

queue, 28
topic, 28

E

excludedDestinations, 29
queue, 29
topic, 29

F

fabric://, 52

fanout protocol
backOffMultiplier, 61
fanOutQueues, 61
initialReconnectDelay, 60
maxReconnectAttempts, 61
maxReconnectDelay, 61
minAckCount, 61
URI, 60
useExponentialBackOff, 61

fanout URI, 60

fanout://, 60

Fuse Fabric discovery agent
URI, 52

M

multicast discovery agent
broker configuration, 54
URI, 54

multicast:/, 54

N

network connectors
multiple, 67

networkConnector, 67
conduitSubscriptions, 33, 65
decreaseNetworkConsumerPriority, 42
dynamicallylncludedDestinations, 28
excludedDestinations, 29
name, 13
networkTTL, 14
suppressDuplicateQueueSubscriptions, 45
uri, 14

71

S

shortest route, 42
static discovery agent
URI, 53
static://, 53
suppressDuplicateQueueSubscriptions, 45

T

transportConnector
discoveryUri, 54, 56

W

wildcards
destinations, 27

Z

zeroconf discovery agent
broker configuration, 56
URI, 56

zeroconf://, 56

72 Fuse MQ Enterprise Using Networks of Brokers Version 7.0

	Using Networks of Brokers
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Network Connectors
	Chapter 3. Dynamic and Static Propagation
	Chapter 4. Destination Filtering
	Chapter 5. Using JMS Message Selectors
	Chapter 6. Network Topologies
	Chapter 7. Optimizing Routes
	Choosing the Shortest Route
	Suppressing Duplicate Routes

	Chapter 8. Discovering Brokers
	Discovery Agents
	Fuse Fabric Discovery Agent
	Static Discovery Agent
	Multicast Discovery Agent
	Zeroconf Discovery Agent

	Dynamic Discovery Protocol
	Fanout Protocol

	Chapter 9. Load Balancing
	Balancing Consumer Load
	Managing Producer Load

	Index

