
JBoss Enterprise Application Platform 5

HTTP Connectors Load Balancing Guide

HTTP load-balancing for the JBoss Enterprise Application Platform

Edition 5.1.2

Jared Morgan
Lead Writer and Content Architect

Red Hat, Inc. Engineering Content Services

jmorgan@redhat.com

Joshua Wulf
Red Hat Engineering Content Services

jwulf@redhat.com

Laura Bailey
Red Hat, Inc. Engineering Content Services

lbailey@redhat.com

Samuel Mendenhall
Red Hat Global Support Services

James Livingston
Red Hat Global Support Services

Jim Tyrell
Red Hat JBoss Solutions Architect

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 1

mailto:jmorgan@redhat.com
mailto:jwulf@redhat.com
mailto:lbailey@redhat.com

Legal Notice
Copyright © 2011 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

2 Legal Notice

http://creativecommons.org/licenses/by-sa/3.0/

Abstract
Read this guide to install and configure the JBoss Enterprise Application Platform HTTP connectors:
mod_jk, mod_cluster, ISAPI, and NSAPI. This guide also discusses clustering and load-balancing using
these connectors.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 3

Table of Contents
Preface

1. File Name Conventions
2. Document Conventions

2.1. Typographic Conventions
2.2. Pull-quote Conventions
2.3. Notes and Warnings

3. Getting Help and Giving Feedback
3.1. Do You Need Help?
3.2. Give us Feedback

I. Apache Tomcat Connector (mod_jk)

1. Overview

2. Download and install

3. Configure load balancing using Apache and mod_jk
3.1. Configure worker nodes in mod_jk
3.2. Configuring JBoss to work with mod_jk

II. JBoss HTTP Connector (mod_cluster)

4. Overview
4.1. Key features
4.2. Components

5. Install proxy server components
5.1. Apache modules

5.1.1. mod_manager.so
5.1.2. mod_proxy_cluster.so
5.1.3. mod_advertise.so

5.2. Install proxy server components

6. Configure basic proxy server
6.1. Basic proxy configuration overview
6.2. Configure a load-balancing proxy using the HTTP Connector

7. Install node with basic configuration
7.1. Worker node requirements
7.2. Install and configure a worker node

8. Further server configuration
8.1. Apache server directives

8.1.1. CreateBalancers

9. Advanced configuration
9.1. Static proxy configuration
9.2. Clustered node operation

10. Load balancing demonstration
10.1. Set up the demonstration
10.2. Configure the demo client
10.3. Interact with the demonstration

10.3.1. Generate artificial load

4 Table of Contents

III. Internet Server API (ISAPI)

11. Overview
11.1. What is Internet Server API

12. Configuring the ISAPI connector on Windows
12.1. Prerequisites and configuration assumptions
12.2. Configure server instance as a worker node
12.3. Microsoft IIS 6 initial clustering configuration
12.4. Microsoft IIS 7 initial clustering configuration
12.5. Configure a basic cluster with ISAPI
12.6. Configure a load-balancing cluster with ISAPI

IV. Netscape Server API (NSAPI)

13. What Is Netscape Server API

14. Configuring the NSAPI connector on Solaris
14.1. Prerequisites and configuration assumptions
14.2. Configure server instance as a worker node
14.3. Initial clustering configuration
14.4. Configure a basic cluster with NSAPI
14.5. Configure a load-balanced cluster with NSAPI

V. Common load balancing tasks

15. HTTP session state replication
15.1. Enabling session replication in your application
15.2. HttpSession passivation and activation

15.2.1. Configuring HttpSession passivation

15.3. Configure the JBoss Cache instance used for session state replication

16. Using clustered Single Sign-on (SSO)
16.1. Configuration
16.2. SSO behavior
16.3. Limitations
16.4. Configuring the cookie domain

17. Complete working example

A. Reference: workers.properties

B. Reference: Java properties
B.1. Proxy configuration

C. Revision history

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 5

Preface

1. File Name Conventions
The following naming conventions are used in file paths for readability. Each convention is styled
differently to help you identify them in context:

JBOSS_EAP_DIST

The installation root of the JBoss Enterprise Application Platform instance. This folder contains
the main folders that comprise the server such as /jboss-as, /seam, and /resteasy.

JBOSS_EWP_DIST

The installation root of the JBoss Enterprise Web Platform instance. This folder contains the
main folders that comprise the server such as /jboss-as-web, /seam, and /resteasy.

JBOSS_EWS_DIST

The installation root of the JBoss Enterprise Web Server instance. This folder contains the
main folders that comprise the server such as /extras, /httpd, and the /tomcat6 folders.

NATIVE

The installation root of the JBoss Native zip, extracted to the same directory level as
JBOSS_EAP_DIST.

SJWS

The installation root of the Sun Java Web Server instance. The default file locations for this
naming convention are:

for Solaris 9 x86 or SPARC 64: /opt/SUNWwbsrv61

for Solaris 10 x86 or SPARC 64: /opt/SUNWwbsrv70/

HTTPD_DIST

The installation root of the Apache httpd Server. This folder contains the main folders that
comprise the server such as /conf, /webapps, and /bin. The JBoss Enterprise Web Server
JBOSS_EWS_DIST directory contains the root installation of HTTPD_DIST.

PROFILE

The name of the JBoss server profile you use as part of your testing or production
configuration. The server profiles reside in JBOSS_EAP_DIST/jboss-as/server or
JBOSS_EWS_DIST/jboss-as-web/server.

2. Document Conventions

6 Preface

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

2.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt and
press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold and
all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the plus sign that connects each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click Close
to switch the primary mouse button from the left to the right (making the mouse suitable for
use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 7

https://fedorahosted.org/liberation-fonts/

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is john,
type ssh john@example.com.

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

8 Preface

2.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. Getting Help and Giving Feedback

3.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer
Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

3.2. Give us Feedback

If you find a typographical error, or know how this guide can be improved, we would love to hear from
you. Submit a report in Bugzilla against the product JBoss Enterprise Application Platform 5
and the component doc-HTTP_Connectors_Guide. The following link will take you to a pre-filled bug
report for this product: http://bugzilla.redhat.com/.

Fill out the following template in Bugzilla's Description field. Be as specific as possible when
describing the issue; this will help ensure that we can fix it quickly.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 9

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss Enterprise Application Platform 5&component=doc-HTTP_Connectors_Guide&version=5.1.2&short_desc=Bug in HTTP Connectors Load Balancing Guide Guide

Document URL:

Section Number and Name:

Describe the issue:

Suggestions for improvement:

Additional information:

Be sure to give us your name so that you can receive full credit for reporting the issue.

10 Preface

Part I. Apache Tomcat Connector (mod_jk)

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 11

Chapter 1. Overview
Apache is a well-known web server which can be extended using plug-ins. The Apache Tomcat
Connector mod_jk is a plug-in designed to allow request forwarding from Apache httpd Server to a
Servlet container. The module also supports load-balancing HTTP calls to a set of Servlet containers
while maintaining sticky sessions.

HTTP session replication is used to replicate the state associated with web client sessions to other
nodes in a cluster. If one node becomes unavailable, another node in the cluster takes the load of the
disabled node. Two distinct functions must be performed:

Session state replication

Load-balancing HTTP Requests

Sessions state replication is handled by JBoss at the application level (refer to Section 15.1, “Enabling
session replication in your application”.

Load balancing, however, requires an external load balancer. A cost effective way of managing load-
balancing is to set up a software load balancer using Apache httpd and mod_jk.

12 Chapter 1. Overview

Chapter 2. Download and install
Apache httpd is included in the JBoss Enterprise Web Server binary you download from
https://access.redhat.com.

mod_jk is included in the native installation binaries for JBoss Enterprise Application Platform and JBoss
Enterprise Web Server.

Follow the procedures in the JBoss Enterprise Application Platform or JBoss Enterprise Web Server
Installation Guide to download and install the correct platform and native binaries.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 13

https://access.redhat.com

Chapter 3. Configure load balancing using Apache and mod_jk
Follow the tasks in this chapter to correctly configure load balancing using Apache and the mod_jk
connector.

Task: Configure Apache to Load mod_jk

Complete this task to configure Apache to load mod_jk.

Prerequisites

Apache and mod_jk installed (Refer to Chapter 2, Download and install).

1. Open HTTPD_DIST/conf/httpd.conf and add a single line at the end of the file.

Include mod_jk's specific configuration file
Include conf/mod-jk.conf

2. Create a new file named HTTPD_DIST/conf/mod-jk.conf

3. Add the following configuration block to mod-jk.conf.

Important

The LoadModule directive must reference the mod_jk library directory location applicable
to the native binary you installed.

Note

The JkMount directive specifies which URLs Apache should forward to the mod_jk
module. Based on the directive's configuration, mod_jk forwards the received URL onto the
correct Servlet containers.
To enable Apache to serve static content (or PHP content) directly, and only use the load
balancer for Java applications, the suggested configuration specifies all requests with URL
path /application/* are sent to the mod_jk load-balancer.
If you only use mod_jk as a load balancer, forward all URLs to mod_jk by specifying /* in
the directive.

14 Chapter 3. Configure load balancing using Apache and mod_jk

Load mod_jk module
Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkOptions indicates to send SSK KEY SIZE
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat
JkRequestLogFormat "%w %V %T"

Mount your applications
JkMount /application/* loadbalancer

Add shared memory.
This directive is present with 1.2.10 and
later versions of mod_jk, and is needed for
for load balancing to work properly
JkShmFile logs/jk.shm

Add jkstatus for managing runtime data
<Location /jkstatus/>
 JkMount status
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

4. Optional: JKMountFile Directive
In addition to the JkMount directive, you can use the JkMountFile directive to specify a mount
points configuration file. The configuration file contains multiple Tomcat forwarding URL mappings.

a. Navigate to HTTPD_DIST/conf.

b. Create a file named uriworkermap.properties.

c. Specify the URL to forward and the worker name using the following syntax example as a
guide.

The example block will configure mod_jk to forward requests to /jmx-console and /web-
console to Apache.

The syntax required takes the form /url=worker_name.

Simple worker configuration file

Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/web-console=loadbalancer
/web-console/*=loadbalancer

d. In HTTPD_DIST/conf/mod-jk.conf, append the following directive.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 15

d. In HTTPD_DIST/conf/mod-jk.conf, append the following directive.

You can use external file for mount points.
It will be checked for updates each 60 seconds.
The format of the file is: /url=worker
/examples/*=loadbalancer
JkMountFile conf/uriworkermap.properties

3.1. Configure worker nodes in mod_jk

Task: Configure mod_jk Worker Nodes

Complete this task to configure two mod_jk Worker node definitions in a weighted round robin
configuration with sticky sessions active between two servlet containers.

Prerequisites

Understand the format of the workers.properties directives, as specified in Appendix A,
Reference: workers.properties.

Task: Configure Apache to Load mod_jk

1. Navigate to HTTPD_DIST/conf/.

2. Create a file named workers.properties.

3. Append the following information to workers.properties.

Define list of workers that will be used
for mapping requests
worker.list=loadbalancer,status

Define Node1
modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.ping_mode=A
worker.node1.lbfactor=1

Define Node2
modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host=node2.mydomain.com
worker.node2.type=ajp13
worker.node2.ping_mode=A
worker.node2.lbfactor=1

Load-balancing behavior
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1

Status worker for managing load balancer
worker.status.type=status

3.2. Configuring JBoss to work with mod_jk

16 Chapter 3. Configure load balancing using Apache and mod_jk

Task: Configure JBoss Enterprise Application Platform to Operate Using mod_jk

Complete this task to correctly prepare a JBoss Enterprise Application Platform instance on a clustered
node to receive forwarded requests from the mod_jk load balancer.

Repeat this task for each server instance you require, observing the warnings at each step.

Prerequisites

Complete Task: Configure mod_jk Worker Nodes.

1. Navigate to the location of the clustered server instance.

2. Open JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy/jbossweb.sar/server.xml.

3. Specify the node name by appending the jvmRoute attribute to the <Engine> element in
server.xml. The jvmRoute attribute value is the node name defined in
HTTPD_DIST/conf/workers.properties.

<!--Preceeding syntax removed for readability -->
<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
<!--Proceeding syntax removed for readability -->
</Engine>

Important

If you intend to configure more than one server node in a cluster, ensure you change the
jvmRoute attribute value to a unique name each time you repeat this step.

4. In server.xml, ensure the AJP protocol <connector> element is enabled (uncommented). The
element is uncommented by default in new installations.

<Connector protocol="AJP/1.3" port="8009" address="${jboss.bind.address}"
 redirectPort="8443" />

5. You now have a correctly configured Apache httpd Server with mod_jk load balancer, which
balances calls to the servlet containers in the cluster, and ensures clients will always use the
same servlet container (sticky sessions).

Note

For supplementary information about using mod_jk with JBoss, refer to the JBoss wiki page at
http://www.jboss.org/community/wiki/UsingModjk12WithJBoss.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 17

http://www.jboss.org/community/wiki/UsingModjk12WithJBoss

Part II. JBoss HTTP Connector (mod_cluster)

18 Part II. JBoss HTTP Connector (mod_cluster)

Chapter 4. Overview
The JBoss HTTP Connector mod_cluster is a reduced configuration, intelligent load-balancing solution
for JBoss Enterprise Application Platform, based on technology originally developed by the JBoss
mod_cluster community project.

The JBoss HTTP connector load-balances HTTP requests to JBoss Enterprise Application Platform
and JBoss Enterprise Web Server worker nodes, utilizing Apache as the proxy server.

4.1. Key features
Apache HTTP Server-based

The JBoss HTTP Connector mod-cluster uses Apache as the proxy server.

Real-t ime load-balancing calculation

The JBoss HTTP Connector mod_cluster creates a feedback network between the worker
nodes and the proxy server. The mod_cluster service is deployed on each of the worker
nodes. This service feeds real-time load information to the proxy server. The proxy server then
makes intelligent decisions on where to allocate work, based on the current load on each
worker node. This real-time adaptive load distribution results in increased optimization of
resources.

The information that is reported by the worker nodes and the load-balancing policy used by the
proxy are both customizable.

Routing based on real-t ime application life cycle

The JBoss HTTP Connector mod_cluster service deployed on the worker nodes relays
application lifecycle events to the proxy server. This allows the server to dynamically update its
routing table. When an application is undeployed on a node, the proxy server no longer routes
traffic for that application to that node.

Automatic Proxy Discovery

The proxy server can be configured to announce its presence via UDP multicast. New worker
nodes discover the proxy server and add themselves to the load-balancing cluster
automatically. This greatly reduces the configuration and maintenance needed. When UDP
multicast is not available or is undesirable, worker nodes are configured with a static list of
proxies.

Multiple Protocol Support

The JBoss HTTP Connector mod_cluster can use HTTP, HTTPS, or Apache JServ Protocol
(AJP) for communication between the proxy and the worker nodes.

4.2. Components

Proxy Server

On the proxy server, the JBoss HTTP Connector mod-cluster consists of four Apache modules.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 19

Shared Memory Manager: mod_slotmem.so

The Shared Memory Manager module, mod_slotmem, makes the real-time worker node
information available to multiple Apache server processes.

Cluster Manager Module: mod_manager.so

The Cluster Manager module, mod_manager, receives and acknowledges messages from
nodes, including worker node registrations, worker node load data, and worker node application
life cycle events.

Proxy Balancer Module: mod_proxy_cluster.so

The Proxy Balancer Module, mod_proxy_cluster, handles the routing of requests to cluster
nodes. The Proxy Balancer selects the appropriate node to forward the request to, based on
application location in the cluster, current state of each of the cluster nodes, and the Session ID
(if a request is part of an established session).

Proxy Advertisement Module: mod_advertise.so

The Proxy Advertisement Module, mod_advertise.so, broadcasts the existence of the proxy
server via UDP multicast messages. The server advertisement messages contain the IP
address and port number where the proxy is listening for responses from nodes that wish to
join the load-balancing cluster.

Note

Refer to Section 5.1, “Apache modules” for detailed information about the available modules
including user-configurable parameters.

Worker Node Components
Worker node service: mod-cluster.sar

The JBoss HTTP Connector client service mod-cluster.sar is deployed on each worker
node. This service provides the proxy with real-time information on the worker node's state and
sends notification of application life cycle events; as well as allowing the node to discover and
register itself with any proxies running on the same network.

20 Chapter 4. Overview

Chapter 5. Install proxy server components
Read this chapter to install the JBoss HTTP Connector mod-cluster on a JBoss Enterprise Web
Server proxy server.

5.1. Apache modules
Read this section for expanded definitions of the Apache proxy server modules discussed in Section 4.2,
“Components”. You specify these modules as part of Task: Install Proxy Server Components.

5.1.1. mod_manager.so

The Cluster Manager module, mod_manager, receives and acknowledges messages from nodes,
including worker node registrations, worker node load data, and worker node application life cycle
events.

LoadModule manager_module modules/mod_manager.so

You can also define the following related directives in the <VirtualHost> element:

MemManagerFile

Defines the location for the files in which mod_manager stores configuration details.
mod_manager also uses this location for generated keys for shared memory and lock files. This
must be an absolute path name. It is recommended that this path be on a local drive, and not a
NFS share. The default value is /logs/.

Maxcontext

The maximum number of contexts JBoss mod_cluster will use. The default value is 100.

Maxnode

The maximum number of worker nodes JBoss mod_cluster will use. The default value is 20.

Maxhost

The maximum number of hosts (aliases) JBoss mod_cluster will use. This is also the maximum
number of load balancers. The default value is 10.

Maxsessionid

The maximum number of active session identifiers stored. A session is considered inactive
when no information is received from that session within five minutes. The default value is 0,
which disables this logic.

ManagerBalancerName

The name of the load balancer to use when the worker node does not provide a load balancer
name. The default value is mycluster.

PersistSlots

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 21

When set to on, nodes, aliases and contexts are persisted in files. The default value is off.

CheckNonce

When set to on, session identifiers are checked to ensure that they are unique, and have not
occurred before. The default is on.

Warning

Setting this directive to off can leave your server vulnerable to replay attacks.

SetHandler

Defines a handler to display information about worker nodes in the cluster. This is defined in
the Location element:

<Location $LOCATION>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

When accessing the $LOCATION defined in the Location element in your browser, you will see
something like the following. (In this case, $LOCATION was also defined as mod_cluster-
handler.)

Transferred corresponds to the POST data sent to the worker node. Connected corresponds to the
number of requests that had been processed when this status page was requested. Sessions
corresponds to the number of active sessions. This field is not present when Maxsessionid is 0.

22 Chapter 5. Install proxy server components

5.1.2. mod_proxy_cluster.so

The Proxy Balancer Module, mod_proxy_cluster, handles the routing of requests to cluster nodes.
The Proxy Balancer selects the appropriate node to forward the request to, based on application
location in the cluster, current state of each of the cluster nodes, and the Session ID (if a request is part
of an established session).

LoadModule proxy_cluster_module modules/mod_proxy_cluster.so

You can also define the following related directives in the <VirtualHost> element to change load
balancing behavior.

mod_proxy_cluster directives
CreateBalancers

Defines how load balancers are created in the Apache HTTP Server virtual hosts. The following
values are valid in CreateBalancers:

0

Create load balancers in all virtual hosts defined in Apache HTTP Server. Remember
to configure the load balancers in the ProxyPass directive.

1

Do not create balancers. When using this value, you must also define the load
balancer name in the ProxyPass or ProxyPassMatch.

2

Create only the main server. This is the default value for CreateBalancers.

UseAlias

Defines whether to check that the defined Alias corresponds to the ServerName. The
following values are valid for UseAlias:

0

Ignore Alias information from worker nodes. This is the default value for UseAlias.

1

Verify that the defined alias corresponds to a worker node's server name.

LBstatusRecalTime

Defines the interval in seconds between the proxy calculating the status of a worker node. The
default interval is 5 seconds.

ProxyPassMatch; ProxyPass

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 23

ProxyPass maps remote servers into the local server namespace. If the local server has an
address http://local.com/, then the following ProxyPass directive would convert a local
request for http://local.com/requested/file1 into a proxy request for
http://worker.local.com/file1.

ProxyPass /requested/ http://worker.local.com/

ProxyPassMatch uses Regular Expressions to match local paths to which the proxied URL
should apply.

For either directive, ! indicates that a specified path is local, and a request for that path should
not be routed to a remote server. For example, the following directive specifies that .gif files
should be served locally.

ProxyPassMatch ^(/.*\.gif)$!

5.1.3. mod_advertise.so

The Proxy Advertisement Module, mod_advertise.so, broadcasts the existence of the proxy server via
UDP multicast messages. The server advertisement messages contain the IP address and port number
where the proxy is listening for responses from nodes that wish to join the load-balancing cluster.

This module must be defined alongside mod_manager in the VirtualHost element. Its identifier in the
following code snippet is advertise_module.

LoadModule advertise_module modules/mod_advertise.so

mod_advertise also takes the following directives:

ServerAdvertise

Enables or disables the advertising mechanism. When set to On, the advertising mechanism is
used to tell worker nodes to send status information to this proxy. When set to Off, the
advertising mechanism is disabled.

You can also specify a hostname and port with the following syntax: ServerAdvertise On
http://hostname:port/. This is only required when using a name-based virtual host, or
when a virtual host is not defined.

The default value is Off but it is automatically enabled if any Advertise directive is specified in
defining a VirtualHost.

AdvertiseGroup

Defines the multicast address to advertise on. The syntax is AdvertiseGroup address:port,
where address should correspond to AdvertiseGroupAddress, and port should correspond
to AdvertisePort in your worker nodes.

If your worker node is JBoss Enterprise Application Platform-based, and the -u switch is used
at startup, the default AdvertiseGroupAddress is the value passed via the -u switch.

The default value is 224.0.1.105:23364. If port is not specified, the default port specified is
23364.

24 Chapter 5. Install proxy server components

AdvertiseFrequency

The interval (in seconds) between multicast messages advertising the IP address and port.
The default value is 10.

AdvertiseSecurityKey

Defines a string used to identify the JBoss HTTP Connector mod_cluster in JBoss Web. By
default this directive is not set and no information is sent.

AdvertiseManagerUrl

Defines the URL that the worker node should use to send information to the proxy server. By
default this directive is not set and no information is sent.

AdvertiseBindAddress

Defines the address and port over which to send multicast messages. The syntax is
AdvertiseBindAddress address:port. This allows an address to be specified on machines
with multiple IP addresses. The default value is 0.0.0.0:23364.

5.2. Install proxy server components

Task: Install Proxy Server Components

Follow this task to install the JBoss HTTP Connector on a JBoss Enterprise Web Server.

The JBoss HTTP Connector is supported in production only with JBoss Enterprise Web Server as the
proxy server. Refer to the JBoss Enterprise Web Server Installation Guide to download and install the
JBoss Enterprise Web Server.

The Native components are Operating System and processor architecture specific. Refer to the JBoss
Enterprise Application Platform Installation Guide to download the correct Native Components package
for your server Operating System and processor architecture.

Prerequisites

JBoss Enterprise Web Server v1.0.1 or later installed.

JBoss Enterprise Application Platform 5 Native components downloaded.

1. Extract Apache modules from Native Components download
Extract the four modules mod_advertise.so, mod_manager.so, mod_proxy_cluster.so,
mod_slotmem.so from the appropriate Native Components package directory for your processor
architecture: either native/lib/httpd/modules or native/lib64/httpd/modules.

2. Copy Apache modules to JBoss Enterprise Web Server
Copy the JBoss HTTP Connector modules to the JBOSS_EWS_DIST/httpd/modules directory of
the JBoss Enterprise Web Server.

3. Disable the mod_proxy_balancer module
Edit the JBoss Enterprise Web Server Apache configuration file

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 25

JBOSS_EWS_DIST/httpd/conf/httpd.conf and comment out the following line by adding an
initial #:

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

This module is incompatible with the JBoss HTTP Connector.

4. Configure the server to load the JBoss HTTP Connector modules
a. Create JBOSS_EWS_DIST/httpd/conf.d/JBoss_HTTP.conf.

b. Add the following lines to JBOSS_EWS_DIST/httpd/conf.d/JBoss_HTTP.conf:

LoadModule slotmem_module JBOSS_EWS_DIST/modules/mod_slotmem.so
LoadModule manager_module JBOSS_EWS_DIST/modules/mod_manager.so
LoadModule proxy_cluster_module
JBOSS_EWS_DIST/modules/mod_proxy_cluster.so
LoadModule advertise_module JBOSS_EWS_DIST/modules/mod_advertise.so

5. Restart the JBoss Enterprise Web Server Apache service
Refer to the JBoss Enterprise Web Server documentation for detailed instructions.

26 Chapter 5. Install proxy server components

Chapter 6. Configure basic proxy server
Follow the instructions in this chapter to configure a JBoss Enterprise Web Server to use the JBoss
HTTP connector mod_cluster.

6.1. Basic proxy configuration overview
Configuration of the proxy server consists of one mandatory and one optional portion:

1. Configure a Proxy Server listener to receive worker node connection requests and worker node
feedback.

2. Optional: Disable server advertisement.

Server Advertisement

The proxy server can advertise itself using UDP multicast. When UDP multicast is available on the
network between the proxy server and the worker nodes Server Advertisement allows you to add worker
nodes with no further configuration required on the proxy server, and minimal configuration on the
worker nodes.

If UDP multicast is not available or undesirable, configure the worker nodes with a static list of proxy
servers, as detailed in Section 9.1, “Static proxy configuration”. There is no need in either case to
configure the proxy server with a list of worker nodes.

6.2. Configure a load-balancing proxy using the HTTP Connector
Read this section to configure a load balancing proxy that uses the JBoss HTTP Connector.

Task: Configure a Proxy Server Listener

Follow this task to configure a JBoss Enterprise Web Server Apache service to act as a load-balancing
proxy using the JBoss HTTP Connector.

Prerequisites

Install JBoss Enterprise Web Server. Refer to JBoss Enterprise Web Server Installation Guide for
details.

Install JBoss HTTP Connector modules. Refer to Chapter 5, Install proxy server components for
details.

1. Create a listen directive for the proxy server
Edit the configuration file JBOSS_EWS_DIST/httpd/conf.d/JBoss_HTTP.conf and add the
following:

Listen IP_ADDRESS:PORT_NUMBER

Where IP_ADDRESS is the IP address of a server network interface to communicate with the
worker nodes, and PORT_NUMBER is the port on that interface to listen on.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 27

Note

The port PORT_NUMBER must be open on the server firewall for incoming TCP connections.

Example 6.1. Example Listen Directive

Listen 10.33.144.3:6666

2. Create Virtual Host
Add the following <VirtualHost> block to JBOSS_EWS_DIST/httpd/conf.d/JBoss_HTTP.conf:

<VirtualHost IP_ADDRESS:PORT_NUMBER>

 <Directory>
 Order deny,allow
 Deny from all
 Allow from 10.33.144.
 </Directory>

 KeepAliveTimeout 60
 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster
 AdvertiseFrequency 5

</VirtualHost>

Where IP_ADDRESS and PORT_NUMBER are the values from the Listen directive.

3. Optional: Disable Server Advertisement
The presence of the AdvertiseFrequency directive, which is set to five seconds here, causes
the server to periodically send server advertisement messages via UDP multicast.

These server advertisement messages contain the IP_ADDRESS and PORT_NUMBER specified in
the VirtualHost definition. Worker nodes that are configured to respond to server advertisements
use this information to register themselves with the proxy server.

To disable server advertisement, add the following directive to the VirtualHost definition:

ServerAdvertise Off

If server advertisements are disabled, or UDP multicast is not available on the network between
the proxy server and the worker nodes, you must configure worker nodes with a static list of proxy
servers. Refer to Section 9.1, “Static proxy configuration” for directions.

4. Restart the JBoss Enterprise Web Server Apache service
Refer to the JBoss Enterprise Web Server documentation for detailed directions.

28 Chapter 6. Configure basic proxy server

Chapter 7. Install node with basic configuration
Read this chapter to install the JBoss HTTP Connector on a worker node, and implement basic
configuration for the node to begin immediate operation.

7.1. Worker node requirements

Supported Worker Node types

JBoss Enterprise Platform 5 JBoss Web component

JBoss Enterprise Web Server Tomcat service

Note

JBoss Enterprise Platform worker nodes support all JBoss HTTP Connector functionality. JBoss
Enterprise Web Server Tomcat worker nodes support a subset of JBoss HTTP Connector
functionality.

JBoss HTTP Connector Enterprise Web Server Node Limitations

Non-clustered mode only.

Only one load metric can be used at a time when calculating the load balance factor.

7.2. Install and configure a worker node
This section contains a number of tasks. Follow the appropriate task to install and configure a worker
node on JBoss Enterprise Application Platform, or JBoss Enterprise Web Server.

Task: Install and Configure a JBoss Enterprise Application Platform Worker Node

Follow this procedure to install the JBoss HTTP Connector on a JBoss Enterprise Application Platform
node and configure it for non-clustered operation.

Prerequisites

Install a supported JBoss Enterprise Application Platform.

1. Deploy the worker node service
Copy mod-cluster.sar from the JBOSS_EAP_DIST/mod_cluster directory to jboss-
as/server/PROFILE/deploy.

2. Add a Listener to JBoss Web
Add the following Listener element beneath the other Listeners in JBOSS_EAP_DIST/jboss-
as/server/PROFILE/deploy/jbossweb.sar/server.xml:

<Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerIntegration
LifecycleListener" delegateBeanName="ModClusterService"/>

3. Configure the service dependency

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 29

Add the following depends element beneath the other depends elements in
JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy/jbossweb.sar/META-INF/jboss-
beans.xml:

<depends>ModClusterService</depends>

4. Give the worker a unique identity
Edit JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy/jbossweb.sar/server.xml and
add a jvmRoute attribute and value to the Engine element, as shown:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker01">

Use a unique jvmRoute value for each node.

5. Optional: Configure firewall to receive multicast Proxy Server advertisements
A proxy server using the JBoss HTTP Connector can advertise itself via UDP multicast. To enable
the worker node to dynamically discover proxy servers, open port 23364 for UDP connections on
the worker node's firewall.

For Linux users:

/sbin/iptables -A INPUT -m state --state NEW -m udp -p udp --dport 23364 -j
ACCEPT
-m comment --comment "receive mod_cluster proxy server advertisements"
/sbin/iptables save

If you are not using Automatic Proxy Discovery (see Automatic Proxy Discovery), configure worker
nodes with a static list of proxies. Refer to Section 9.1, “Static proxy configuration” for directions. In
this case you can safely ignore the following warning message:

[warning] mod_advertise: ServerAdvertise Address or Port not defined,
Advertise disabled!!!

Important

If your nodes are on different machines that run Red Hat Enterpise Linux, they may not
acknowledge each other automatically. JBoss Clustering relies on the UDP (User Datagram
Protocol) multi-casting provided by jGroups.
The SELinux configuration that ships with Red Hat Enterprise Linux blocks these packets
by default. To allow the packets, modify the iptables rules (as root). The following
commands apply to an IP address that matches 192.168.1.x:

/sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -D 224.0.1.0/24 -j
ACCEPT
/etc/init.d/iptables save
/sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -d 224.0.0.0/4 -j
ACCEPT
 /sbin/iptables -I RH-Firewall-1-INPUT 9 -p udp -s 192.168.1.0/24 -j
ACCEPT
 /sbin/iptables -I RH-Firewall-1-INPUT 10 -p tcp -s 192.168.1.0/24 -
j ACCEPT
 /etc/init.d/iptables save

Task: Install and Configure a JBoss Enterprise Web Server Worker Node

Follow this procedure to install the JBoss HTTP Connector on a JBoss Enterprise Web Server node and

30 Chapter 7. Install node with basic configuration

configure it for non-clustered operation.

Prerequisites

Install a supported JBoss Enterprise Web Server.

Understand the Proxy Configuration parameters discussed in Appendix B, Reference: Java
properties

1. Deploy worker node service
Copy all of the library files in the JBOSS_EAP_DIST/mod_cluster/JBossWeb-Tomcat/lib
directory. Move these files to JBOSS_EWS_DIST/tomcat6/lib/

2. Add a Listener to Tomcat
Add the following Listener element beneath the other Listener elements in
JBOSS_EWS_DIST/tomcat6/conf/server.xml.

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="true" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"/>

3. Give this worker a unique identity
Edit JBOSS_EWS_DIST/tomcat6/conf/server.xml and add a jvmRoute attribute and value to
the <Engine> element, as shown:

<Engine name="Catalina" defaultHost="localhost" jvmRoute="worker01">

4. Optional: Configure firewall to receive Proxy Server advertisements
A proxy server using the JBoss HTTP Connector can advertise itself via UDP multicast. To
receive these multicast messages, open port 23364 for UDP connections on the worker node's
firewall.

For Linux users:

/sbin/iptables -A INPUT -m state --state NEW -m udp -p udp --dport
 23364 -j ACCEPT
-m comment -comment "receive mod_cluster proxy server advertisements"

If you are not using Automatic Proxy Discovery (see Automatic Proxy Discovery), configure worker
nodes with a static list of proxies. Refer to Section 9.1, “Static proxy configuration” for directions. In
this case you can safely ignore the following warning message:

[warning] mod_advertise: ServerAdvertise Address or Port not defined,
Advertise disabled!!!

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 31

Chapter 8. Further server configuration
Read this chapter to implement further server configuration.

8.1. Apache server directives
Add the following Apache server directives to the Apache server configuration for server-wide effect.

8.1.1. CreateBalancers

The CreateBalancers directive determines how HTTP balancers are created in VirtualHosts.

CreateBalancers values
0

Create a balancer in all VirtualHosts.

1

Do not create balancers.

2

Create a balancer for the main server only.

32 Chapter 8. Further server configuration

Chapter 9. Advanced configuration
Read this chapter to configure advanced features of the JBoss HTTP Connector.

9.1. Static proxy configuration
Server advertisement allows worker nodes to dynamically discover and register themselves with proxy
servers. If UDP broadcast is not available or server advertisement is disabled then worker nodes must
be configured with a static list of proxy server addresses and ports.

Task: Configure Application Platform Worker Node with Static Proxy List

Follow this task to configure a JBoss Enterprise Application Platform worker node to operate with a static
list of proxy servers.

Prerequisites

JBoss Enterprise Application Platform worker node configured. Refer to Chapter 7, Install node with
basic configuration for directions.

1. Disable dynamic proxy discovery
Edit the file JBOSS_EAP_DIST/jboss-as/server/PROFILE/mod-cluster.sar/META-INF/mod-
cluster-jboss-beans.xml and set the advertise property to false:

<property name="advertise">false</property>

2. Choose, and implement, one of the following static proxy options:

A. Option 1: Create a static proxy server list
Edit JBOSS_EAP_DIST/jboss-as/server/PROFILE/mod-cluster.sar/META-INF/mod-
cluster-jboss-beans.xml and add a comma separated list of proxies in the form of
IP_ADDRESS:PORT in the proxyList property.

Example 9.1. Example Static Proxy List

<property
name="proxyList">10.33.144.3:6666,10.33.144.1:6666</property>

B. Option 2: Start the worker node with a static proxy list as a parameter
a. Edit JBOSS_EAP_DIST/server/PROFILE/mod-cluster.sar/META-INF/mod-

cluster-jboss-beans.xml

b. Add the following line:

<property name="domain">${jboss.modcluster.domain:}</property>

c. Add a comma separated list of proxies in the form of IP_ADDRESS:PORT as the
jboss.modcluster.proxyList parameter when starting the node.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 33

Example 9.2. Example Static Proxy List Parameter

-Djboss.modcluster.domain=10.33.144.3:6666,10.33.144.1:6666

Task: Configure Web Server Worker Node with Static Proxy List

Follow this procedure to configure a JBoss Enterprise Web Server worker node to operate with a static
list of proxy servers.

Prerequisites

JBoss Enterprise Web Server worker node configured. Refer to Chapter 7, Install node with basic
configuration for directions.

Understand the Proxy Configuration parameters discussed in Appendix B, Reference: Java
properties

1. Disable dynamic proxy discovery
Edit JBOSS_EWS_DIST/tomcat6/conf/server.xml. and set the advertise property of the
ModClusterListener to false:

2. Define a mod_cluster listener
Add a <Listener> element to server.xml.

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="false" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"/>

3. Create a static proxy server list
Add a comma separated list of proxies in the form of IP_ADDRESS:PORT as the proxyList
property of the ModClusterListener <Listener> element.

Example 9.3. Example Static Proxy List

<Listener className="org.jboss.modcluster.ModClusterListener"
advertise="false" stickySession="true" stickySessionForce="false"
stickySessionRemove="true"
proxyList="10.33.144.3:6666,10.33.144.1:6666"/>

9.2. Clustered node operation
The JBoss HTTP Connector can operate in non-clustered or clustered mode.

Note

Only JBoss Enterprise Application Platform nodes support clustered operation with the JBoss
HTTP Connector. JBoss Enterprise Web Server nodes support non-clustered operation only.

34 Chapter 9. Advanced configuration

JBoss HTTP Connector non-clustered operation

In non-clustered mode each worker node communicates directly with the proxy.

JBoss HTTP Connector clustered operation

In clustered mode multiple worker nodes form a JBoss HA (High Availability) cluster domain. A
single worker node communicates with the proxy on behalf of the other nodes in the cluster
domain.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 35

Chapter 10. Load balancing demonstration
The JBoss HTTP Connector includes a load balancing demonstration to show how different server-side
scenarios affect the client request routing performed by the load balancing proxy server. The required
configuration is located in the jboss-eap-5.1/mod_cluster/demo directory.

The application consists of two primary components:

/server/load-demo.war

A WAR file to be deployed in JBoss Enterprise Application Platform or JBoss Enterprise Web
Server. This WAR includes a number of servlets.

/client/lib/mod-cluster-demo.jar

A web application that lets users launch a pool of threads, which send requests through the
load balancer to load-demo.war's primary servlet. The application displays information about
which servers are handling the requests. It can also send separate requests to load-
demo.war's load generation servlets, allowing the user to see how certain load conditions affect
request load balancing.

The demo can be used to demonstrate how different worker-side scenarios impact the routing decisions
of the proxy server.

Important - Enterprise Web Server Limitation

If running the demonstration on JBoss Enterprise Web Server, the only metrics available will be
System, and JVM metrics. The Load-demo app is not designed to interact with any other metrics
in Tomcat 6.

The demo is not a load testing tool

The demo does not show the maximum load a cluster configuration can handle.

10.1. Set up the demonstration
The following procedure summarizes how set up and start the demonstration. These steps will then be
explained in further detail. Once the demo is running, refer to Section 10.3, “Interact with the
demonstration”.

Task: Start the Demo

Complete this task to set up the base requirements of the demonstration.

Prerequisites

Install and Configure the Worker Node. Refer to Section 7.2, “Install and configure a worker node”

Install and Configure the Proxy Server. Refer to Section 9.1, “Static proxy configuration”

36 Chapter 10. Load balancing demonstration

1. Start the Proxy Server
Navigate to HTTPD_DIST/sbin and start the proxy server.

[sbin]$ apachectl start

2. Start the Worker Node
In a terminal, execute the following command:

For JBoss Enterprise Web Server:

[home]$./JBOSS_EWS_DIST/tomcat6/bin/startup.sh

Restrictions on JBoss Enterprise Web Server:

Only jvm metrics are available for the Load-demo aplication when running on JBoss
Enterprise Web Server.

For JBoss Enterprise Application Platform:

[home]$./JBOSS_EAP_DIST/bin/run.sh

3. On JBoss Enterprise Web Server, specify the Catalina Service Name

Important

This step is only relevant to Tomcat 6 on JBoss Enterprise Web Server. Skip this step if
you are running the demonstration application on JBoss Enterprise Application Server.

In $JBOSS_EWS_DIST/mod_cluster/src/demo/resources/web.xml, under the <web-
app>element, append a <context-param> directive, which specifies Catalina as a service.

<context-param>
 <param-name>service-name</param-name>
 <param-value>Catalina</param-value>
</context-param>

4. Deploy Demo Web Archive to Worker Node
Copy load-demo.war from JBOSS-EAP_DIST/mod_cluster/demo/server into one of the
following directories:

For JBoss Enterprise Web Server:

JBOSS_EWS_DIST/tomcat6/webapps

For JBoss Enterprise Application Platform:

JBOSS_EAP_DIST/jboss-as/server/PROFILE/deploy

5. Start the Demonstration
Navigate to JBOSS_EAP_DIST/mod_cluster/demo/client/, and start the demonstration.

[client]$./run-demo.sh

Result

The demonstration starts, and the Load Balancing Demonstration window opens. Proceed to

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 37

Task: Configure Client Control Tab Fields

10.2. Configure the demo client
You must configure the demonstration's Client Control parameters to ensure the client operates as
expected throughout the demonstration.

Task: Configure Client Control Tab Fields

Complete this task to learn the values you must supply in the Client Control tab of the Load
Balancing Demonstration.

Prerequisites

Complete Task: Start the Demo before continuing with this task.

1. Click the Client Control tab.

2. Based on the following field definitions, supply values for all fields on the Client Control tab.

Proxy Hostname
Hostname of the load-balancing proxy server, or the IP address on which the proxy
server is listening for requests. The default value for this field is localhost, or
determined by the mod_cluster.proxy.host system property, if set.

Edit the -Dmod_cluster.proxy.host=localhost value in run-demo.sh to avoid re-
setting this value each time you use the demo.

Proxy Port
Port on which the load-balancing proxy server listens for requests. The default value is
8000, or determined by the mod_cluster.proxy.port property, if set.

Edit the -Dmod_cluster.proxy.port=8000 value in run-demo.sh to avoid re-setting

38 Chapter 10. Load balancing demonstration

this value each time you use the demo.

Context Path
The part of the request URL that specifies the request is for load-demo.war.

Session Life
Number of seconds a client thread should use a session before invalidating or
abandoning it. This should be a small value, or session stickiness can prevent changes
in server load from affecting the proxy server's routing decisions. When sticky sessions
are enabled (strongly recommended), the creation of new sessions allows the proxy to
balance the workload.

Invalidate
When checked, specifies that a session is invalidated by the client thread when the
thread stops using a session. When unchecked, the session is abandoned, and exists
on the worker node until the session timeout expires.

Session Timeout
The number of seconds a session can remain unused before the worker node can expire
and remove the session.

Deselecting Invalidate and setting a high value relative to session life causes a
significant number of unused sessions to accumulate on the server.

Num Threads
Number of client threads to launch. Each thread repeatedly makes requests until the
Stop button is pressed, or a request receives a response other than HTTP 200.

Sleep Time
Number of milliseconds that client threads should sleep between requests.

Startup Time
Number of seconds over which the application should stagger client thread start-up.
Staggering the start time of sessions avoids the unrealistic situation where all sessions
start and end almost simultaneously. Staggering the start time allows the proxy to
continually see new sessions and decide how to route them.

3. Once you have specified the values, proceed to Task: Interact with the Demonstration.

10.3. Interact with the demonstration

Terms
Active Sessions

A session is considered active if a client thread will ever send a request associated with the
session. When client threads stop using a session, they can either send a request to invalidate
it, or abandon it by no longer including its session cookie in requests.

Once a session has been abandoned, it is no longer reflected in the Session Balancing chart,
but will continue to exist on the worker node until it is removed based on session timeout
values.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 39

The number of client threads created since the last time the Start button was clicked.

Live Clients

The number of client threads currently running.

Failed Clients

The number of clients threads that terminated abnormally, for example, a request that resulted
in something other than a HTTP 200 response.

This section shows you how to configure and start using the demo.

Task: Interact with the Demonstration

Complete this task to experiment with load balancing in the demonstration.

Task Prerequesites

Complete Task: Start the Demo.

Complete Task: Configure Client Control Tab Fields.

1. Click on the Request Balancing tab to see how many requests are going to each of your worker
nodes.

2. Click on the Session Balancing tab to see how many active sessions are being hosted by each
of your worker nodes.

3. Stop some of the worker nodes, or undeploy load-demo.war, and observe the effect that this has
on request and session balancing.

4. Restart some of your worker nodes, or re-deploy the load-demo.war to some of your workers,
and observe the effect that this has on request and session balancing.

5. Experiment with adding artificial load to one or more worker nodes and observe the effects on load
and session balancing. (See Section 10.3.1, “Generate artificial load” for details.)

10.3.1. Generate art ificial load

You can use the Load Balancing Demonstration to instruct your worker nodes to generate various types
of load, and then track how that load affects request and session balancing. Load generation is
controlled in the Server Load Control tab:

Target Hostname, Target Port

The hostname and port number of the server on which to generate load. There are two
strategies for setting these values:

1. Use the hostname and port of the proxy server. The proxy will route the load to a worker
node. However, the client does not maintain a session cookie for these requests, so
subsequent generated load will not necessarily be routed to the same worker.

2. If your worker nodes are running the HttpConnector and the AJP connector, you can
specify the IP address and port on which a worker's HttpConnector is listening. (The
default is 8080.)

40 Chapter 10. Load balancing demonstration

Load Creation Action

Specifies the type of load the worker node should generate.

Available Actions
Active Sessions

Generates server load by causing session creation on the target server.

Datasource Use

Generates server load by taking connections from the java:DefaultDS datasource
for a set time.

Connection Pool Use

Generates server load by blocking threads in the webserver connections pool for a set
time.

Heap Memory Pool Use

Generates server load by filling 50% of free heap memory for a set time.

CPU Use

Generates server CPU load by initiating a tight loop in a thread.

Server Receive Traffic

Generates server traffic receipt load by POSTing a large byte array to the server once
per second for a set time.

Server Send Traffic

Generates server traffic send load by making a request once per second, to which the
server responds with a large byte array.

Request Count

Generates server load by making numerous requests, increasing the request count on
the target server.

Params

Zero or more parameters to pass to the specified load creation servlet, for example, Number of
Connections and Duration, as seen in the screenshot. The parameters displayed, their name,
and their meaning depend on the selected Load Creation Action. The label for each parameter
includes a tooltip that explains its use.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 41

Part III. Internet Server API (ISAPI)

42 Part III. Internet Server API (ISAPI)

Chapter 11. Overview
Read this chapter to get a brief introduction about the Internet Server Application Programming Interface
(ISAPI).

11.1. What is Internet Server API
Internet Server Application Programming Interface (ISAPI) is a multi-tier application programming interface
for Microsoft Internet Information Services (IIS) web servers, and other compatible third-party web
servers.

Two application types exist for ISAPI applications:

Extensions (full applications that run on IIS)

Filters (applications that modify or enhance IIS functionality by constantly filtering for requests
relevant to their functionality).

You implement the ISAPI applications by compiling Extensions or Filters into Dynamic Link Library (DLL)
files. The DLLs are registered with the web server which makes them available to use.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 43

Chapter 12. Configuring the ISAPI connector on Windows
Read this chapter to learn how to configure the ISAPI connector to use JBoss Enterprise Application
Platform as a worker node for a Windows Server 2003 or 2008 master node.

12.1. Prerequisites and configuration assumptions
Complete the following prerequisites before continuing with the tasks that follow:

Important

The tasks in this chapter assume all server instances are on the same machine. To use different
machines for each instance, use the -b switch to bind your instance of JBoss Enterprise Platform
to a public IP address. Ensure you edit the workers.properties file on the IIS machine to reflect
the IP address changes.

Configure the master node by installing any of the technology combinations, and the appropriate
Native binary for its operating system and architecture.

Windows Server 2003 (32-bit) with Microsoft IIS 6

Windows Server 2003 (64-bit) with Microsoft IIS 6

Windows Server 2008 (32-bit) with Microsoft IIS 7.0

Windows Server 2008 (64-bit) with Microsoft IIS 7.0

Configure worker nodes by installing JBoss Enterprise Application Platform 5.1.0 or later. The Native
components are optional for worker nodes.

Note

Refer to the Installation Guide for installation instructions, and to learn more about native
components.

12.2. Configure server instance as a worker node

Task: Configure Server Instance as a Worker Node

Complete this task to correctly configure your JBoss Enterprise Application Platform instance as a
worker node for use with Microsoft Internet Information Services (IIS).

Prerequisites

Section 12.1, “Prerequisites and configuration assumptions”

1. Create a server profile for each worker node
Make a copy of the default server profile you want to configure as a worker node, and rename it
to default-01.

2. Give each instance a unique name
Edit the following line in the deploy\jbossweb.sar\server.xml file of each new worker
instance:

44 Chapter 12. Configuring the ISAPI connector on Windows

<Engine name="jboss.web" defaultHost="localhost">

Add a unique jvmRoute value, as shown. This value is the identifier for this node in the cluster.

For the default-01 server profile:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker01">

For the default-02 server profile:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker02">

3. Enable session handling
Uncomment the following line in the deployers\jbossweb.deployer\META-INF\war-
deployers-jboss-beans.xml file of each worker node:

<property name="useJK">false</property>

This property controls whether special session handling is used to coordinate with mod_jk and
other connector variants. Set this property to true in both worker nodes:

<property name="useJK">true</property>

4. Start worker nodes
Start each worker node in a separate command line interface. Ensure that each node is bound to
a different IP address with the --host switch.

JBOSS_EAP_DIST\bin\run.bat --host=127.0.0.1 -c default-01

JBOSS_EAP_DIST\bin\run.bat --host=127.0.0.100 -c default

12.3. Microsoft IIS 6 initial clustering configuration
Microsoft IIS 6 contains basic ISAPI filters and ISAPI mapping as part of the default installation.

Task: Define ISAPI Filter

Complete this task to define the ISAPI Filter on the Master Server using the management console.

1. On the Master server, open IIS Manager:

Start → Run, then type inetmgr.

Start → Control Panel → Administrative Tools → Internet Information Services (IIS)
Manager

The IIS 6 Manager window opens.

2. In the tree view pane, expand Web Sites.

3. Right click on Default Web Site, and then click Properties.

The Properties window opens.

4. Click the ISAPI Filters tab.

5. Click the Add button, and specify the following values in the Add/Edit Filter Properties
window:

Filter name:
Specify jboss (exactly as written)

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 45

Executable:
Specify C:\connectors\jboss-ep-5.1\native\sbin\isapi_redirect.dll

6. Click OK to save the values, and close the Add/Edit Filter Properties dialog.

Note

The ISAPI Filters tab now displays the jboss filter status and priority as Unknown
because IIS has not yet received requests for the resource. The status and priority will
change to Loaded and High respectively once a request is executed.

Task: Define ISAPI Virtual Directory

Complete this task to define the ISAPI virtual directory using the IIS management console.

1. Right click on Default Web Site, and then click New → Add Virtual Directory.

The Add Virtual Directory window opens

2. Specify the following values in the Add Virtual Directory window:

Alias:
Specify jboss (exactly as written)

Physical path:
Specify C:\connectors\jboss-ep-5.1\native\sbin\

3. Click OK to save the values and close the Add Virtual Directory window.

4. In the tree view pane, expand Web Sites → Default Web Site
5. Right click on the jboss virtual directory, and then click Properties.

6. Click the Virtual Directory tab, and make the following changes:

Execute Permissions:
Select Scrips and Executables

Read check box:
Select to activate Read access

7. Click OK to save the values and close the jboss Properties window.

Task: Define ISAPI Web Service Extension

Complete this task to define the ISAPI web service extension using the management console.

1. Click Web Service Extensions, and in the Tasks group select Add a new Web service
extension.

The New Web Service Extension window opens.

2. Add the following values to the New Web Service Extension window:

Extension name:
Specify jboss

46 Chapter 12. Configuring the ISAPI connector on Windows

Required files:
Specify the path C:\connectors\jboss-ep-
5.1\native\sbin\isapi_redirect.dll

Set extension status to Allowed:
Select the check box.

3. Click OK to save the values and close the New Web Service Extension window.

4. Confirm the jboss Web Service Extension displays in the list.

12.4. Microsoft IIS 7 initial clustering configuration
Microsoft IIS 7 can be managed using the Management Console, or through the command prompt using
the APPCMD.EXE command tool.

Terms
ISAPI and CGI Restrictions

ISAPI and CGI restrictions are request handlers that allow dynamic content to execute on a
server. These restrictions are either CGI files (.exe) or ISAPI extensions (.dll). You can add
custom ISAPI or CGI restrictions if the IIS configuration system allows this.
[http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx].

Task: Define a JBoss Native ISAPI Restriction

Complete this task to define an ISAPI Restriction using the management console.

1. On the Master server, open IIS Manager:

Start → Run, then type inetmgr.

Start → Control Panel → Administrative Tools → Internet Information Services (IIS)
Manager

The IIS 7 Manager window opens.

2. In the tree view pane, select IIS 7 (referred to as Server Home).

The IIS 7 Home Features View opens in the

3. Double-click ISAPI and CGI Restrictions.

The ISAPI and CGI Restrictions Features View opens.

4. In the Actions pane, click Add.

The Add ISAPI or CGI Restriction window opens.

5. Specify the following values in the Add ISAPI or CGI Restriction window:

ISAPI or CGI Path:
Specify c:\connectors\jboss-ep-5.1\native\sbin\isapi_redirect.dll

Description:
Specify jboss (exactly as written).

Allow extension path to execute
Select the check box.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 47

6. Click OK to save the values, and close the Add ISAPI or CGI Restriction window.

Note

The ISAPI and CGI Restrictions Features View now displays the jboss restriction
and path.

Task: Define an JBoss Native Virtual Directory

Complete this task to define a virtual directory for the JBoss Native binary using the management
console.

1. Right click on Default Web Site, and then click Add Virtual Directory.

The Add Virtual Directory window opens

2. Specify the following values in the Add Virtual Directory window:

Alias:
Specify jboss (exactly as written)

Physical path:
Specify C:\connectors\jboss-ep-5.1\native\sbin\

3. Click OK to save the values and close the Add Virtual Directory window.

Task: Define a JBoss Native ISAPI Redirect Filter

Complete this task to define a JBoss Native ISAPI Redirect Filter using the management console.

1. In the tree view pane, expand Sites → Default Web Site .

2. Double-click ISAPI Filters.

The ISAPI Filters Features View opens.

3. In the Actions pane, click Add.

The Add ISAPI Filter window opens.

4. Specify the following values in the Add ISAPI Filter window:

Filter name:
Specify jboss (exactly as written)

Executable:
Specify C:\connectors\jboss-ep-5.1\native\sbin\isapi_redirect.dll

5. Click OK to save the values and close the Add ISAPI Filters window.

Task: Enable the ISAPI-dll Handler

Complete this task to enable the ISAPI-dll handler using the management console.

1. In the tree view pane, select IIS 7 (referred to as Server Home).

The IIS 7 Home Features View opens in the

2. Double-click Handler Mappings.

The Handler Mappings Features View opens.

48 Chapter 12. Configuring the ISAPI connector on Windows

3. In the Group by drop down box, select State .

The Handler Mappings are displayed in Enabled and Disabled groups.

4. If ISAPI-dll is in the Disabled group, right mouse click and select Edit Feature Permissions
5. Ensure the Read, Script, and Execute check boxes are selected.

6. Click OK to save the values and close the Edit Feature Permissions window.

12.5. Configure a basic cluster with ISAPI

Task: Configure ISAPI to serve a Basic Cluster

Complete this task to configure ISAPI to manage applications common to all servers on a single IP
address range, and route application requests to the correct server instance.

Use the configuration as an example when configuring your ISAPI cluster.

Note

This task does not provide instructions for load-balancing or server outage fail over. Refer to
Section 12.6, “Configure a load-balancing cluster with ISAPI” for configuration instructions.

Prerequisites

Complete the relevant Microsoft IIS clustering setup procedure. Refer to Section 12.3, “Microsoft IIS 6
initial clustering configuration” or Section 12.4, “Microsoft IIS 7 initial clustering configuration” for more
information.

The following steps assume that the C:\connectors directory is used to store logs, properties files,
and NSAPI locks.

1. Create isapi_redirect.properties file
Create a new file named isapi_redirect.properties in the C:\connectors\jboss-ep-
5.1\native\sbin\ directory.

Important

The isapi_redirect.properties file must be in the same directory as the
isapi_redirect.dll file.

Append the following configuration block to isapi_redirect.properties:

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 49

Configuration file for the ISAPI Redirector
Extension uri definition
extension_uri=/jboss/isapi_redirect.dll

Full path to the log file for the ISAPI Redirector
log_file=c:\connectors\isapi_redirect.log

Log level (debug, info, warn, error or trace)
Use debug only testing phase, for production switch to info
log_level=debug

Full path to the workers.properties file
worker_file=c:\connectors\workers.properties

Full path to the uriworkermap.properties file
worker_mount_file=c:\connectors\uriworkermap.properties

#Full path to the rewrite.properties file
rewrite_rule_file=c:\connectors\rewrite.properties

2. Optional: Create rewrite.properties file
The rewrite.properties file allows you to specify simple URL rewrites specific to an
application. This configuration file is optional, and can be excluded from the
isapi_redirect.properties file if URL rewrites are not required.

The functionality offered is similar to Apache mod_rewrite, but is less powerful. You specify the
rewrite path using name-value pairs. A simple example is where the app_01 application has an
abstract directory name containing images, and you want to remap that directory to something
more intuitive.

#Simple example, images are accessible under abc path
/app-01/abc/=/app-01/images/

3. Create uriworkermap.properties file
The uriworkermap.properties file contains deployed application mapping configuration
information. Append the following lines into the file.

images and css files for path /status are provided by worker01
/status=worker01
/images/*=worker01
/css/*=worker01

Path /web-console is provided by worker02
IIS (customized) error page is used for http errors with number greater
or equal to 400
css files are provided by worker01
/web-console/*=worker02;use_server_errors=400
/web-console/css/*=worker01

Example of exclusion from mapping, logo.gif won't be displayed
!/web-console/images/logo.gif=*

Requests to /app-01 or /app-01/something will be routed to worker01
/app-01|/*=worker01

Requests to /app-02 or /app-02/something will be routed to worker02
/app-02|/*=worker02

4. Create workers.properties file
The worker.properties file contains mapping definitions between worker labels and server

50 Chapter 12. Configuring the ISAPI connector on Windows

instances. Append the following lines into the file.

An entry that lists all the workers defined
worker.list=worker01, worker02

Entries that define the host and port associated with these workers

First EAP server definition, port 8009 is standard port for AJP in EAP
worker.worker01.host=127.0.0.1
worker.worker01.port=8009
worker.worker01.type=ajp13

Second EAP server definition
worker.worker02.host= 127.0.0.100
worker.worker02.port=8009
worker.worker02.type=ajp13

5. Restart IIS
Restart your IIS server to implement the changes. Execute the following commands for the IIS
version you are running:

IIS 6

C:\> net stop iisadmin /Y
C:\> net start w3svc

IIS 7

C:\> net stop was /Y
C:\> net start w3svc

6. Verify the Logs
Ensure you check the ISAPI logs once IIS has restarted. The logs are saved to the file location
specified in the log_file property in isapi_redirect.properties. You should also check IIS logs
and the Event Viewer for other events.

12.6. Configure a load-balancing cluster with ISAPI

Task: Configure ISAPI to serve a Load Balancing Cluster

Complete this task to configure ISAPI to manage applications common to all servers, route requests to
JBoss Enterprise Application Platform instances, and redirect requests to live nodes when some nodes
are not online or experiencing connectivity issues.

Use the configuration as an example when configuring your ISAPI cluster.

Prerequisites

Complete the relevant Microsoft IIS clustering setup procedure. Refer to Section 12.3, “Microsoft IIS 6
initial clustering configuration” or Section 12.4, “Microsoft IIS 7 initial clustering configuration” for more
information.

The following steps assume that the C:\connectors directory is used to store logs, properties files,
and NSAPI locks.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 51

1. Create isapi_redirect.properties file
Create a new file named isapi_redirect.properties in the C:\connectors\jboss-ep-
5.1\native\sbin\ directory.

Important

The isapi_redirect.properties file must be in the same directory as the
isapi_redirect.dll file.

Append the following configuration block to the file:

Configuration file for the ISAPI Redirector
Extension uri definition
extension_uri=/jboss/isapi_redirect.dll

Full path to the log file for the ISAPI Redirector
log_file=c:\connectors\isapi_redirect.log

Log level (debug, info, warn, error or trace)
Use debug only testing phase, for production switch to info
log_level=debug

Full path to the workers.properties file
worker_file=c:\connectors\workers.properties

Full path to the uriworkermap.properties file
worker_mount_file=c:\connectors\uriworkermap.properties

#OPTIONAL: Full path to the rewrite.properties file
rewrite_rule_file=c:\connectors\rewrite.properties

2. Optional: Create rewrite.properties file
The rewrite.properties file allows you to specify simple URL rewrites specific to an
application. This configuration file is optional, and can be excluded from the
isapi_redirect.properties file if URL rewrites are not required.

The functionality offered is similar to Apache mod_rewrite, but is less powerful. You specify the
rewrite path using name-value pairs. A simple example is where the app_01 application has an
abstract directory name containing images, and you want to remap that directory to something
more intuitive.

#Simple example, images are accessible under abc path
/app-01/abc/=/app-01/images/

3. Create uriworkermap.properties file
The uriworkermap.properties file contains deployed application mapping configuration
information. Append the following lines to the file.

52 Chapter 12. Configuring the ISAPI connector on Windows

images, css files, path /status and /web-console will provided by nodes
defined in load-balancer
/css/*=router
/images/*=router
/status=router
/web-console|/*=router

Example of exclusion from mapping, logo.gif won't be displayed
!/web-console/images/logo.gif=*

Requests to /app-01 and /app-02 will be routed to nodes defined in load-
balancer
/app-01|/*=router
/app-02|/*=router

mapping for management console, nodes in cluster can be enabled or
disabled here
/jkmanager|/*=status

4. Create workers.properties file
The worker.properties file contains mapping definitions between worker labels and server
instances. Append the following lines to the file.

The advanced router LB worker
worker.list=router,status

First EAP server definition, port 8009 is standard port for AJP in EAP
#
lbfactor defines how much the worker will be used.
The higher the number, the more requests are served
lbfactor is useful when one machine is more powerful
ping_mode=A – all possible probes will be used to determine that
connections are still working

worker.worker01.port=8009
worker.worker01.host=127.0.0.1
worker.worker01.type=ajp13
worker.worker01.ping_mode=A
worker.worker01.socket_timeout=10
worker.worker01.lbfactor=3

Second EAP server definition
worker.worker02.port=8009
worker.worker02.host= 127.0.0.100
worker.worker02.type=ajp13
worker.worker02.ping_mode=A
worker.worker02.socket_timeout=10
worker.worker02.lbfactor=1

Define the LB worker
worker.router.type=lb
worker.router.balance_workers=worker01,worker02

Define the status worker for jkmanager
worker.status.type=status

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 53

Note

For an explanation of workers.properties directives, refer to Appendix A, Reference:
workers.properties.

5. Restart IIS
Restart your IIS server to implement the changes. Execute the following commands for the IIS
version you are running:

IIS 6

C:\> net stop iisadmin /Y
C:\> net start w3svc

IIS 7

C:\> net stop was /Y
C:\> net start w3svc

6. Verify the Logs
Ensure you check the ISAPI logs once IIS has restarted. The logs are saved to the file location
specified in the log_file property in isapi_redirect.properties. You should also check IIS logs
and the Event Viewer for other events.

54 Chapter 12. Configuring the ISAPI connector on Windows

Part IV. Netscape Server API (NSAPI)

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 55

Chapter 13. What Is Netscape Server API
Read this chapter to gain a basic understand about the Netscape Server API (NSAPI).

NSAPI is a programming interface that allows developers to extend the functionality of web server
software by creating applications (referred to as plug-ins) that run inside the server process itself.

The goal of NSAPI, and its plug-ins, is to provide a method of creating different functional interfaces
between the HTTP Server and the back-end applications which run on it.

The NSAPI plug-ins are designed to implement Server Application Functions (SAFs). SAFs consume a
HTTP request and take input from a server configuration database, and return a response to the client
based on the inputs. Each SAF is linked to a particular class, which directly relates to the request-
response step it helps implement.

The request-response steps (classes) are summarized in the following list:

1. Authorization translation

2. Name translation

3. Path checks

4. Object type

5. Request response

6. Log transaction.

You are not required to provide a SAF for each request-response step: NSAPI allows you to substitute
your own custom functionality to the core request-response steps. You also have the choice of applying
the SAF globally, or constraining the SAF to a directory, file group, or individual file.

56 Chapter 13. What Is Netscape Server API

Chapter 14. Configuring the NSAPI connector on Solaris
The following tasks describe how to configure the NSAPI connector to use a JBoss Enterprise Platform
as a worker node for a Sun Java System Web Server (SJWS) master node.

Note

Sun Java System Web Server has been renamed to the Oracle iPlanet Web Server. The old name
is used throughout this guide for clarity.

In this section, all of the server instances are on the same machine. To use different machines for each
instance, use the -b switch to bind your instance of JBoss Enterprise Platform to a public IP address.
Remember to edit the workers.properties file on the SJWS machine to reflect these changes in IP
address.

14.1. Prerequisites and configuration assumptions
Worker nodes are already installed with a JBoss Enterprise Platform 5.1 or later. The Native
components are not a requirement of the NSAPI connector. Refer to the Installation Guide for
assistance with this prerequisite.

The master node is already installed with one of the following technology combinations, and the
appropriate Native binary for its operating system and architecture. Refer to the Installation Guide for
assistance with this installation prerequisite.

Solaris 9 x86 with Sun Java System Web Server 6.1 SP12

Solaris 9 SPARC 64 with Sun Java System Web Server 6.1 SP12

Solaris 10 x86 with Sun Java System Web Server 7.0 U8

Solaris 10 SPARC 64 with Sun Java System Web Server 7.0 U8

14.2. Configure server instance as a worker node

Task: Configure a JBoss Enterprise Application Platform Worker Node

Follow this task to correctly configure a JBoss Enterprise Application Platform instance as a SJWS
worker node.

Prerequisites

Section 14.1, “Prerequisites and configuration assumptions”

1. Create a server profile for each worker node
Make a copy of the server profile that you wish to configure as a worker node. (This procedure
uses the default server profile.)

[user@workstation jboss-ep-5.1]$ cd jboss-as/server
[user@workstation server]$ cp -r default/ default-01
[user@workstation server]$ cp -r default/ default-02

2. Give each instance a unique name
Edit the following line in the deploy/jbossweb.sar/server.xml file of each new worker

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 57

instance:

<Engine name="jboss.web" defaultHost="localhost">

Add a unique jvmRoute value, as shown. This value is the identifier for this node in the cluster.

For the default-01 server profile:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker01">

For the default-02 server profile:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="worker02">

3. Enable session handling
Uncomment the following line in the deployers/jbossweb.deployer/META-INF/war-
deployers-jboss-beans.xml file of each worker node:

<property name="useJK">false</property>

This property controls whether special session handling is used to coordinate with mod_jk and
other connector variants. Set this property to true in both worker nodes:

<property name="useJK">true</property>

4. Start your worker nodes
Start each worker node in a separate command line interface. Ensure that each node is bound to
a different IP address with the -b switch.

[user@workstation jboss-eap-5.1]$./jboss-as/bin/run.sh -b 127.0.0.1 -c
default-01

[user@workstation jboss-eap-5.1]$./jboss-as/bin/run.sh -b 127.0.0.100 -c
default-02

14.3. Initial clustering configuration

Task: Configure Init ial Clustering Behavior

Complete this task to configure the basic elements required for clustering using Sun Java Web Server
(SJWS) and NSAPI.

Prerequisites

Task: Configure a JBoss Enterprise Application Platform Worker Node

Native Z ip extracted to /tmp/connectors/jboss-ep-native-5.1/. This path is referred to as
NATIVE in this procedure.

The directory /tmp/connectors is used as the storage location for logs, properties files, and NSAPI
locks.

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in Section 1, “File
Name Conventions”.

1. Disable servlet mappings

58 Chapter 14. Configuring the NSAPI connector on Solaris

Under Built In Servlet Mappings in the SJWS/PROFILE/config/default-web.xml file, disable the
mappings for the following servlets, as shown in the code sample:

default

invoker

jsp

<!-- ==================== Built In Servlet Mappings ===================== -
->

<!-- The servlet mappings for the built in servlets defined above. -->

<!-- The mapping for the default servlet -->
<!--servlet-mapping>
 <servlet-name>default</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping-->

<!-- The mapping for the invoker servlet -->
<!--servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
</servlet-mapping-->

<!-- The mapping for the JSP servlet -->
<!--servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping-->

2. Load the required modules and properties
Append the following lines to the SJWS/PROFILE/config/magnus.conf file:

Init fn="load-modules" funcs="jk_init,jk_service"
shlib="NATIVE/lib/nsapi_redirector.so" shlib_flags="(global|now)"
Init fn="jk_init" worker_file="/tmp/connectors/workers.properties"
log_level="debug" log_file="/tmp/connectors/nsapi.log"
shm_file="/tmp/connectors/jk_shm"

These lines define the location of the nsapi_redirector.so module used by the jk_init and
jk_service functions, and the location of the workers.properties file, which defines the
worker nodes and their attributes.

Note

The lib directory in the NATIVE/lib/nsapi_redirector.so path applies only to 32-bit
machines. On 64-bit machines, this directory is called lib64.

14.4. Configure a basic cluster with NSAPI
Use the following procedure

Task: Configure a Basic Cluster with NSAPI

Complete this task to configure a basic cluster, where requests for particular paths are forwarded to
particular worker nodes. The procedure specifies worker02 serves the /nc path, while worker01 serves

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 59

/status and all other paths defined in the first part of the obj.conf file.

Prerequisites

Task: Configure Initial Clustering Behavior

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in Section 1, “File
Name Conventions”.

1. Define the paths to serve via NSAPI
Edit the SJWS/PROFILE/config/obj.conf file. Define paths that should be served via NSAPI at
the end of the default Object definition, as shown:

<Object name="default">
 [...]
 NameTrans fn="assign-name" from="/status" name="jknsapi"
 NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/jmx-console(|/*)" name="jknsapi"
</Object>

You can map the path of any application deployed on your JBoss Enterprise Platform instance in
this obj.conf file. In the example code, the /nc path is mapped to an application deployed under
the name nc.

2. Define the worker that serves each path
Edit the SJWS/PROFILE/config/obj.conf file and add the following jknsapi Object definition
after the default Object definition.

<Object name="jknsapi">
 ObjectType fn=force-type type=text/plain
 Service fn="jk_service" worker="worker01" path="/status"
 Service fn="jk_service" worker="worker02" path="/nc(/*)"
 Service fn="jk_service" worker="worker01"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to
name="jknsapi" in the default Object.

In the example code, the third Service definition does not specify a path value, so the worker node
defined (worker01) serves all of the paths assigned to jknsapi by default. In this case, the first
Service definition in the example code, which assigns the /status path to worker01, is
superfluous.

3. Define the workers and their attributes
Create a workers.properties file in the location you defined in Step 2.

Define the list of worker nodes and each worker node's properties in this file:

60 Chapter 14. Configuring the NSAPI connector on Solaris

An entry that lists all the workers defined
worker.list=worker01, worker02

Entries that define the host and port associated with these workers
worker.worker01.host=127.0.0.1
worker.worker01.port=8009
worker.worker01.type=ajp13

worker.worker02.host=127.0.0.100
worker.worker02.port=8009
worker.worker02.type=ajp13

4. Restart the server
Once your Sun Java System Web Server instance is configured, restart it so that your changes
take effect.

For Sun Java System Web Server 6.1:

SJWS/PROFILE/stop
SJWS/PROFILE/start

For Sun Java System Web Server 7.0:

SJWS/PROFILE/bin/stopserv
SJWS/PROFILE/bin/startserv

14.5. Configure a load-balanced cluster with NSAPI

Task: Configure a Load-balanced Cluster with NSAPI

Complete this task to configure a load-balanced cluster consisting of two worker nodes.

Prerequisites

Task: Configure Initial Clustering Behavior

SJWS is installed in one of the locations specified in the SJWS file path abbreviation in Section 1, “File
Name Conventions”.

1. Define the paths to serve via NSAPI
Open SJWS/PROFILE/config/obj.conf and define paths that should be served through NSAPI
at the end of the default Object definition, as shown:

<Object name="default">
 [...]
 NameTrans fn="assign-name" from="/status" name="jknsapi"
 NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/jmx-console(|/*)" name="jknsapi"
 NameTrans fn="assign-name" from="/jkmanager/*" name="jknsapi"
</Object>

You can map the path of any application deployed on your JBoss Enterprise Platform instance in
this obj.conf file. In the example code, the /nc path is mapped to an application deployed under
the name nc.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 61

2. Define the worker that serves each path
Open SJWS/PROFILE/config/obj.conf and add the following jknsapi Object definition after
the default Object definition.

<Object name="jknsapi">
 ObjectType fn=force-type type=text/plain
 Service fn="jk_service" worker="status" path="/jkmanager(/*)"
 Service fn="jk_service" worker="router"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to
name="jknsapi" in the default Object.

3. Define the workers and their attributes
Create SJWS/PROFILE/config/workers.properties.

Define the list of worker nodes and each worker node's properties in this file:

Note

For an explanation of workers.properties directives, refer to Appendix A, Reference:
workers.properties

The advanced router LB worker
worker.list=router,status

#First EAP server definition, port 8009 is standard port for AJP in EAP
#
#lbfactor defines how much the worker will be used.
#The higher the number, the more requests are served
#lbfactor is useful when one machine is more powerful
#ping_mode=A – all possible probes will be used to determine that
#connections are still working
worker.worker01.port=8009
worker.worker01.host=127.0.0.1
worker.worker01.type=ajp13
worker.worker01.ping_mode=A
worker.worker01.socket_timeout=10
worker.worker01.lbfactor=3

#Second EAP server definition
worker.worker02.port=8009
worker.worker02.host=127.0.0.100
worker.worker02.type=ajp13
worker.worker02.ping_mode=A
worker.worker02.socket_timeout=10
worker.worker02.lbfactor=1

Define the LB worker
worker.router.type=lb
worker.router.balance_workers=worker01,worker02

Define the status worker
worker.status.type=status

4. Restart the server
Once your Sun Java System Web Server instance is configured, restart it so that your changes
take effect.

For Sun Java System Web Server 6.1:

62 Chapter 14. Configuring the NSAPI connector on Solaris

SJWS/PROFILE/stop
SJWS/PROFILE/start

For Sun Java System Web Server 7.0:

SJWS/PROFILE/bin/stopserv
SJWS/PROFILE/bin/startserv

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 63

Part V. Common load balancing tasks

64 Part V. Common load balancing tasks

Chapter 15. HTTP session state replication

Software Load Balancer

A dedicated software-based service designed to distribute HTTP client session requests across
multiple computer servers (cluster). The primary directive of a software load balancer is to maximize
resource utilization, reduce request response times, and prevent server overload. The load balancer
forwards client session requests to a server cluster, based on server load and availability.

Client Session

A semi-permanent connection between the client (an application) and the server. The load balancer
determines whether the client session is created with persistence, or whether a client session is
redistributed based on server load and availability.

Session Persistence

A client session that is exclusively allocated to a single server instance. The load balancer routes all
HTTP requests associated with the client session to the allocated server instance only. Session
persistence is commonly referred to as a sticky session.

Sticky Session

See Session Persistence.

Section 3.1, “Configure worker nodes in mod_jk” describes how to configure session state persistence
in the load balancer to ensure a client in a session is always routed to the same server node.

Session persistence on its own is not a best-practice solution because if a server fails, all session state
data is lost. For example, if a customer is about to make a purchase on a web site, and the server
hosting the shopping cart instance fails, session state data associated with the cart is lost permanently.

One way of preventing client session data loss is to replicate session data across the servers in the
cluster. If a server node fails or is shut down, the load balancer can fail over the next client request to
any server node and obtain the same session state.

Using a load-balancer that supports session persistence, but not configuring web applications for
session replication allows you to scale your implementation by avoiding the cost of session state
replication: each request for a session will always be handled by the same node.

Session state replication is more expensive than basic session persistence, but the reliability it provides
for session state data makes it important when creating a load balanced cluster.

15.1. Enabling session replication in your application
To enable replication of your web application you must tag the application as distributable in the
web.xml descriptor. Here's an example:

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 65

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <distributable/>

</web-app>

You can further configure session replication using the replication-config element in the jboss-
web.xml file. However, the replication-config element only needs to be set if one or more of the
default values described below is unacceptable. Here is an example:

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <replication-config>
 <cache-name>custom-session-cache</cache-name>
 <replication-trigger>SET</replication-trigger>
 <replication-granularity>ATTRIBUTE</replication-granularity>
 <replication-field-batch-mode>true</replication-field-batch-mode>
 <use-jk>false</use-jk>
 <max-unreplicated-interval>30</max-unreplicated-interval>
 <snapshot-mode>INSTANT</snapshot-mode>
 <snapshot-interval>1000</snapshot-interval>
 <session-notification-
policy>com.example.CustomSessionNotificationPolicy</session-notification-policy>
 </replication-config>

</jboss-web>

All of the configuration elements are optional, and can be omitted if the default value is acceptable. A
couple are commonly used; the rest are very infrequently changed from the defaults. We'll cover the
commonly used ones first.

The <replication-trigger> element determines when the container should consider that session data
must be replicated across the cluster. The rationale for this setting is that after a mutable object stored
as a session attribute is accessed from the session, in the absence of a setAttribute call the
container has no clear way to know if the object (and hence the session state) has been modified and
needs to be replicated. This element has 3 valid values:

SET_AND_GET is conservative but not optimal (performance-wise): it will always replicate session
data even if its content has not been modified but simply accessed. This setting made (a little) sense
in JBoss Enterprise Application Platform 4 since using it was a way to ensure that every request
triggered replication of the session's timestamp. Since setting max_unreplicated_interval to 0
accomplishes the same thing at much lower cost, using SET_AND_GET makes no sense with
Enterprise Application Platform 5.

SET_AND_NON_PRIMITIVE_GET is conservative but will only replicate if an object of a non-
primitive type has been accessed (in effect, the object is not of a well-known immutable JDK type
such as Integer, Long, String, etc.) This is the default value.

SET assumes that the developer will explicitly call setAttribute on the session if the data needs
to be replicated. This setting prevents unnecessary replication and can have a major beneficial
impact on performance, but requires very good coding practices to ensure setAttribute is always

66 Chapter 15. HTTP session state replication

called whenever a mutable object stored in the session is modified.

In all cases, calling setAttribute marks the session as needing replication.

The <replication-granularity> element determines the granularity of what gets replicated if the container
determines session replication is needed. The supported values are:

SESSION

Specifies the entire session attribute map should be replicated when any attribute is considered
modified. Replication occurs at request end. This option replicates the most data and thus
incurs the highest replication cost, but since all attributes values are always replicated together
it ensures that any references between attribute values will not be broken when the session is
deserialized. For this reason it is the default setting.

ATTRIBUTE

Specifies only attributes that the session considers to be potentially modified are replicated.
Replication occurs at request end. For sessions carrying large amounts of data, parts of which
are infrequently updated, this option can significantly increase replication performance.
However, it is not suitable for applications that store objects in different attributes that share
references with each other (for example,. a Person object in the "husband" attribute sharing
with another Person in the "wife" attribute a reference to an Address object). This is because if
the attributes are separately replicated, when the session is deserialized on remote nodes the
shared references will be broken.

The other elements under the replication-config element are much less frequently used.

<cacheName>

Specifies the name of the JBoss Cache configuration that should be used for storing
distributable sessions and replicating them around the cluster. This element lets web
applications that require different caching characteristics specify the use of separate, differently
configured, JBoss Cache instances. In JBoss Enterprise Application Platform 4 the cache to use
was a server-wide configuration that could not be changed per web application. The default
value is standard-session-cache See Section 15.3, “Configure the JBoss Cache instance
used for session state replication” for more details on JBoss Cache configuration for web tier
clustering.

<replication-field-batch-mode>

Specifies whether all replication messages associated with a request will be batched into one
message. This is applicable only if replication-granularity is FIELD. If replication-
field-batch-mode is set to true, fine-grained changes made to objects stored in the session
attribute map will replicate only when the HTTP request is finished; otherwise they replicate as
they occur. Setting this to false is not advised. Default is true.

<useJK>

Specifies whether the container should assume that a JK-based software load balancer (for
example,. mod_jk, mod_proxy, mod_cluster) is being used for load balancing for this web
application. If set to true, the container will examine the session ID associated with every
request and replace the jvmRoute portion of the session ID if it detects a failover.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 67

You need only set this to false for web applications whose URL cannot be handled by the JK
load balancer.

<max-unreplicated-interval>

Specifies the maximum interval between requests, in seconds, after which a request will trigger
replication of the session's timestamp regardless of whether the request has otherwise made
the session dirty. Such replication ensures that other nodes in the cluster are aware of the
most recent value for the session's timestamp and won't incorrectly expire an unreplicated
session upon failover. It also results in correct values for
HttpSession.getLastAccessedTime() calls following failover.

The default value is null (in effect, unspecified). In this case the session manager will use the
presence or absence of a jvmRoute configuration on its enclosing JBoss Web Engine (see
Section 3.2, “Configuring JBoss to work with mod_jk”) to determine whether JK is used.

A value of 0 means the timestamp will be replicated whenever the session is accessed. A value
of -1 means the timestamp will be replicated only if some other activity during the request (for
example,. modifying an attribute) has resulted in other replication work involving the session. A
positive value greater than the HttpSession.getMaxInactiveInterval() value will be
treated as probable misconfiguration and converted to 0; (in effect, replicate the metadata on
every request). Default value is 60.

<snapshot-mode>

Specifies when sessions are replicated to the other nodes. Possible values are INSTANT (the
default) and INTERVAL.

The typical value, INSTANT, replicates changes to the other nodes at the end of requests, using
the request processing thread to perform the replication. In this case, the snapshot-interval
property is ignored.

With INTERVAL mode, a background task is created that runs every snapshot-interval
milliseconds, checking for modified sessions and replicating them.

Note that this property has no effect if replication-granularity is set to FIELD. If it is
FIELD, INSTANT mode will be used.

<snapshot-interval>

Specifies how often (in milliseconds) the background task that replicates modified sessions
should be started for this web application. Only meaningful if snapshot-mode is set to
INTERVAL.

<session-notification-policy>

Specifies the fully qualified class name of the implementation of the
ClusteredSessionNotificationPolicy interface that should be used to govern whether
servlet specification notifications should be emitted to any registered HttpSessionListener,
HttpSessionAttributeListener and/or HttpSessionBindingListener.

68 Chapter 15. HTTP session state replication

Important

Event notifications that may be appropriate in non-clustered environment may not
necessarily be appropriate in a clustered environment; see
https://jira.jboss.org/jira/browse/JBAS-5778 for an example of why a notification may not
be desired. Configuring an appropriate ClusteredSessionNotificationPolicy gives
the application author fine-grained control over what notifications are issued.

15.2. HttpSession passivation and activation

Passivation

The process of controlling memory usage by removing relatively unused sessions from memory while
storing them in persistent storage.

If a passivated session is requested by a client, it can be "activated" back into memory and removed
from the persistent store. JBoss Enterprise Application Platform 5 supports HttpSessions passivation
from clustered web applications where the web.xml file includes the distributable directive.

Passivation occurs at three points during the lifecycle of a web application:

When the container requests the creation of a new session. If the number of currently active
sessions exceeds a configurable limit, an attempt is made to passivate sessions to make room in
memory.

Periodically (by default every ten seconds) as the JBoss Web background task thread runs.

When the web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager.

A session is passivated if one of the following conditions is true:

The session has not been in use for longer than a configurable maximum idle time.

The number of active sessions exceeds a configurable maximum and the session has not been in
use for longer than a configurable minimum idle time.

In both cases, sessions are passivated on a Least Recently Used (LRU) basis.

15.2.1. Configuring HttpSession passivation

Session passivation behavior is configured via the jboss-web.xml deployment descriptor in your web
application's WEB-INF directory.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 69

https://jira.jboss.org/jira/browse/JBAS-5778

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <max-active-sessions>20</max-active-sessions>
 <passivation-config>
 <use-session-passivation>true</use-session-passivation>
 <passivation-min-idle-time>60</passivation-min-idle-time>
 <passivation-max-idle-time>600</passivation-max-idle-time>
 </passivation-config>

</jboss-web>

max-active-session
Determines the maximum number of active sessions allowed. If the number of sessions managed by
the the session manager exceeds this value and passivation is enabled, the excess will be
passivated based on the configured passivation-min-idle-time. If after passivation is completed
(or if passivation is disabled), the number of active sessions still exceeds this limit, attempts to
create new sessions will be rejected. If set to -1 (the default), there is no limit.

use-session-passivation
Determines whether session passivation will be enabled for the web application. Default is false.

passivation-min-idle-t ime
Determines the minimum time (in seconds) that a session must have been inactive before the
container will consider passivating it in order to reduce the active session count to obey the value
defined by max-active-sessions. A value of -1 (the default) disables passivating sessions before
passivation-max-idle-time. Neither a value of -1 nor a high value are recommended if max-
active-sessions is set.

passivation-max-idle-t ime
Determines the maximum time (in seconds) that a session can be inactive before the container
should attempt to passivate it to save memory. Passivation of such sessions will take place
regardless of whether the active session count exceeds max-active-sessions. Should be less
than the web.xml session-timeout setting. A value of -1 (the default) disables passivation based
on maximum inactivity.

The total number of sessions in memory includes sessions replicated from other cluster nodes that are
not being accessed on this node. Take this into account when setting max-active-sessions. The
number of sessions replicated from other nodes will also depend on whether buddy replication is
enabled.

Say, for example, that you have an eight node cluster, and each node handles requests from 100 users.
With total replication, each node would store 800 sessions in memory. With buddy replication enabled,
and the default numBuddies setting (1), each node will store 200 sessions in memory.

15.3. Configure the JBoss Cache instance used for session state
replication
The container for a distributable web application makes use of JBoss Cache to provide HTTP session
replication services around the cluster. The container integrates with the CacheManager service to
obtain a reference to a JBoss Cache instance. For more information, refer to the Distributed Caching with
JBoss Cache Chapter in the Administration and Configuration Guide

70 Chapter 15. HTTP session state replication

The name of the JBoss Cache configuration to use is controlled by the cacheName element in the
application's jboss-web.xml (see Section 15.1, “Enabling session replication in your application”). In
most cases this does not need to be set because the default value of standard-session-cache is
appropriate.

The JBoss Cache configurations in the CacheManager service expose a number of options.

Note

For more information, refer to the JBoss Cache chapter in the Administration and Configuration
Guide

The standard-session-cache configuration is already optimized for the web session replication use
case, and most of the settings should not be altered. Administrators may be interested in altering the
following settings:

cacheMode
The default is REPL_ASYNC, which specifies that a session replication message sent to the cluster
does not wait for responses from other cluster nodes confirming that the message has been
received and processed. The alternative mode, REPL_SYNC, offers a greater degree of confirmation
that session state has been received, but reduces performance significantly.

Note

For more information about the other available parameters for cacheMode, refer to the Cache
Mode section in the Administration and Configuration Guide.

enabled property in the buddyReplicationConfig section

Set to true to enable buddy replication. Default is false.

Note

For more information about the other available parameters for cacheMode, refer to the Buddy
Replication section in the Administration and Configuration Guide.

numBuddies property in the buddyReplicationConfig section

Set to a value greater than the default (1) to increase the number of backup nodes onto which
sessions are replicated. Only relevant if buddy replication is enabled.

Note

For more information about the other available parameters for cacheMode, refer to the Buddy
Replication section in the Administration and Configuration Guide.

buddyPoolName property in the buddyReplicationConfig section

A way to specify a preferred replication group when buddy replication is enabled. JBoss Cache tries
to pick a buddy who shares the same pool name (falling back to other buddies if not available). Only
relevant if buddy replication is enabled.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 71

Note

For more information about the other available parameters for cacheMode, refer to the Buddy
Replication section in the Administration and Configuration Guide.

multiplexerStack
Name of the JGroups protocol stack the cache should use.

Note

For more information about the other available parameters for cacheMode, refer to The
Channel Factory Service section in the Administration and Configuration Guide.

clusterName
Identifying name JGroups will use for this cache's channel. Only change this if you create a new
cache configuration, in which case this property should have a different value from all other cache
configurations.

If you wish to use a completely new JBoss Cache configuration rather than editing one of the existing
ones, refer to Deployment Via the CacheManager Service section in the Administration and
Configuration Guide.

72 Chapter 15. HTTP session state replication

Chapter 16. Using clustered Single Sign-on (SSO)
JBoss supports clustered single sign-on (SSO), allowing a user to authenticate to one web application
and to be recognized on all web applications that are deployed on the same virtual host, whether or not
they are deployed on that same machine or on another node in the cluster.

Authentication replication is handled by JBoss Cache. Clustered single sign-on support is a JBoss-
specific extension of the non-clustered org.apache.catalina.authenticator.SingleSignOn valve
that is a standard part of Tomcat and JBoss Web.

16.1. Configuration
To enable clustered single sign-on, you must add the ClusteredSingleSignOn valve to the
appropriate Host elements of the JBOSS_HOME/server/PROFILE/deploy/jbossweb.sar/server.xml
file. The valve element is already included in the standard file; you just need to uncomment it. The valve
configuration is shown here:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" />

The element supports the following attributes:

className is a required attribute to set the Java class name of the valve implementation to use.
This must be set to org.jboss.web.tomcat.service.sso.ClusteredSingleSign.

cacheConfig is the name of the cache configuration to use for the clustered SSO cache. Default is
clustered-sso.

Note

For more information about cache configuration, refer to The JBoss Enterprise Application
Platform CacheManager Service section in the Administration and Configuration Guide.

treeCacheName is deprecated; use cacheConfig. Specifies a JMX ObjectName of the JBoss
Cache MBean to use for the clustered SSO cache. If no cache can be located from the
CacheManager service using the value of cacheConfig, an attempt to locate an mbean registered in
JMX under this ObjectName will be made. Default value is
jboss.cache:service=TomcatClusteringCache.

cookieDomain is used to set the host domain to be used for SSO cookies. See Section 16.4,
“Configuring the cookie domain” for more. Default is "/".

maxEmptyLife is the maximum number of seconds an SSO with no active sessions will be usable
by a request. The clustered SSO valve tracks what cluster nodes are managing sessions related to
an SSO. A positive value for this attribute allows proper handling of shutdown of a node that is the
only one that had handled any of the sessions associated with an SSO. The shutdown invalidates
the local copy of the sessions, eliminating all sessions from the SSO. If maxEmptyLife were zero, the
SSO would terminate along with the local session copies. But, backup copies of the sessions (if they
are from clustered webapps) are available on other cluster nodes. Allowing the SSO to live beyond
the life of its managed sessions gives the user time to make another request which can fail over to a
different cluster node, where it activates the the backup copy of the session. Default is 1800, (30
minutes).

processExpiresInterval is the minimum number of seconds between efforts by the valve to find
and invalidate SSO's that have exceeded their 'maxEmptyLife'. Does not imply effort will be spent on
such cleanup every 'processExpiresInterval', just that it won't occur more frequently than that. Default
is 60.

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 73

requireReauthentication is a flag to determine whether each request needs to be reauthenticated
to the security Realm. If "true", this Valve uses cached security credentials (username and
password) to reauthenticate to the JBoss Web security Realm each request associated with an SSO
session. If false, the valve can itself authenticate requests based on the presence of a valid SSO
cookie, without rechecking with the Realm. Setting to true can allow web applications with different
security-domain configurations to share an SSO. Default is false.

16.2. SSO behavior
The user will not be challenged as long as they access only unprotected resources in any of the web
applications on the virtual host.

Upon access to a protected resource in any web app, the user will be challenged to authenticate, using
the login method defined for the web app.

Once authenticated, the roles associated with this user will be utilized for access control decisions
across all of the associated web applications, without challenging the user to authenticate themselves to
each application individually.

If the web application invalidates a session (by invoking the
javax.servlet.http.HttpSession.invalidate() method), the user's sessions in all web
applications will be invalidated.

A session timeout does not invalidate the SSO if other sessions are still valid.

16.3. Limitations
There are a number of known limitations to this Tomcat valve-based SSO implementation:

Only useful within a cluster of JBoss servers; SSO does not propagate to other resources.

Requires use of container managed authentication (via <login-config> element in web.xml)

Requires cookies. SSO is maintained via a cookie and URL rewriting is not supported.

Unless requireReauthentication is set to true, all web applications configured for the same
SSO valve must share the same JBoss Web Realm and JBoss Security security-domain. This
means:

In server.xml you can nest the Realm element inside the Host element (or the surrounding
Engine element), but not inside a context.xml packaged with one of the involved web
applications.

The security-domain configured in jboss-web.xml or jboss-app.xml must be consistent for
all of the web applications.

Even if you set requireReauthentication to true and use a different security-domain (or,
less likely, a different Realm) for different webapps, the varying security integrations must all
accept the same credentials (for example,. username and password).

16.4. Configuring the cookie domain
The SSO valve supports a cookieDomain configuration attribute. This attribute allows configuration of
the SSO cookie's domain (the set of hosts to which the browser will present the cookie). By default the
domain is "/", meaning the browser will only present the cookie to the host that issued it. The
cookieDomain attribute allows the cookie to be scoped to a wider domain.

For example, suppose we have a case where two apps, with URLs http://app1.xyz.com and

74 Chapter 16. Using clustered Single Sign-on (SSO)

http://app2.xyz.com, that wish to share an SSO context. These apps could be running on different
servers in a cluster or the virtual host with which they are associated could have multiple aliases. This
can be supported with the following configuration:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"
 cookieDomain="xyz.com" />

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 75

Chapter 17. Complete working example
Following are a set of example configuration files for a complete working example.

Proxy Server

A proxy server listening on localhost:

<LoadModule slotmem_module modules/mod_slotmem.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so

Listen 127.0.0.1:6666
<VirtualHost 127.0.0.1:6666>

 <Directory />
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
 </Directory>

 KeepAliveTimeout 60
 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster
 ServerAdvertise On
 AdvertiseFrequency 5

</VirtualHost>

<Location /mod_cluster-manager>
 SetHandler mod_cluster-manager
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

JBoss Web Client Listener

Following are the listener definitions for
JBOSS_EAP_DIST/server/PROFILE/deploy/jbossweb.sar/server.xml.

<!-- Non-clustered mode -->
<Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerIntegrationLifec
ycleListener" delegateBeanName="ModClusterService"/>
<!-- Clustered mode
 Listener
className="org.jboss.web.tomcat.service.deployers.MicrocontainerIntegrationLifec
ycleListener" delegateBeanName="HAModClusterService"/-->

JBoss Web Client Service Dependencies

Following are the required dependencies for the WebServer bean in
JBOSS_EAP_DIST/server/PROFILE/deploy/jbossweb.sar/META-INF/jboss-beans.xml. Add them
to the existing dependencies.

76 Chapter 17. Complete working example

<bean name="WebServer"
class="org.jboss.web.tomcat.service.deployers.TomcatService">
 <!-- ... -->
 <depends>ModClusterService</depends><!-- Non-clustered mode -->
 <!--depends>HAModClusterService</depends--><!-- Clustered mode -->
 <!-- ... -->
</bean>

Example iptables Firewall Rules

Following are a set of example firewall rules using iptables, for a cluster node on the 192.168.1.0/24
subnet.

/sbin/iptables -I INPUT 5 -p udp -d 224.0.1.0/24 -j ACCEPT -m comment --comment
"mod_cluster traffic"
/sbin/iptables -I INPUT 6 -p udp -d 224.0.0.0/4 -j ACCEPT -m comment --comment
"JBoss Cluster traffic"
/sbin/iptables -I INPUT 9 -p udp -s 192.168.1.0/24 -j ACCEPT -m comment --
comment "cluster subnet for inter-node communication"
/sbin/iptables -I INPUT 10 -p tcp -s 192.168.1.0/24 -j ACCEPT -m comment --
comment "cluster subnet for inter-node communication"
/etc/init.d/iptables save

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 77

Reference: workers.properties
Apache httpd Server worker nodes are Servlet containers that are mapped to the mod_jk load balancer.
The worker nodes are defined in HTTPD_DIST/conf/workers.properties. This file specifies where
the different Servlet containers are located, and how calls should be load-balanced across them.

The workers.properties file contains two sections:

Global Properties

This section contains directives that apply to all workers.

Worker Properties

This section contains directives that apply to each individual worker.

Each node is defined using the Worker Properties naming convention. The worker name can only
contain alphanumeric characters, limited to [a-z][A-Z][0-9][_-/].

The structure of a Worker Property is worker.worker_name.directive

worker

The constant prefix for all worker properties.

worker_name

The arbitrary name given to the worker. For example: node1, node_01, Node_1.

directive

The specific directive required.

The main directives required to configure worker nodes are described below.

Note

For the full list of worker.properties configuration directives, refer directly to the Apache
Tomcat Connector - Reference Guide

worker.properties Global Directives
worker.list

Specifies the list of worker names used by mod_jk. The workers in this list are available to map
requests to.

78 Reference: workers.properties

http://tomcat.apache.org/connectors-doc/reference/workers.html

Note

A single node configuration, which is not managed by a load balancer, must be set to
worker.list=[worker name].

workers.properties Mandatory Directives
type

Specifies the type of worker, which determines the directives applicable to the worker. The
default value is ajp13, which is the preferred worker type to select for communication between
the web server and Apache httpd Server.

Other values include ajp14, lb, status.

For detailed information about ajp13, refer to The Apache Tomcat Connector - AJP Protocol
Reference

workers.properties Connection Directives
host

The hostname or IP address of the worker. The worker node must support the ajp13 protocol
stack. The default value is localhost.

You can specify the port directive as part of the host directive by appending the port number
after the hostname or IP address. For example: worker.node1.host=192.168.2.1:8009 or
worker.node1.host=node1.example.com:8009

port

The port number of the remote server instance listening for defined protocol requests. The
default value is 8009, which is the default listen port for AJP13 workers. If you are using AJP14
workers, this value must be set to 8011.

ping_mode

Specifies the conditions under which connections are probed for their current network health.

The probe uses an empty AJP13 packet for the CPing, and expects a CPong in return, within a
specified timeout.

You specify the conditions by using a combination of the directive flags. The flags are not
comma-separated. For example, a correct directive flag set is worker.node1.ping_mode=CI

C (connect)

Specifies the connection is probed once after connecting to the server. You specify the
timeout using the connect_timeout directive, otherwise the value for ping_timeout
is used.

P (prepost)

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 79

http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

Specifies the connection is probed before sending each request to the server. You
specify the timeout using the prepost_timeout directive, otherwise the value for
ping_timeout is used.

I (interval)

Specifies the connection is probed during regular internal maintenance cycles. You
specify the idle time between each interval using the connection_ping_interval
directive, otherwise the value for ping_timeout is used.

A (all)

The most common setting, which specifies all directive flags are applied. For
information about the *_timeout advanced directives, refer directly to Apache Tomcat
Connector - Reference Guide.

ping_timeout

Specifies the time to wait for CPong answers to a CPing connection probe (refer to ping_mode).
The default value is 10000 (milliseconds).

worker.properties Load Balancing Directives
lbfactor

Specifies the load-balancing factor for an individual worker, and is only specified for a member
worker of a load balancer.

This directive defines the relative amount of HTTP request load distributed to the worker
compared to other workers in the cluster.

A common example where this directive applies is where you want to differentiate servers with
greater processing power than others in the cluster. For example, if you require a worker to take
three times the load than other workers, specify worker.worker name.lbfactor=3

balance_workers

Specifies the worker nodes that the load balancer must manage. The directive can be used
multiple times for the same load balancer, and consists of a comma-separated list of worker
names as specified in the workers.properties file.

sticky_session

Specifies whether requests for workers with SESSION IDs are routed back to the same worker.
The default is 0 (false). When set to 1 (true), load balancer persistence is enabled.

For example, if you specify worker.loadbalancer.sticky_session=0, each request is load
balanced between each node in the cluster. In other words, different requests for the same
session will go to different servers based on server load.

If worker.loadbalancer.sticky_session=1, each session is persisted (locked) to one
server until the session is terminated, providing that server is available.

80 Reference: workers.properties

http://tomcat.apache.org/connectors-doc/reference/workers.html

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 81

Reference: Java properties
Read this appendix to learn about the JBoss HTTP Connector mod_cluster configuration properties that
apply to a JBoss Enterprise Application Platform server node.

B.1. Proxy configuration

The configuration values are sent to proxies under the following conditions:

During server startup

When a proxy is detected through the advertise mechanism

During error recovery, when a proxy's configuration is reset.

Proxy Configuration Values
stickySession (defaults to true)

Specifies whether subsequent requests for a given session should be routed to the same
node, if possible.

stickySessionRemove (defaults to false)

Specifies whether the httpd proxy should remove session stickiness if the balancer is unable to
route a request to the node to which it is stuck. This property is ignored if stickySession is
false.

stickySessionForce (defaults to true)

Specifies whether the httpd proxy should return an error if the balancer is unable to route a
request to the node to which it is stuck. This property is ignored if stickySession is false.

workerTimeout (defaults to -1)

Specifies the number of seconds to wait for a worker to become available to handle a request.
When all the workers of a balancer are usable, mod_cluster will retry after a while
(workerTimeout/100) to find an usable worker.

A value of -1 indicates that the httpd will not wait for a worker to be available and will return an
error if no workers are available.

maxAttempts (defaults to 1)

Specifies the number of times the httpd proxy will attempt to send a given request to a worker
before aborting. The minimum value is 1: try once before aborting.

flushPackets (defaults to false)

Specifies whether packet flushing is enabled or disabled.

flushWait (defaults to -1)

Specifies the time to wait before flushing packets. A value of -1 means wait forever.

82 Reference: Java properties

ping (defaults to 10)

Time to wait (in seconds) for a pong answer to a ping.

smax

Specifies the soft maximum idle connection count. The maximum value is determined by the
httpd thread configuration (ThreadsPerChild or 1).

tt l (defaults to 60)

Specifies the time (in seconds) idle connections persist, above the smax threshold.

nodeTimeout (defaults to -1)

Specifies the time (in seconds) mod_cluster waits for the back-end server response before
returning an error.

mod_cluster always uses a cping/cpong before forwarding a request. The
connectiontimeout value used by mod_cluster is the ping value.

balancer (defaults to mycluster)

Specifies the name of the load-balancer.

domain (no default)

Optional parameter, which specifies how load is balanced across jvmRoutes within the same
domain. domain is used in conjunction with partitioned session replication (for example, buddy
replication).

JBoss Enterprise Application Platform 5 HTTP Connectors Load Balancing Guide 83

Revision history
Revision 5.1.2-105 Thu Nov 15 2012 Russell Dickenson

Minor amendment for JIRA issue: JBPAPP-8821.

Revision 5.1.2-104 Wed Nov 14 2012 Russell Dickenson
Minor amendment for JIRA issue: JBPAPP-8821.

Revision 5.1.2-100 Thu Dec 8 2011 Jared Morgan
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about
documentation changes to this guide, refer to Release Notes 5.1.2.

Revision 5.1.1-100 Mon Jul 18 2011 Jared Morgan
Incorporated changes for JBoss Enterprise Application Platform 5.1.1 GA. For information about
documentation changes to this guide, refer to Release Notes 5.1.1.

84 Revision history

	HTTP Connectors Load Balancing Guide
	HTTP load-balancing for the JBoss Enterprise Application Platform
	Jared Morgan
	Joshua Wulf
	Laura Bailey
	Samuel Mendenhall
	James Livingston
	Jim Tyrell

	Legal Notice
	Abstract
	Table of Contents
	Preface
	1. File Name Conventions
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	Note
	Important
	Warning
	3. Getting Help and Giving Feedback
	3.1. Do You Need Help?
	3.2. Give us Feedback

	Part I. Apache Tomcat Connector (mod_jk)
	Chapter 1. Overview
	Chapter 2. Download and install
	Chapter 3. Configure load balancing using Apache and mod_jk
	Task: Configure Apache to Load mod_jk
	Prerequisites
	Important
	Note
	3.1. Configure worker nodes in mod_jk
	Task: Configure mod_jk Worker Nodes
	Prerequisites

	3.2. Configuring JBoss to work with mod_jk
	Task: Configure JBoss Enterprise Application Platform to Operate Using mod_jk
	Prerequisites

	Important
	Note

	Part II. JBoss HTTP Connector (mod_cluster)
	Chapter 4. Overview
	4.1. Key features
	4.2. Components
	Proxy Server

	Note
	Worker Node Components

	Chapter 5. Install proxy server components
	5.1. Apache modules
	5.1.1. mod_manager.so

	Warning
	5.1.2. mod_proxy_cluster.so
	mod_proxy_cluster directives

	5.1.3. mod_advertise.so

	5.2. Install proxy server components
	Task: Install Proxy Server Components
	Prerequisites

	Chapter 6. Configure basic proxy server
	6.1. Basic proxy configuration overview
	Server Advertisement

	6.2. Configure a load-balancing proxy using the HTTP Connector
	Task: Configure a Proxy Server Listener
	Prerequisites

	Note
	Example 6.1. Example Listen Directive

	Chapter 7. Install node with basic configuration
	7.1. Worker node requirements
	Supported Worker Node types

	Note
	JBoss HTTP Connector Enterprise Web Server Node Limitations

	7.2. Install and configure a worker node
	Task: Install and Configure a JBoss Enterprise Application Platform Worker Node
	Prerequisites

	Important
	Task: Install and Configure a JBoss Enterprise Web Server Worker Node
	Prerequisites

	Chapter 8. Further server configuration
	8.1. Apache server directives
	8.1.1. CreateBalancers
	CreateBalancers values

	Chapter 9. Advanced configuration
	9.1. Static proxy configuration
	Task: Configure Application Platform Worker Node with Static Proxy List
	Prerequisites
	Example 9.1. Example Static Proxy List
	Example 9.2. Example Static Proxy List Parameter
	Task: Configure Web Server Worker Node with Static Proxy List
	Prerequisites
	Example 9.3. Example Static Proxy List

	9.2. Clustered node operation
	Note

	Chapter 10. Load balancing demonstration
	Important - Enterprise Web Server Limitation
	The demo is not a load testing tool
	10.1. Set up the demonstration
	Task: Start the Demo
	Prerequisites

	Restrictions on JBoss Enterprise Web Server:
	Important
	Result

	10.2. Configure the demo client
	Task: Configure Client Control Tab Fields
	Prerequisites

	10.3. Interact with the demonstration
	Terms
	Task: Interact with the Demonstration
	Task Prerequesites
	10.3.1. Generate artificial load
	Available Actions

	Part III. Internet Server API (ISAPI)
	Chapter 11. Overview
	11.1. What is Internet Server API

	Chapter 12. Configuring the ISAPI connector on Windows
	12.1. Prerequisites and configuration assumptions
	Important
	Note
	12.2. Configure server instance as a worker node
	Task: Configure Server Instance as a Worker Node
	Prerequisites

	12.3. Microsoft IIS 6 initial clustering configuration
	Task: Define ISAPI Filter

	Note
	Task: Define ISAPI Virtual Directory
	Task: Define ISAPI Web Service Extension

	12.4. Microsoft IIS 7 initial clustering configuration
	Terms
	Task: Define a JBoss Native ISAPI Restriction

	Note
	Task: Define an JBoss Native Virtual Directory
	Task: Define a JBoss Native ISAPI Redirect Filter
	Task: Enable the ISAPI-dll Handler

	12.5. Configure a basic cluster with ISAPI
	Task: Configure ISAPI to serve a Basic Cluster

	Note
	Prerequisites

	Important
	12.6. Configure a load-balancing cluster with ISAPI
	Task: Configure ISAPI to serve a Load Balancing Cluster
	Prerequisites

	Important
	Note

	Part IV. Netscape Server API (NSAPI)
	Chapter 13. What Is Netscape Server API
	Chapter 14. Configuring the NSAPI connector on Solaris
	Note
	14.1. Prerequisites and configuration assumptions
	14.2. Configure server instance as a worker node
	Task: Configure a JBoss Enterprise Application Platform Worker Node
	Prerequisites

	14.3. Initial clustering configuration
	Task: Configure Initial Clustering Behavior
	Prerequisites

	Note
	14.4. Configure a basic cluster with NSAPI
	Task: Configure a Basic Cluster with NSAPI
	Prerequisites

	14.5. Configure a load-balanced cluster with NSAPI
	Task: Configure a Load-balanced Cluster with NSAPI
	Prerequisites

	Note

	Part V. Common load balancing tasks
	Chapter 15. HTTP session state replication
	Software Load Balancer
	Client Session
	Session Persistence
	Sticky Session
	15.1. Enabling session replication in your application
	Important
	15.2. HttpSession passivation and activation
	Passivation
	15.2.1. Configuring HttpSession passivation

	15.3. Configure the JBoss Cache instance used for session state replication
	Note
	Note
	Note
	Note
	Note
	Note

	Chapter 16. Using clustered Single Sign-on (SSO)
	16.1. Configuration
	Note
	16.2. SSO behavior
	16.3. Limitations
	16.4. Configuring the cookie domain

	Chapter 17. Complete working example
	Proxy Server
	JBoss Web Client Listener
	JBoss Web Client Service Dependencies
	Example iptables Firewall Rules

	Reference: workers.properties
	Note
	worker.properties Global Directives

	Note
	workers.properties Mandatory Directives
	workers.properties Connection Directives
	worker.properties Load Balancing Directives

	Reference: Java properties
	B.1. Proxy configuration
	Proxy Configuration Values

	Revision history

