
JBoss Web
Framework Kit 1.1

Snowdrop 1.0 User Guide

Marius Bogoevici

Aleš Justin

Snowdrop 1.0 User Guide

JBoss Web Framework Kit 1.1 Snowdrop 1.0 User Guide
Author Marius Bogoevici
Author Aleš Justin
Editor Laura Bailey

Copyright © 2010 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

This book is a user guide to Snowdrop 1.0 for use with JBoss Web Framework Kit 1.1.

http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings .. vii

2. We Need Feedback! .. vii

1. What This Guide Covers 1

2. Introduction 3
2.1. Package Structure .. 3

3. How to use Snowdrop components 5
3.1. VFS-enabled Application Contexts .. 5
3.2. Load-time weaving ... 6
3.3. The Spring Deployer .. 6

3.3.1. JBoss + Spring + EJB 3.0 Integration ... 6
3.3.2. Installation ... 6
3.3.3. Spring deployments ... 7
3.3.4. Deployment ... 7
3.3.5. Defining the JNDI name ... 7
3.3.6. Parent Bean factories .. 7
3.3.7. Injection into EJBs ... 8

A. Revision History 9

iv

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Notes and Warnings

vii

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring a box labeled 'Important' won't cause data loss but may cause irritation and
frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in JIRA: http://jira.jboss.org/ against the
product JBoss Enterprise Application Platform and component Documentation.

When submitting a bug report, be sure to mention the manual's identifier: JBoss Web Framework Kit
Snowdrop 1.0 User Guide.

http://jira.jboss.org/

Preface

viii

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1.

1

What This Guide Covers
Snowdrop is a utility package that contains JBoss-specific extensions to the Spring Framework. These
extensions are either:

• extensions to Spring Framework classes that can be used wherever the generic implementations
provided by the framework do not integrate correctly with JBoss Web Framework Kit.

• extensions for deploying and running Spring applications with JBoss Enterprise Application
Platform, JBoss Enterprise Web Platform, and JBoss Enterprise Web Server.

This user guide aims to cover the functionality of Snowdrop, to describe its components, and to
provide information on how to use it optimally for running Spring applications in JBoss Enterprise
Application Platform, JBoss Enterprise Web Platform, and JBoss Enterprise Web Server.

2

Chapter 2.

3

Introduction

2.1. Package Structure
Snowdrop contains the following files:

snowdrop-vfs.jar
A library that contains the support classes for resource scanning (scanning the classpath for bean
definitions, or using "classpath*:"-style patterns).

snowdrop-weaving.jar
A library that contains the support classes for load-time weaving.

spring-deployer.zip
The Spring deployer, which bootstraps and registers the application contexts to be used by your
Java EE applications.

4

Chapter 3.

5

How to use Snowdrop components
This chapter details how to use each of the components included in Snowdrop.

3.1. VFS-enabled Application Contexts
The snowdrop-vfs.jar library supports resource scanning in the JBoss Virtual File System (VFS).

When the Spring framework performs resource scanning, it assumes that resources are either from a
directory or a packaged JAR, and treats any URLs it encounters accordingly.

This assumption is not correct for the JBoss VFS, so Snowdrop implements a different
underlying resource resolution mechanism by amending the functionality of the
PathMatchingResourcePatternResolver.

This is done by using one of two ApplicationContext implementations provided by the
snowdrop-vfs.jar:

org.jboss.spring.vfs.context.VFSClassPathXmlApplicationContext
Replaces the Spring
org.springframework.context.support.ClassPathXmlApplicationContext.

org.jboss.spring.vfs.context.VFSXmlWebApplicationContext
Replaces the Spring
org.springframework.web.context.support.XmlWebApplicationContext.

In many cases, the VFSClassPathXmlApplicationContext is instantiated on its own, using
something like:

ApplicationContext context =
new VFSClassPathXmlApplicationContext("classpath:/context-definition-file.xml");

The XmlWebApplicationContext is not instantiated directly. Instead, it is bootstrapped by either
the ContextLoaderListener or the DispatcherServlet. In this case, the class used for
bootstrapping must be used to trigger an instantiation of the VFS-enabled context.

To change the type of application context created by the ContextLoaderListener, add the
contextClass parameter as shown in the following example code:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath*:spring-contexts/*.xml</param-value>
</context-param>
<context-param> <param-name>contextClass</param-name> <param-value>
 org.jboss.spring.vfs.context.VFSXmlWebApplicationContext </param-value> </context-param>
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

For changing the type of application context created by the DispatcherServlet, use the contextClass
parameter again, but this time on the DispatcherServlet definition (emphasized portion again):

<servlet>
<servlet-name>spring-mvc-servlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

Chapter 3. How to use Snowdrop components

6

<init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/mvc-config.xml</param-value>
</init-param> <init-param> <param-name>contextClass</param-name> <param-value>
 org.jboss.spring.vfs.context.VFSXmlWebApplicationContext </param-value> </init-param> </
servlet>

Important: ZipException
If you encounter the ZipException when attempting to start the application, you
need to replace the default ApplicationContext with one of the VFS-enabled
implementations.

Caused by: java.util.zip.ZipException: error in opening zip file
...
at org.springframework.core.io.support.PathMatchingResourcePatternResolver
.doFindPathMatchingJarResources(PathMatchingResourcePatternResolver.java:448)

3.2. Load-time weaving
Load-time weaving support is provided by the snowdrop-weaving.jar library.

To perform load-time weaving for the application classes in Spring (either for using load-time support
for AspectJ or for JPA support), the Spring framework needs to install its own transformers in the
classloader. For JBoss Enterprise Application Platform, JBoss Enterprise Web Platform and JBoss
Enterprise Web Server, a classloader-specific LoadTimeWeaver is necessary.

Define the JBoss5LoadTimeWeaver in the www Spring application context as shown here:

<context:load-time-weaver
 weaver-class="org.jboss.instrument.classloading.JBoss5LoadTimeWeaver"/>

3.3. The Spring Deployer
The role of the Spring deployer is to allow you to bootstrap a Spring application context, bind it in
JNDI, and use it to provide Spring-configured business object instances.

3.3.1. JBoss + Spring + EJB 3.0 Integration
Snowdrop contains a JBoss deployer that supports Spring packaging in JBoss Enterprise Application
Platform, JBoss Enterprise Web Platform and JBoss Enterprise Web Server. This means it is possible
to create JAR archives with a META-INF/jboss-spring.xml file to have your Spring bean factories
deploy automatically.

EJB 3.0 integration is also supported. You can deploy Spring archives and inject beans created in
these deployments directly into an EJB by using the @Spring annotation.

3.3.2. Installation
To install the Snowdrop JBoss deployer, unzip the jboss-spring-deployer.zip in the
$JBOSS_HOME/server/$PROFILE/deployers directory of your JBoss Enterprise Application
Platform or JBoss Enterprise Web Platform installation.

Spring deployments

7

3.3.3. Spring deployments
You can create Spring deployments that work similarly to JARs, EARs, and WARs with the JBoss
Spring deployer. Spring JARs are created with the following structure:

my-app.jar/
 org/
 acme/
 MyBean.class
 MyBean2.class
 META-INF/
 jboss-spring.xml

my-app.jar is a JAR that contains classes. A jboss-spring.xml file exists in the META-INF
directory of the JAR. By default, the JBoss Spring deployer registers the bean factory defined in
jboss-spring.xml into JNDI in a non-serialized form. The default JNDI name is the short name of
the deployment file — in this case, my-app.

You do not have to create an archive. Instead, you can place your JAR libraries under $JBOSS_HOME/
server/$PROFILE/lib and add an XML file of the form <name>-spring.xml, for example, my-
app-spring.xml, into the deploy directory of your JBoss Enterprise Application Platform or JBoss
Enterprise Web Platform installation. The default JNDI name will be the short name of the XML file; in
this case, my-app.

3.3.4. Deployment
Once you have created a .jar or a -spring.xml file, copy it into the deploy directory of your JBoss
Enterprise Application Platform or JBoss Enterprise Web Platform installation to deploy it into the
JBoss runtime. You can also embed these deployments in an EAR, EJB-SAR, SAR, etc. since JBoss
Enterprise Application Platform and JBoss Enterprise Web Platform support nested archives.

3.3.5. Defining the JNDI name
You can specify the JNDI name explicitly by putting it in the description element of the Spring XML.

<beans>
 <description>BeanFactory=(MyApp)</description>
 ...
 <bean id="springBean" class="example.SpringBean"/>
</beans>

MyApp will be used as the JNDI name in this example.

3.3.6. Parent Bean factories
Sometimes you want your deployed Spring bean factory to be able to reference beans deployed in
another Spring deployment. You can do this by declaring a parent bean factory in the description
element in the Spring XML, like so:

<beans>
<description>BeanFactory=(AnotherApp) ParentBeanFactory=(MyApp)</description>
...
</beans>

Chapter 3. How to use Snowdrop components

8

3.3.7. Injection into EJBs
Once an ApplicationContext has been successfully bootstrapped, the Spring beans defined
in it can be used for injection into EJBs. To do this, the EJBs must be intercepted with the
SpringLifecycleInterceptor, as in the following example:

@Stateless
@Interceptors(SpringLifecycleInterceptor.class)
public class InjectedEjbImpl implements InjectedEjb
{
 @Spring(bean = "springBean", jndiName = "MyApp")
 private SpringBean springBean;

 /* rest of the class definition ommitted */
}

In this example, the EJB InjectedEjbImpl will be injected with the bean named springBean,
which is defined in the ApplicationContext.

9

Appendix A. Revision History
Revision 0.1 Mon May 17 2010 Laura Bailey lbailey@redhat.com

Converted book to Publican format.

mailto:lbailey@redhat.com

10

	Snowdrop 1.0 User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. What This Guide Covers
	Chapter 2. Introduction
	2.1. Package Structure

	Chapter 3. How to use Snowdrop components
	3.1. VFS-enabled Application Contexts
	3.2. Load-time weaving
	3.3. The Spring Deployer
	3.3.1. JBoss + Spring + EJB 3.0 Integration
	3.3.2. Installation
	3.3.3. Spring deployments
	3.3.4. Deployment
	3.3.5. Defining the JNDI name
	3.3.6. Parent Bean factories
	3.3.7. Injection into EJBs

	Appendix A. Revision History

