
JBoss Enterprise
Application Platform 5.0

Administration And
Configuration Guide

JBoss Community

Administration And Configuration Guide

JBoss Enterprise Application Platform 5.0 Administration And
Configuration Guide
Author JBoss Community
Editor JBoss Community
Editor Isaac Rooskov
Copyright © 2009 Red Hat, Inc

Copyright © 2009 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version of the OPL is
presently available at http://www.opencontent.org/openpub/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This book is a guide to the administration and configuration of JBoss Enterprise Application Platform
5.0.

http://www.opencontent.org/openpub/

iii

What this Book Covers xi

1. Introduction 1
1.1. JBoss Enterprise Application Platform Use Cases .. 2

I. JBoss Enterprise Application Platform Infrastructure 3

2. JBoss Enterprise Application Platform 5 architecture 5
2.1. The JBoss Enterprise Application Platform Bootstrap .. 9
2.2. Hot Deployment ... 9

II. JBoss Enterprise Application Platform 5 Configuration 11

3. Deployment 13
3.1. Deployable Application Types .. 13
3.2. Standard Server Profiles ... 14

4. Microcontainer 15
4.1. An overview of the Microcontainer modules ... 16
4.2. Configuration .. 17
4.3. References .. 18

5. Web Services 19
5.1. The need for web services .. 19
5.2. What web services are not ... 19
5.3. Jboss Web Services Attachment support with XOP (XML-binary Optimized
Packaging) and SwA ... 20
5.4. Using SwaRef with JAX-WS endpoints .. 20
5.5. MTOM/XOP ... 21
5.6. Enabling MTOM per endpoint .. 22

5.6.1. The MTOM enabled SOAP 1.1 binding ID ... 22
5.7. Document/Literal .. 22
5.8. Document/Literal (Bare) .. 23
5.9. Document/Literal (Wrapped) .. 24
5.10. RPC/Literal ... 24
5.11. RPC/Encoded ... 26
5.12. Web Service Endpoints .. 26
5.13. Plain old Java Object (POJO) ... 26
5.14. The endpoint as a web application .. 26
5.15. Packaging the endpoint .. 27
5.16. Accessing the generated WSDL .. 27
5.17. EJB3 Stateless Session Bean (SLSB) .. 27
5.18. Endpoint Provider ... 28
5.19. WebServiceContext .. 29
5.20. Web Service Clients ... 30

5.20.1. Service .. 30
5.20.2. Dynamic Proxy .. 31
5.20.3. WebServiceRef .. 33
5.20.4. Dispatch .. 34
5.20.5. Asynchronous Invocations .. 35
5.20.6. Oneway Invocations ... 35

5.21. Common API .. 36
5.21.1. Handler Framework .. 36

Administration And Configuration Guide

iv

5.21.2. Message Context ... 37
5.21.3. Fault Handling ... 38

5.22. DataBinding .. 39
5.22.1. Using JAXB with non annotated classes .. 39

5.23. Attachments ... 39
5.23.1. MTOM/XOP ... 39
5.23.2. SwaRef ... 41

5.24. Tools .. 43
5.24.1. Bottom-Up (Using wsprovide) ... 43
5.24.2. Top-Down (Using wsconsume) .. 46
5.24.3. Client Side .. 47
5.24.4. Command-line & Ant Task Reference .. 50
5.24.5. JAX-WS binding customization ... 50

5.25. Web Service Extensions ... 51
5.25.1. WS-Addressing .. 51
5.25.2. WS-BPEL .. 54
5.25.3. WS-Eventing .. 54
5.25.4. WS-Security .. 59
5.25.5. WS-Transaction ... 63
5.25.6. XML Registries .. 63
5.25.7. WS-Policy .. 69

5.26. JBossWS Extensions .. 73
5.26.1. Proprietary Annotations .. 73

5.27. Web Services Appendix .. 76
5.28. References ... 76

6. JBoss5 Virtual Deployment Framework 77
6.1. MainDeployerImpl ... 78
6.2. JBoss5StructureDeployerClasses .. 80
6.3. Deployer Helper and Base Classes ... 80
6.4. Current Deployers .. 82
6.5. Virtual File System JBoss5VirtualFileSystem .. 83

7. JBoss AOP 85
7.1. Some key terms ... 85
7.2. Creating Aspects in JBoss AOP .. 87
7.3. Applying Aspects in JBoss AOP .. 87

8. JBoss Transactions 89
8.1. Why you need JBoss Transactions .. 89
8.2. JBoss Transactions Java EE 5 Support ... 89
8.3. JBoss Transactions Web Services Support .. 90
8.4. How JBossTS address these issues .. 90

9. Remoting 93
9.1. Summary of JBoss Remoting Features .. 93
9.2. JBoss Remoting Configuration in the JBoss Enterprise Application Platform 94

10. JBoss Messaging 95
10.1. Configuring JBoss Messaging ... 95

10.1.1. Configuring the SecurityStore ... 95
10.1.2. SecurityStore Attributes .. 96

10.2. Configuring the ServerPeer ... 96
10.3. Server Attributes ... 99

v

10.3.1. ServerPeerID ... 99
10.3.2. DefaultQueueJNDIContext .. 99
10.3.3. DefaultTopicJNDIContext .. 99
10.3.4. PostOffice .. 99
10.3.5. DefaultDLQ .. 99
10.3.6. DefaultMaxDeliveryAttempts ... 100
10.3.7. DefaultExpiryQueue ... 100
10.3.8. DefaultRedeliveryDelay ... 100
10.3.9. MessageCounterSamplePeriod ... 100
10.3.10. FailoverStartTimeout ... 100
10.3.11. FailoverCompleteTimeout .. 100
10.3.12. DefaultMessageCounterHistoryDayLimit ... 100
10.3.13. ClusterPullConnectionFactory .. 101
10.3.14. DefaultPreserveOrdering ... 101
10.3.15. RecoverDeliveriesTimeout ... 101
10.3.16. SuckerPassword .. 101
10.3.17. StrictTCK ... 101
10.3.18. Destinations ... 101
10.3.19. MessageCounters .. 101
10.3.20. MessageCountersStatistics ... 101
10.3.21. SupportsFailover .. 101
10.3.22. PersistenceManager ... 102
10.3.23. JMSUserManager ... 102
10.3.24. SecurityStore ... 102

10.4. MBean operations of the ServerPeer MBean .. 102
10.4.1. DeployQueue ... 102
10.4.2. UndeployQueue ... 102
10.4.3. DestroyQueue .. 102
10.4.4. DeployTopic ... 102
10.4.5. UndeployTopic ... 103
10.4.6. DestroyTopic .. 103
10.4.7. ListMessageCountersHTML .. 103
10.4.8. ResetAllMesageCounters .. 103
10.4.9. ResetAllMesageCounters .. 103
10.4.10. EnableMessageCounters .. 103
10.4.11. DisableMessageCounters .. 103
10.4.12. RetrievePreparedTransactions ... 104
10.4.13. ShowPreparedTransactions ... 104

11. Use Alternative Databases with JBoss Enterprise Application Platform 105
11.1. How to Use Alternative Databases ... 105
11.2. Install JDBC Drivers .. 105

11.2.1. Special notes on Sybase .. 105
11.2.2. Configuring JDBC DataSources .. 106

11.3. Creating a DataSource for the External Database ... 111
11.4. Common configuration for DataSources and ConnectionFactorys 112

11.4.1. General ... 112
11.4.2. XA ... 112
11.4.3. Security parameters ... 112

11.5. Change Database for the JMS Services ... 114
11.6. Support Foreign Keys in CMP Services .. 114
11.7. Specify Database Dialect for Java Persistence API ... 114

Administration And Configuration Guide

vi

11.8. Change Other JBoss Enterprise Application Platform Services to Use the
External Database ... 115

11.8.1. The Easy Way ... 115
11.8.2. The More Flexible Way ... 116

11.9. A Special Note About Oracle DataBases .. 116
11.10. DataSource configuration ... 117
11.11. Parameters specific for java.sql.Driver usage .. 118
11.12. Parameters specific for javax.sql.XADataSource usage 118
11.13. Common DataSource parameters .. 118
11.14. Generic Datasource Sample .. 120
11.15. Configuring a DataSource for remote usage ... 122
11.16. Configuring a DataSource to use login modules .. 123

12. Pooling 125
12.1. Strategy ... 125
12.2. Transaction stickness .. 125
12.3. Workaround for Oracle .. 126
12.4. Pool Access ... 126
12.5. Pool Filling ... 126
12.6. Idle Connections ... 126
12.7. Dead connections ... 127

12.7.1. Valid connection checking ... 127
12.7.2. Errors during SQL queries .. 127
12.7.3. Changing/Closing/Flushing the pool ... 127
12.7.4. Other pooling ... 128

13. Frequently Asked Questions 129
13.1. I have problems with Oracle XA? .. 129

III. Clustering Guide 131

14. Introduction and Quick Start 133
14.1. Quick Start Guide ... 133

14.1.1. Initial Preparation ... 133
14.1.2. Launching a JBoss Enterprise Application Platform Cluster 135
14.1.3. Web Application Clustering Quick Start .. 137
14.1.4. EJB Session Bean Clustering Quick Start .. 138
14.1.5. Entity Clustering Quick Start ... 138

15. Clustering Concepts 141
15.1. Cluster Definition .. 141
15.2. Service Architectures .. 142

15.2.1. Client-side interceptor architecture .. 142
15.2.2. External Load Balancer Architecture .. 144

15.3. Load-Balancing Policies .. 144
15.3.1. Client-side interceptor architecture .. 145
15.3.2. External load balancer architecture ... 145

16. Clustering Building Blocks 147
16.1. The HAPartition Service .. 147

16.1.1. DistributedReplicantManager Service .. 149
16.1.2. DistributedState Service ... 149
16.1.3. Custom Use of HAPartition ... 150

vii

16.2. Distributed Caching with JBoss Cache ... 150
16.2.1. The JBoss Enterprise Application Platform CacheManager Service 150

17. Clustered JNDI Services 155
17.1. How it works .. 155
17.2. Client configuration ... 157

17.2.1. For clients running inside the application server 157
17.2.2. For clients running outside the application server 159

17.3. JBoss configuration ... 161
17.3.1. Adding a Second HA-JNDI Service ... 164

18. Clustered Session EJBs 167
18.1. Stateless Session Bean in EJB 3.0 .. 167
18.2. Stateful Session Beans in EJB 3.0 ... 168

18.2.1. The EJB application configuration ... 168
18.2.2. Optimize state replication ... 170
18.2.3. CacheManager service configuration ... 170

18.3. Stateless Session Bean in EJB 2.x .. 173
18.4. Stateful Session Bean in EJB 2.x .. 174

18.4.1. The EJB application configuration ... 174
18.4.2. Optimize state replication ... 175
18.4.3. The HASessionState service configuration ... 175
18.4.4. Handling Cluster Restart ... 176
18.4.5. JNDI Lookup Process ... 177
18.4.6. SingleRetryInterceptor .. 177

19. Clustered Entity EJBs 179
19.1. Entity Bean in EJB 3.0 .. 179

19.1.1. Configure the distributed cache ... 179
19.1.2. Configure the entity beans for cache ... 182
19.1.3. Query result caching .. 184

19.2. Entity Bean in EJB 2.x .. 186

20. HTTP Services 189
20.1. Configuring load balancing using Apache and mod_jk 189

20.1.1. Download the software ... 189
20.1.2. Configure Apache to load mod_jk ... 190
20.1.3. Configure worker nodes in mod_jk .. 191
20.1.4. Configuring JBoss to work with mod_jk ... 193

20.2. Configuring HTTP session state replication .. 194
20.2.1. Enabling session replication in your application 195
20.2.2. Using FIELD level replication .. 197

20.3. Monitoring session replication .. 200
20.4. Using Clustered Single Sign On .. 200

20.4.1. Configuration ... 201
20.4.2. SSO Behavior .. 202
20.4.3. Limitations ... 202
20.4.4. Configuring the Cookie Domain .. 202

21. JBoss Messaging Clustering Notes 205
21.1. Unique server peer id ... 205
21.2. Clustered destinations ... 205
21.3. Clustered durable subs ... 205
21.4. Clustered temporary destinations ... 205

Administration And Configuration Guide

viii

21.5. Non clustered servers ... 205
21.6. Message ordering in the cluster ... 205
21.7. Idempotent operations ... 206

21.7.1. Clustered connection factories .. 206

22. Clustered Deployment Options 207
22.1. Clustered Singleton Services ... 207

22.1.1. HASingleton Deployment Options ... 207
22.1.2. Determining the master node .. 211

22.2. Farming Deployment ... 212

23. JGroups Services 213
23.1. Configuring a JGroups Channel's Protocol Stack .. 213

23.1.1. Common Configuration Properties ... 214
23.1.2. Transport Protocols .. 215
23.1.3. Discovery Protocols .. 218
23.1.4. Failure Detection Protocols ... 221
23.1.5. Reliable Delivery Protocols ... 224
23.1.6. Group Membership (GMS) .. 225
23.1.7. Flow Control (FC) .. 225
23.1.8. Fragmentation (FRAG2) ... 227
23.1.9. State Transfer .. 228
23.1.10. Distributed Garbage Collection (STABLE) .. 228
23.1.11. Merging (MERGE2) .. 228

23.2. Other Configuration Issues .. 229
23.2.1. Binding JGroups Channels to a particular interface 229
23.2.2. Isolating JGroups Channels .. 230

23.3. JGroups Troubleshooting ... 232
23.3.1. Nodes do not form a cluster ... 232
23.3.2. Causes of missing heartbeats in FD .. 232

24. JBoss Cache Configuration and Deployment 235
24.1. Key JBoss Cache Configuration Options .. 235

24.1.1. Editing the CacheManager Configuration ... 235
24.1.2. Cache Mode .. 240
24.1.3. Transaction Handling .. 241
24.1.4. Concurrent Access ... 242
24.1.5. JGroups Integration .. 243
24.1.6. Eviction ... 244
24.1.7. Cache Loaders .. 244
24.1.8. Buddy Replication .. 246

24.2. Deploying Your Own JBoss Cache Instance ... 247
24.2.1. Deployment Via the CacheManager Service .. 247
24.2.2. Deployment Via a -service.xml File ... 250
24.2.3. Deployment Via a -jboss-beans.xml File .. 251

IV. Performance Tuning 255

25. JBoss Enterprise Application Platform 5 Performance Tuning 257
25.1. Introduction .. 257
25.2. Hardware tuning ... 257

25.2.1. CPU (Central Processing Unit) .. 257
25.2.2. RAM (Random Access Memory) ... 258

ix

25.2.3. Hard Disk .. 258
25.3. Operating System Performance Tuning .. 258

25.3.1. Networking .. 259
25.4. Tuning the JVM .. 259
25.5. Tuning your applications ... 259

25.5.1. Instrumentation .. 260
25.6. Tuning JBoss Application Server ... 260

25.6.1. Memory usage ... 260
25.6.2. Database Connection ... 261
25.6.3. Other key configurations ... 265

V. Index 267

Index 269

x

xi

What this Book Covers
The primary focus of this book is the presentation of the standard JBoss Enterprise Application
Platform 5.0 architecture components from both the perspective of their configuration and architecture.
As a user of a standard JBoss distribution you will be given an understanding of how to configure
the standard components. This book is not an introduction to JavaEE or how to use JavaEE
in applications. It focuses on the internal details of the JBoss server architecture and how our
implementation of a given JavaEE container can be configured and extended.

As a JBoss developer, you will be given a good understanding of the architecture and integration
of the standard components to enable you to extend or replace the standard components for your
infrastructure needs. We also show you how to obtain the JBoss source code, along with how to build
and debug the JBoss server.

xii

Chapter 1.

1

Introduction
JBoss Enterprise Application Platform 5 is built on top of the new JBoss Microcontainer. The JBoss
Microcontainer is a lightweight container that supports direct deployment, configuration and lifecycle of
plain old Java objects (POJOs).
The JBoss Microcontainer project is standalone and replaces the JBoss JMX Microkernel used in the
4.x JBoss Enterprise Application Platforms.

The JBoss Microcontainer integrates nicely with the JBoss Aspect Oriented Programming framework
(JBoss AOP). JBoss AOP is discussed in Chapter 7, JBoss AOP Support for JMX in JBoss Enterprise
Application Platform 5 remains strong and MBean services written against the old Microkernel are
expected to work.

JBoss Enterprise Application Platform 5 is designed around the advanced concept of a Virtual
Deployment Framework (VDF). The JBoss Enterprise Application Platform 5 Virtual Deployment
Framework (VDF) takes the aspect oriented design of many of the earlier JBoss containers and
applies it to the deployment layer. It is also based on the POJO microntainer rather than JMX as in
previous releases. More information about the Virtual Deployment Framework (VDF) can be found in
Chapter 6, JBoss5 Virtual Deployment Framework.

A sample Java EE 5 application that can be run on top of JBoss Enterprise Application Platform
5.0.0.GA and above which demonstrates many interesting technologies is the Seam Booking
Application available with this distribution. This example application makes use of the following
technologies running on JBoss Enterprise Application Platform 5:

• EJB3

• Stateful Session Beans

• Stateless Session Beans

• JPA (w/ Hibernate validation)

• JSF

• Facelets

• Ajax4JSF

• Seam

Many key features of JBoss Enterprise Application Platform 5 are provided by integrating standalone
JBoss projects which include:

• JBoss EJB3 included with JBoss Enterprise Application Platform 5 provides the implementation
of the latest revision of the Enterprise Java Beans (EJB) specification. EJB 3.0 is a deep overhaul
and simplification of the EJB specification. EJB 3.0's goals are to simplify development, facilitate a
test driven approach, and focus more on writing plain old java objects (POJOs) rather than coding
against complex EJB APIs.

• JBoss Messaging is a high performance JMS provider in the JBoss Enterprise Middleware Stack
(JEMS), included with JBoss Enterprise Application Platform 5 as the default messaging provider.
It is also the backbone of the JBoss ESB infrastructure. JBoss Messaging is a complete rewrite
of JBossMQ, which is the default JMS provider for the JBoss Enterprise Application Platform 4.x
series.

Chapter 1. Introduction

2

• JBossCache 2.0 that comes in two flavors. A traditional tree-structured node-based cache and a
PojoCache, an in-memory, transactional, and replicated cache system that allows users to operate
on simple POJOs transparently without active user management of either replication or persistency
aspects.

• JBossWS 2 is the web services stack for JBoss Enterprise Application Platform 5 providing Java EE
compatible web services, JAXWS-2.0.

• JBoss Transactions is the default transaction manager for JBoss Enterprise Application Platform
5. JBoss Transactions is founded on industry proven technology and 18 year history as a leader in
distributed transactions, and is one of the most interoperable implementations available.

• JBoss Web is the Web container in JBoss Enterprise Application Platform 5, an implementation
based on Apache Tomcat that includes the Apache Portable Runtime (APR) and Tomcat native
technologies to achieve scalability and performance characteristics that match and exceed the
Apache Http server.

JBoss Enterprise Application Platform 5 includes numerous features and bug fixes, many of them
carried over from the JBoss Enterprise Application Platform 4.x codebase. See the Detailed Release
Notes section for the full details.

1.1. JBoss Enterprise Application Platform Use Cases
• 99% of web apps involve a database

• Mission critical web applications likely to be clustered.

• Simple web applications with JSPs/Servlets upgrades to JBoss Enterprise Application Platform with
tomcat embedded.

• Intermediate web applications with JSPs/Servlets using a web framework such as Struts, Java
Server Faces, Cocoon, Tapestry, Spring, Expresso, Avalon, Turbine.

• Complex web applications with JSPs/Servlets, SEAM, Enterprise Java Beans (EJB), Java
Messaging (JMS), caching etc.

• Cross application middleware (JMS, Corba, JMX etc).

Part I. JBoss Enterprise
Application Platform Infrastructure

Chapter 2.

5

JBoss Enterprise Application Platform
5 architecture
The following diagram illustrates an overview of the JBoss Enterprise Application Platform and its
components.

Chapter 2. JBoss Enterprise Application Platform 5 architecture

6

The directory structure of JBoss Enterprise Application Platform 5 resembles that of the 4.x series with
some notable differences:

-<JBOSS_HOME>/ - the path to your JBoss Enterprise Application Platform
 installation.
 |-- bin - contains start scripts and run.jar
 |-- client - client jars
 |-- common - static jars shared across server configuration
 | |-- lib
 | | |-- antlr.jar
 | | |-- ... many more jars
 |-- docs - docs, schemas/dtds, examples
 | |-- dtd
 | |-- examples
 | | |-- binding-manager
 | | | `-- sample-bindings.xml
 | | |-- jca
 | | |-- jms
 | | |-- jmx
 | | |-- netboot
 | | | `-- netboot.war
 | | `-- varia
 | | |-- deployment-service
 | | |-- derby-plugin.jar
 | | |-- entity-resolver-manager
 | | | `-- xmlresolver-service.xml
 | | `-- jboss-bindings.xml
 | `-- schema
 |-- lib - core bootstrap jars.
 | |-- concurrent.jar
 | |-- dom4j.jar
 | |-- getopt.jar
 | |-- javassist.jar
 | |-- ...
 | |-- endorsed - added to the server JVM java.endorsed.dirs path
 | | |-- serializer.jar
 | | |-- xalan.jar
 | | `-- xercesImpl.jar
 `-- server - contains the same server configuration/profile directories.
 |-- default
 | |-- conf - contains server configuration files used when starting the
 server.
 | | |-- bootstrap/
 | | | |-- aop.xml - JBoss AOP integration and AspectManager beans
 | | | |-- bindings.xml - Rewrite of the ServiceBindingManager as a
 POJO bean
 | | | |-- classloader.xml - the root class loading beans for the
 peer class loading model
 | | | |-- deployers.xml - Core deployers for -jboss-beans.xml and -
service.xml

7

 | | | |-- jmx.xml - JBoss JMX kernel initialization
 | | | |-- profile-repository.xml - full featured repository based
 profile service referenced by bootstrap.xml
 | | | |-- profile.xml - simple disk based profile service
 referenced by bootstrap-norepo.xml
 | | | |-- vfs.xml - JBoss VFS caching beans
 | | |-- bootstrap.xml - bootstrap deployment definition file
 | | |-- bootstrap-norepo.xml - bootstrap deployment definition file
 for the non-repository profile service
 | | |-- java.policy - stub for java security policy
 | | |-- jax-ws-catalog.xml - oasis catalog driven schema/dtd
 namespace configuration
 | | |-- jboss-log4j.xml - the server log4j configuration
 | | |-- jboss-service.xml - legacy static mbeans, to be removed in
 future
 | | |-- jbossjta-properties.xml - JBossTS properties
 | | |-- jndi.properties - server default JNDI properties
 | | |-- login-config.xml - security authentication domain definitions
 | | |-- props -
 | | | |-- jbossws-roles.properties
 | | | |-- jbossws-users.properties
 | | | |-- jmx-console-roles.properties
 | | | `-- jmx-console-users.properties
 | | |-- standardjboss.xml - legacy EJB2 container definitions
 | | |-- standardjbosscmp-jdbc.xml - legacy CMP2 definitions
 | | `-- xmdesc - JBoss XMBean descriptors
 | | |-- AttributePersistenceService-xmbean.xml
 | | |-- ClientUserTransaction-xmbean.xml
 | | |-- JNDIView-xmbean.xml
 | | |-- Log4jService-xmbean.xml
 | | |-- NamingBean-xmbean.xml
 | | |-- NamingService-xmbean.xml
 | | |-- TransactionManagerService-xmbean.xml
 | | |-- org.jboss.deployment.JARDeployer-xmbean.xml
 | | |-- org.jboss.deployment.MainDeployer-xmbean.xml
 | | `-- org.jboss.deployment.SARDeployer-xmbean.xml
 | |-- data - location for services data
 | | |-- hypersonic
 | | |-- jboss.identity
 | | |-- tx-object-store
 | | `-- xmbean-attrs
 | |-- deploy - this is where services and your java applications are
 deployed.
 You can deploy an application on the JBoss application server by simply
 copying the application's (WAR, EAR or JAR files) into this directory.
 | |-- deployers/ - new vdf deployers
 | | |-- alias-deployers-jboss-beans.xml - Deployers that know how to
 handle The know
how to handle deployment aliases.
 | | |-- bsh-deployer - beanshell deployer

Chapter 2. JBoss Enterprise Application Platform 5 architecture

8

 | | |-- clustering-deployer-jboss-beans.xml - add dependencies on
 needed clustering services
to clustered EJB3, EJB2 beans and to distributable web applications.
 | | |-- dependency-deployers-jboss-beans.xml - aliases.txt, jboss-
dependency.xml
 | | |-- directory-deployer-jboss-beans.xml
 | | |-- ear-deployer-jboss-beans.xml - ear deployers
 | | |-- ejb-deployer-jboss-beans.xml - ejb2.x deployers
 | | |-- ejb3.deployer - ejb3 deployers
 | | |-- hibernate-deployer-jboss-beans.xml - deployers for -
hibernate.xml descriptors
 | | |-- jboss-aop-jboss5.deployer - aspect deployer
 | | |-- jboss-jca.deployer - JCA deployers
 | | |-- jbossweb.deployer - war deployers
 | | |-- jbossws.deployer - web services deployers
 | | |-- jsr77-deployers-jboss-beans.xml - JSR77 mbean view creation
 deployers
 | | |-- metadata-deployer-jboss-beans.xml - metadata handlers
 | | |-- seam.deployer - seam integration deployer
 | | |-- security-deployer-jboss-beans.xml - security deployers
 | |-- lib - default server static jars, empty by default
 | |-- log - default root for log files, controlled by
 jboss.server.log.dir
 | | |-- boot.log
 | | |-- server.log
 | |-- tmp
 | `-- work
 | `-- jboss.web
 | `-- localhost
 `-- minimal - a minimal server configuration
 | |-- conf - contains server configuration files used when starting the
 server.
 | |-- bootstrap/
 | | | |-- aop.xml
 | | | |-- classloader.xml
 | | | |-- deployers.xml
 | | | |-- jmx.xml
 | | | |-- profile.xml
 | |-- bootstrap.xml
 | |-- jboss-log4j.xml
 | |-- jboss-service.xml
 | |-- jndi.properties
 | |-- xmdesc
 | |-- NamingBean-xmbean.xml
 | `-- NamingService-xmbean.xml
 | |-- deploy/
 | | |-- hdscanner-jboss-beans.xml
 | |-- deployers/
 | |-- lib
 | | |-- jboss-minimal.jar
 | | |-- jnpserver.jar

The JBoss Enterprise Application Platform Bootstrap

9

 | | |-- log4j.jar

2.1. The JBoss Enterprise Application Platform Bootstrap
The JBoss Enterprise Application Platform 5 bootstrap is similar to the JBoss Enterprise Application
Platform 4.x versions in that the org.jboss.Main entry point loads an org.jboss.system.server.Server
implementation. In JBoss Enterprise Application Platform 4.x this was a JMX based microkernel. In
JBoss Enterprise Application Platform 5 this is a JBoss Microcontainer.

The default JBoss Enterprise Application Platform 5 org.jboss.system.server.Server
implementation is org.jboss.bootstrap.microcontainer.ServerImpl. This
implementation is an extension of the kernel basic bootstrap that boots the MC from the bootstrap
beans declared in {jboss.server.config.url}/bootstrap.xml descriptors using a
BasicXMLDeployer. In addition, the ServerImpl registers install callbacks for any beans
that implement the org.jboss.bootstrap.spi.Bootstrap interface. The bootstrap/
profile*.xml configurations include a ProfileServiceBootstrap bean that implements the
Bootstrap interface.

The org.jboss.system.server.profileservice.ProfileServiceBootstrap is
an implementation of the org.jboss.bootstrap.spi.Bootstrap interface that loads the
deployments associated with the current profile. The {profile-name} is the name of the profile being
loaded and corresponds to the server -c command line argument. The default {profile-name} is
default. The deployers, deploy

2.2. Hot Deployment
Hot deployment in JBoss Enterprise Application Platform 5 is controlled by the Profile
implementations associated with the ProfileService. The HDScanner bean deployed via the
deploy/hdscanner-jboss-beans.xml MC deployment, queries the profile service for changes in
application directory contents and redeploys updated content, undeploys removed content, and adds
new deployment content to the current profile via the ProfileService.

Disabling hot deployment is achieved by removing the hdscanner-jboss-beans.xml file from
deployment.

10

Part II. JBoss Enterprise Application
Platform 5 Configuration

Chapter 3.

13

Deployment
Deploying applications on JBoss Enterprise Application Platform is achieved by copy the application
into the JBOSS_HOME/server/default/deploy directory. You can replace default with different
server profiles such as all or minimal. We will cover those later in this chapter. The JBoss Enterprise
Application Platform constantly scans the deploy directory to pick up new applications or any changes
to existing applications. This enables the hot deployment of applications on the fly, while JBoss
Enterprise Application Platform is still running.

3.1. Deployable Application Types
With JBoss Enterprise Application Platform 4.x, a deployer existed to handle a specified deployment
type and that was the only deployer that would process the deployment. In JBoss Enterprise
Application Platform 5, multiple deployers transform the metadata associated with a deployment until
its processed by a deployer that creates a runtime component from the metadata. Deployment has to
contain a descriptor that causes the component metadata to be added to the deployment. The types
of deployments for which deployers exists by default in the JBoss Enterprise Application Platform
include:

• The WAR application archive (e.g., myapp.war) packages a Java EE web application in a JAR file.
It contains servlet classes, view pages, libraries, and deployment descriptors in WEB-INF such as
web.xml, faces-config.xml, and jboss-web.xml etc..

• The EAR application archive (e.g., myapp.ear) packages a Java EE enterprise application in a JAR
file. It typically contains a WAR file for the web module, JAR files for EJB modules, as well as META-
INF deployment descriptors such as application.xml and jboss-app.xml etc.

• The JBoss Microcontainer (MC) beans archive (typical suffixes include, .beans, .deployer) packages
a POJO deployment in a JAR file with a META-INF/jboss-beans.xml descriptor. This format is
commonly used by the JBoss Enterprise Application Platform component deployers.

• The SAR application archive (e.g., myservice.sar) packages a JBoss service in a JAR file. It is
mostly used by JBoss Enterprise Application Platform internal services that have not been updated
to support MC beans style deployments.

• The *-ds.xml file defines connections to external databases. The data source can then be reused
by all applications and services in JBoss Enterprise Application Platform via the internal JNDI.

• You can deploy *-jboss-beans.xml files with MC beans definitions. If you have the approriate
JAR files available in the deploy or lib directories, the MC beans can be deployed using such a
standalone XML file. This is a

• You can deploy *-service.xml files with MBean service definitions. If you have the appropriate
JAR files available in the deploy or lib directories, the MBeans specified in the XML files will be
started. This is the way you deploy many JBoss Enterprise Application Platform internal services
that have not been updated to support POJO style deployment, such as the JMS queues.

• You can also deploy JAR files containing EJBs or other service objects directly in JBoss Enterprise
Application Platform. The list of suffixes that are recognized as JAR files is specified in the conf/
bootstrap/deployers.xml JARStructure bean constructor set.

Chapter 3. Deployment

14

Exploded Deployment
The WAR, EAR, MC beans and SAR deployment packages are really just JAR files
with special XML deployment descriptors in directories like META-INF and WEB-INF.
JBoss Enterprise Application Platform allows you to deploy those archives as expanded
directories instead of JAR files. That allows you to make changes to web pages etc on the
fly without re-deploying the entire application. If you do need to re-deploy the exploded
directory without re-start the server, you can just touch the deployment descriptors (e.g.,
the WEB-INF/web.xml in a WAR and the META-INF/application.xml in an EAR) to
update their timestamps.

3.2. Standard Server Profiles
The JBoss Enterprise Application Platform ships with five server profiles. You can choose which
configuration to start by passing the -c parameter to the server startup script. For instance, the
run.sh -c all command would start the server in the all profile. Each profile is contained in a
directory named JBOSS_HOME/server/[profile name]/. You can look into each server profile's
directory to see the services, applications, and libraries included in the profile.

Note
The exact contents of the server/[profile name] directory depends on the profile
service implementation and is subject to change as the management layer and embedded
server evolve.

• The minimal profile starts the core server container without any of the enterprise services. It is
a good starting point if you want to build a customized version of JBoss Enterprise Application
Platform that only contains the services you need.

• The default profile is the mostly common used profile for application developers. It supports the
standard Java EE 5.0 programming APIs (e.g., Annotations, JPA, and EJB3).

• The standard profile is the profile that has been tested for JavaEE compliance. The major
differences with the existing configurations is that call-by-value and deployment isolation are
enabled by default, along with support for rmiiiop and juddi (taken from the all config).

• The all profile is the default profile with clustering support and other enterprise extensions.

• The web profile is a new experimental lightweight configuration created around JBoss Web that
will follow the developments of the JavaEE 6 web profile. Except for the servlet/jsp container
it provides support for JTA/JCA and JPA. It also limits itself to allowing access to the server only
through the http port. Please note that this configuration is not JavaEE certified and will most likely
change in the following releases.

The detailed services and APIs supported in each of those profiles will be discussed throughout.

Chapter 4.

15

Microcontainer
JBoss Enterprise Application Platform 5.0 uses the Microcontainer to integrate enterprise services
together with a Servlet/JSP container, EJB container, deployers and management utilities in order to
provide a standard Java EE environment. If you need additional services then you can simply deploy
these on top of Java EE to provide the functionality you need. Likewise any services that you do not
need can be removed by changing the configuration. You can even use the Microcontainer to do this in
other environments such as Tomcat and GlassFish by plugging in different classloading models during
the service deployment phase.

Since JBoss Microcontainer is very lightweight and deals with POJOs, it can also be used to deploy
services into a Java ME runtime environment. This opens up new possibilities for mobile applications
that can now take advantage of enterprise services without requiring a full JEE application server.

As with other lightweight containers, JBoss Microcontainer uses dependency injection to wire
individual POJOs together to create services. Configuration is performed using either annotations or
XML depending on where the information is best located. Unit testing is made extremely simple thanks
to a helper class that extends JUnit to setup the test environment, allowing you to access POJOs and
services from your test methods using just a few lines of code.

Chapter 4. Microcontainer

16

4.1. An overview of the Microcontainer modules
This section introduces the various Microcontainer modules. The figure below gives an overview of the
modules.

• aop-mc-int handles integration between the JBossAOP and Microcontainer projects

• classloader new peer classloader model, prepared to handle OSGi bundle model.

• The container module contains: reflection, the integration point for manipulating class information
at runtime (for example, overriding annotations or obtaining an aop instance advisor), joinpoint (the
joinpoint model including the join point factory), classadaptor (the integration and configuration spi)
and metadata (the base metadata types and repository).

• dependency management is handled by the controller. The controller is the core component for
keeping track of contexts to make sure the configuration and lifecycle are done in the correct order
including dependencies and classloading considerations.

• deployers load components from various models, POJOs, JMX, spring, Java EE, etc. into the
Microcontainer runtime.

• kernel kernel defines the core kernel spi including, boostrap, configuration, POJO deployments,
dependency, events, bean metadata, and bean registry.

• The managed module defines the base objects defining the management view of a component.

Configuration

17

• The metatype module defines the base types found in the management view of a component.

• guice-int contains the integration classes for guice.

• osgi-int contains the integration classes that adapt the OSGi model onto the Microcontainer.

• reliance-identity defines identity as a MC POJO service

• reliance-rules defines your dependencies with Drools

• reliance-jbpm defines your dependencies with jBPM

• spring-int contains the integration classes that adapt the spring model onto the Microcontainer.

4.2. Configuration
To configure the Microcontainer bootstrap you can use the JBOSS_HOME/server/
<server_configuration>/conf/bootstrap.xml and JBOSS_HOME/server/
<server_configuration>/conf/bootstrap/*.xml files where <server_configuration>
represents the name of the server profile, for example, all, default or minimal. The bootstrap.xml
simply references Microcontainer deployment descriptors that should be loaded in the indicated order.
The current default profile bootstrap.xml references are:

• vfs.xml - JBoss VFS caching beans

• classloader.xml - the root class loading beans for the peer class loading model

• aop.xml - JBoss AOP integration and AspectManager beans

• jmx.xml - JBoss JMX kernel initialization

• deployers.xml - Core deployers for -jboss-beans.xml and -service.xml

• bindings.xml - Rewrite of the ServiceBindingManager as a POJO bean

• profile-repository.xml - full featured repository based profile service referenced by
bootstrap.xml

The main beans are:
• ProfileService : This bean loads the deployments associated with the named server profile, default,

all or the name that is passed to the server using the -c option. It's an extension of always looking
to the filesystem server/name/conf/jboss-service.xml and server/name/deploy to load
deployments.

• AspectManager : the AOP aspects

• MainDeployer : An update of the JMX based MainDeployer from earlier versions to a one based
on the Microcontainer, JBoss5VirtualFileSystem, and Virtual Deployment Framework(VDF).
Deployer aspects are registered with the MainDeployer as an ordered list via inject of the deployers
property.

• ServiceClassLoaderDeployer : Manages the class loading aspect of deployment.

• JARDeployer : This bean is a structural deployment aspect which handles the legacy nested
deployment behavior of adding non-deployable jars to the current deployment classpath.

Chapter 4. Microcontainer

18

• FileStructure : this bean is a structural deployment aspect which recognizes well know deployment
file types specified by suffix.

• AspectDeployer : handles aop descriptor deployments.

• BeanDeployer : this bean translates deployer-beans.xml into KernelDeployment for the
descriptor beans.

• KernelDeploymentDeployer : Translates a KernelDeployment into the constituent
BeanMetaData instances for the kernel beans.

• BeanMetaDataDeployer : Creates the kernel beans from the deployment BeanMetaData.

• SARDeployer : this bean is a port of the legacy JMX SARDeployer to the VDF. It handles the
legacy jboss-service.xml style of mbean deployment descriptors and maps this into a
ServiceDeployment POJO.

• ServiceDeploymentDeployer : Translates the ServiceDeployment POJO into the constituent
ServiceMetaData that represent the various mbeans.

• ServiceDeployer : creates the mbean services from deployment ServiceMetaData instances.

• JMXKernel : Manages the instantiation of a JMX kernel and MBeanServer in the jboss domain. It is
used by the SARDeployer. It will be used by other management deployment aspects in the future
to expose kernel beans via JMX.

• VFSDeployerScanner : A scanner bean that loads the deployers directory contents into the basic
profile service.

• VFSDeploymentScanner : A scanner bean that loads the deploy directory contents into the basic
profile service.

• HDScanner : A bean that queries the profile service for changes in deploy directory contents and
redeploys updated content, undeploys removed content, and add new deployment content to the
profile service.

4.3. References
More information on the JBoss Microcontainer project can be obtained from http://labs.jboss.com/
jbossmc/.

http://labs.jboss.com/jbossmc/
http://labs.jboss.com/jbossmc/

Chapter 5.

19

Web Services
Web services are a key contributing factor in the way Web commerce is conducted today. Web
services enable applications to communicate by sending small and large chunks of data to each other.

A web service is essentially a software application that supports interaction of applications over a
computer network or the world wide web. Web services usually interact through XML documents
that map to an object, computer program, business process or database. To communicate, an
application sends a message in XML document format to a web service which sends this message
to the respective programs. Responses may be received based on requirements, the web service
receives and then sends them in XML document format to the required program or applications. Web
services can be used in many ways, examples include supply chain information management and
business integration.

JBossWS is a web service framework included as part of the JBoss Enterprise Application Platform.
It implements the JAX-WS specification that defines a programming model and run-time architecture
for implementing web services in Java, targeted at the Java Platform, Enterprise Edition 5 (Java EE 5).
Even though JAX-RPC is still supported (the web service specification for J2EE 1.4), JBossWS does
put a clear focus on JAX-WS.

5.1. The need for web services
Enterprise systems communication may benefit from a wise adoption of web service technologies.
Focusing attention on well designed contracts allows developers to establish an abstract view of
their service capabilities. Considering the standardized way contracts are written, this definitely helps
communication with third-party systems and eventually supports business-to-business integration;
everything is clear and standardized in the contract the provider and consumer agree on. This also
reduces the dependencies between implementations allowing other consumers to easily use the
provided service without major changes.

Other benefits exist for enterprise systems that incorporate web service technologies for internal
heterogenous subsystems communication as web service interoperability boosts service reuse and
composition. Web services elimenates the need to rewrite whole functionalities because they were
developed by another enterprise department using a different software language.

5.2. What web services are not
Web services are not the solution for every software system communication.

Nowadays they are meant to be used for loosely-coupled coarse-grained communication, message
(document) exchange. Recent times has seen many specifications (WS-*) discussed and finally
approved to establish standardized ws-related advanced aspects, including reliable messaging,
message-level security and cross-service transactions. Web service specifications also include the
notion of registries to collect service contract references, to easily discover service implementations.

This all means that the web services technology platform suits complex enterprise communication and
is not simply the latest way of doing remote procedure calls.

Chapter 5. Web Services

20

5.3. Jboss Web Services Attachment support with XOP
(XML-binary Optimized Packaging) and SwA
JBoss-WS4EE relied on a deprecated attachments technology called SwA (SOAP with Attachments).
SwA required soap/encoding which is disallowed by the WS-I Basic Profile. JBossWS provides
support for WS-I AP 1.0, and MTOM instead.

WS-I Attachment Profile 1.0 defines a mechanism to reference MIME attachment parts using swaRef.
In this mechanism the content of XML element of type wsi:swaRef is sent as a MIME attachment
and the element inside SOAP Body holds the reference to this attachment in the CID URI scheme as
defined by RFC 2111.

5.4. Using SwaRef with JAX-WS endpoints
JAX-WS endpoints delegate all marshalling/unmarshalling to the JAXB API. The most simple
way to enable SwaRef encoding for DataHandler types is to annotate a payload bean with the
@XmlAttachmentRef annotation as shown below:

/**
* Payload bean that will use SwaRef encoding
*/
@XmlRootElement
public class DocumentPayload
{
private DataHandler data;
public DocumentPayload()
{
}

public DocumentPayload(DataHandler data)
{
this.data = data;
}

@XmlElement
@XmlAttachmentRef
public DataHandler getData()
{
return data;
 }

public void setData(DataHandler data)
{
 this.data = data;
 }
}

 With document wrapped endpoints you may even specify the @XmlAttachmentRef
 annotation on the service endpoint interface:

@WebService

MTOM/XOP

21

public interface DocWrappedEndpoint
 {
 @WebMethod
 DocumentPayload beanAnnotation(DocumentPayload dhw, String test);

 @WebMethod
 @XmlAttachmentRef
 DataHandler parameterAnnotation(@XmlAttachmentRef DataHandler data, String
 test);

 }

The message would then refer to the attachment part by CID:

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
 <env:Header/>
 <env:Body>
 <ns2:parameterAnnotation xmlns:ns2='http://
swaref.samples.jaxws.ws.test.jboss.org/'>
 <arg0>cid:0-1180017772935-32455963@ws.jboss.org</arg0>
 <arg1>Wrapped test</arg1>
 </ns2:parameterAnnotation>
 </env:Body>
 </env:Envelope>

5.5. MTOM/XOP
This chapter describes Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP), a means of more efficiently serializing XML Infosets that have certain
types of content. The related specifications are:

• SOAP Message Transmission Optimization Mechanism ((MTOM) http://www.w3.org/TR/soap12-
mtom/)

• XML-binary Optimized Packaging (XOP) (http://www.w3.org/TR/xop10/)

image/jpeg java.awt.Image

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

application/octet-stream javax.activation.DataHandler

Table 5.1. Supported MTOM parameter types

The above table shows a list of supported endpoint parameter types. The recommended approach
is to use the javax.activation.DataHandler classes to represent binary data as service endpoint
parameters.

Note
Microsoft endpoints tend to send any data as application/octet-stream. The only Java type
that can easily cope with this ambiguity is javax.activation.DataHandler

http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/

Chapter 5. Web Services

22

5.6. Enabling MTOM per endpoint
On the server side MTOM processing is enabled through the @BindingType annotation. JBossWS
does handle SOAP1.1 and SOAP1.2. Both come with or without MTOM flavours: MTOM enabled
service implementations

package org.jboss.test.ws.jaxws.samples.xop.doclit;

 import javax.ejb.Remote;
 import javax.jws.WebService;
 import javax.jws.soap.SOAPBinding;
 import javax.xml.ws.BindingType;

 @Remote
 @WebService(targetNamespace = "http://org.jboss.ws/xop/doclit")
 @SOAPBinding(style = SOAPBinding.Style.DOCUMENT, parameterStyle =
 SOAPBinding.ParameterStyle.BARE)
 @BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true")
 (1)
 public interface MTOMEndpoint {

 [...]
 }

5.6.1. The MTOM enabled SOAP 1.1 binding ID
MTOM enabled clients

Web service clients can use the same approach described above
or rely on the Binding API to enable MTOM (Excerpt taken from the
org.jboss.test.ws.jaxws.samples.xop.doclit.XOPTestCase):

[...]
 Service service = Service.create(wsdlURL, serviceName);
 port = service.getPort(MTOMEndpoint.class);

 // enable MTOM
 binding = (SOAPBinding)((BindingProvider)port).getBinding();
 binding.setMTOMEnabled(true);

5.7. Document/Literal
With document style web services two business partners agree on the exchange of complex
business documents that are well defined in XML schema. For example, one party sends a document
describing a purchase order, the other responds (immediately or later) with a document that describes
the status of the purchase order. The payload of the SOAP message is an XML document that can be
validated against XML schema. The document is defined by the style attribute on the SOAP binding.

<binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
 <soap:binding style='document' transport='http://schemas.xmlsoap.org/soap/
http'/>

Document/Literal (Bare)

23

<operation name='concat'>
 <soap:operation soapAction=''/>
<input>
 <soap:body use='literal'/>
</input>
 <output>
 <soap:body use='literal'/>
</output>
 </operation>
 </binding>

With document style web services the payload of every message is defined by a complex type in XML
schema.

<complexType name='concatType'>
 <sequence>
 <element name='String_1' nillable='true' type='string'/>
 <element name='long_1' type='long'/>
 </sequence>
 </complexType>
 <element name='concat' type='tns:concatType'/>
 Therefore, message parts must refer to an element from the schema.
 <message name='EndpointInterface_concat'>
 <part name='parameters' element='tns:concat'/>
 </message>
The following message definition is invalid.
<message name='EndpointInterface_concat'>
 <part name='parameters' type='tns:concatType'/>
</message>

5.8. Document/Literal (Bare)
Bare is an implementation detail from the Java domain. Neither in the abstract contract (for instance,
wsdl+schema) nor at the SOAP message level is a bare endpoint recognizable. A bare endpoint or
client uses a Java bean that represents the entire document payload.

@WebService
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
public class DocBareServiceImpl
{
@WebMethod
public SubmitBareResponse submitPO(SubmitBareRequest poRequest)
{
 ...
}
}

The trick is that the Java beans representing the payload contain JAXB annotations that define how
the payload is represented on the wire.

Chapter 5. Web Services

24

@XmlAccessorType(XmlAccessType.FIELD)
 @XmlType(name = "SubmitBareRequest", namespace="http://
soapbinding.samples.jaxws.ws.test.jboss.org/", propOrder = { "product" })
 @XmlRootElement(namespace="http://
soapbinding.samples.jaxws.ws.test.jboss.org/", name = "SubmitPO")
 public class SubmitBareRequest
 {
 @XmlElement(namespace="http://
soapbinding.samples.jaxws.ws.test.jboss.org/", required = true)
 private String product;

 ...
}

5.9. Document/Literal (Wrapped)
Wrapped is an implementation detail from the Java domain. Neither in the abstract contract (for
instance, wsdl+schema) nor at the SOAP message level is a wrapped endpoint recognizable. A
wrapped endpoint or client uses the individual document payload properties. Wrapped is the default
and does not have to be declared explicitly.

@WebService
public class DocWrappedServiceImpl
 {
 @WebMethod
 @RequestWrapper (className="org.somepackage.SubmitPO")
 @ResponseWrapper (className="org.somepackage.SubmitPOResponse")
 public String submitPO(String product, int quantity)
 {
 ...
 }
 }

Note
With JBossWS the request and response wrapper annotations are not required, they will
be generated on demand using sensible defaults.

5.10. RPC/Literal
With RPC there is a wrapper element that names the endpoint operation. Child elements of the RPC
parent are the individual parameters. The SOAP body is constructed based on some simple rules:
• The port type operation name defines the endpoint method name

• Message parts are endpoint method parameters

RPC is defined by the style attribute on the SOAP binding.

RPC/Literal

25

 <binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
 <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/
http'/>
 <operation name='echo'>
 <soap:operation soapAction=''/>
 <input>
 <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo'
 use='literal'/>
 </input>
 <output>
 <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo'
 use='literal'/>
 </output>
 </operation>
</binding>

With RPC style web services the portType names the operation (i.e. the java method on the endpoint)

<portType name='EndpointInterface'>
 <operation name='echo' parameterOrder='String_1'>
 <input message='tns:EndpointInterface_echo'/>
<output message='tns:EndpointInterface_echoResponse'/>
 </operation>
 </portType>

Operation parameters are defined by individual message parts.

 <message name='EndpointInterface_echo'>
 <part name='String_1' type='xsd:string'/>
 </message>
 <message name='EndpointInterface_echoResponse'>
 <part name='result' type='xsd:string'/>
 </message>

Note
There is no complex type in XML schema that could validate the entire SOAP message
payload.

 @WebService
 @SOAPBinding(style = SOAPBinding.Style.RPC)
 public class JSEBean01
 {
 @WebMethod
 @WebResult(name="result")
 public String echo(@WebParam(name="String_1") String input)
 {

Chapter 5. Web Services

26

 ...
 }
}

The element names of RPC parameters/return values may be defined using the JAX-WS
Annotations#javax.jws.WebParam and JAX-WS Annotations#javax.jws.WebResult respectively.

5.11. RPC/Encoded
SOAP encodeding style is defined by the infamous chapter 51 of the SOAP-1.12 specification. It has
inherent interoperability issues that cannot be fixed. The Basic Profile-1.03 prohibits this encoding
style in 4.1.7 SOAP encodingStyle Attribute4. JBossWS has basic support for RPC/Encoded that is
provided as is for simple interop scenarios with SOAP stacks that do not support literal encoding.
Specifically, JBossWS does not support:-
• element references

• soap arrays as bean properties

5.12. Web Service Endpoints
JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an
endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server. The
server automatically generates and publishes the abstract contract (for instance, wsdl+schema) for
client consumption. All marshalling/unmarshalling is delegated to JAXB.

5.13. Plain old Java Object (POJO)
Let us take a look at simple POJO endpoint implementation. All endpoint associated metadata is
provided via JSR-181 annotations

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class JSEBean01
 {
 @WebMethod
 public String echo(String input)
 {
 ...
 }
 }

5.14. The endpoint as a web application
A JAX-WS java service endpoint (JSE) is deployed as a web application.

<web-app ...>

1 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
2 http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
3 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
4 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072

Packaging the endpoint

27

 <servlet>
 <servlet-name>TestService</servlet-name>
 <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</
servlet-class>
 </servlet>
 <servlet-mapping>
<servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

5.15. Packaging the endpoint
A JSR-181 java service endpoint (JSE) is packaged as a web application in a *.war file.

<war warfile="${build.dir}/libs/jbossws-samples-jsr181pojo.war"
 webxml="${build.resources.dir}/samples/jsr181pojo/WEB-INF/web.xml">
 <classes dir="${build.dir}/classes">
<include name="org/jboss/test/ws/samples/jsr181pojo/JSEBean01.class"/>
 </classes>
</war>

Note
Only the endpoint implementation bean and web.xml file are required.

5.16. Accessing the generated WSDL
A successfully deployed service endpoint will show up in the service endpoint manager. This is also
where you find the links to the generated WSDL.

http://yourhost:8080/jbossws/services

It is also possible to generate the abstract contract off line using jboss tools. For details of that see
#Top Down (Java to WSDL)5

5.17. EJB3 Stateless Session Bean (SLSB)
The JAX-WS programming model support the same set of annotations on EJB3 stateless session
beans as on # Plain old Java Object (POJO)6 endpoints. EJB-2.1 endpoints are supported using the
JAX-RPC progamming model.

 @Stateless
 @Remote(EJB3RemoteInterface.class)

5 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
6 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28POJO.29

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28POJO.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28POJO.29

Chapter 5. Web Services

28

 @RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")

 @WebService
 @SOAPBinding(style = SOAPBinding.Style.RPC)
 public class EJB3Bean01 implements EJB3RemoteInterface
 {
 @WebMethod
 public String echo(String input)
 {
 ...
 }
 }

Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote
interface and as an endpoint operation.

Packaging the endpoint
A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

<jar jarfile="${build.dir}/libs/jbossws-samples-jsr181ejb.jar">
<fileset dir="${build.dir}/classes">
<include name="org/jboss/test/ws/samples/jsr181ejb/EJB3Bean01.class"/>
<include name="org/jboss/test/ws/samples/jsr181ejb/
EJB3RemoteInterface.class"/>
</fileset>
</jar>

Accessing the generated WSDL
A successfully deployed service endpoint will show up in the service endpoint manager. This is also
where you will find the links to the generated WSDL.

 http://yourhost:8080/jbossws/services

It is also possible to generate the abstract contract offline using JbossWS tools. For details of that
please see #Top Down (Java to WSDL)7

5.18. Endpoint Provider
JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped
from a WSDL port type, either directly or via the use of annotations.

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between
Java objects and their XML representations for use in XML-based messages. However, in some
cases it is desirable for services to be able to operate at the XML message level. The Provider
interface offers an alternative to SEIs and may be implemented by services wishing to work at the
XML message level.

7 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29

WebServiceContext

29

A Provider based service instance’s invoke method is called for each message received for the
service.

@WebServiceProvider
@ServiceMode(value = Service.Mode.PAYLOAD)
public class ProviderBeanPayload implements Provider<Source>
{
public Source invoke(Source req)
{
// Access the entire request PAYLOAD and return the response PAYLOAD
 }
}

Service.Mode.PAYLOAD is the default and does not have to be declared explicitly. You can also use
Service.Mode.MESSAGE to access the entire SOAP message (for example, with MESSAGE the
Provider can also see SOAP Headers)

5.19. WebServiceContext
The WebServiceContext is treated as an injectable resource that can be set at the time an endpoint
is initialized. The WebServiceContext object will then use thread-local information to return the
correct information regardless of how many threads are concurrently being used to serve requests
addressed to the same endpoint object.

@WebService
public class EndpointJSE
{
@Resource
WebServiceContext wsCtx;

@WebMethod
public String testGetMessageContext()
{
SOAPMessageContext jaxwsContext =
 (SOAPMessageContext)wsCtx.getMessageContext();
return jaxwsContext != null ? "pass" : "fail";
}
..
@WebMethod
public String testGetUserPrincipal()
{
Principal principal = wsCtx.getUserPrincipal();
return principal.getName();
}

@WebMethod
public boolean testIsUserInRole(String role)
{
return wsCtx.isUserInRole(role);

Chapter 5. Web Services

30

}
}

5.20. Web Service Clients

5.20.1. Service
Service is an abstraction that represents a WSDL service. A WSDL service is a collection of related
ports, each of which consists of a port type bound to a particular protocol and available at a particular
endpoint address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will be the
service, and you will create objects of that class in order to work with the service (see "static case"
below).

5.20.1.1. Service Usage

Static case
Most clients will start with a WSDL file, and generate some stubs using jbossws tools like
wsconsume. This usually gives a mass of files, one of which is the top of the tree. This is the service
implementation class.

The generated implementation class can be recognised as it will have two public constructors, one
with no arguments and one with two arguments, representing the wsdl location (a java.net.URL) and
the service name (a javax.xml.namespace.QName) respectively.

Usually you will use the no-argument constructor. In this case the WSDL location and service name
are those found in the WSDL. These are set implicitly from the WebServiceClient annotation that
decorates the generated class.

The following code snippet shows the generated constructors from the generated class:

// Generated Service Class

 @WebServiceClient(name="StockQuoteService", targetNamespace="http://
example.com/stocks", wsdlLocation="http://example.com/stocks.wsdl")
public class StockQuoteService extends javax.xml.ws.Service
{
public StockQuoteService()
{
super(new URL("http://example.com/stocks.wsdl"), new QName("http://
example.com/stocks", "StockQuoteService"));
}

public StockQuoteService(String wsdlLocation, QName serviceName)
{
super(wsdlLocation, serviceName);

Dynamic Proxy

31

}

...
}

Section #Dynamic Proxy8 explains how to obtain a port from the service and how to invoke
an operation on the port. If you need to work with the XML payload directly or with the XML
representation of the entire SOAP message, have a look at #Dispatch9.

Dynamic case
In the dynamic case, when nothing is generated, a web service client uses Service.create to
create Service instances, the following code illustrates this process.

URL wsdlLocation = new URL("http://example.org/my.wsdl");
QName serviceName = new QName("http://example.org/sample", "MyService");
Service service = Service.create(wsdlLocation, serviceName);

This is not the recommended way to use JBossWS.

5.20.1.2. Handler Resolver
JAX-WS provides a flexible plug-in framework for message processing modules, known as
handlers, that may be used to extend the capabilities of a JAX-WS runtime system. Handler
Framework10 describes the handler framework in detail. A Service instance provides access to a
HandlerResolver via a pair of getHandlerResolver and setHandlerResolver methods that
may be used to configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler
resolver currently registered with the service is used to create the required handler chain. Subsequent
changes to the handler resolver configured for a Service instance do not affect the handlers on
previously created proxies, or Dispatch instances.

5.20.1.3. Executor
Service instances can be configured with a java.util.concurrent.Executor. The
executor will then be used to invoke any asynchronous callbacks requested by the application. The
setExecutor and getExecutor methods of Service can be used to modify and retrieve the
executor configured for a service.

5.20.2. Dynamic Proxy
You can create an instance of a client proxy using one of getPort methods on the Service11.

 /**

8 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy
9 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch
10 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
11 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

Chapter 5. Web Services

32

 * The getPort method returns a proxy. A service client
 * uses this proxy to invoke operations on the target
 * service endpoint. The <code>serviceEndpointInterface</code>
 * specifies the service endpoint interface that is supported by
 * the created dynamic proxy instance.
 **/
 public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
 {
 ...
 }

 /**
 * The getPort method returns a proxy. The parameter
 * <code>serviceEndpointInterface</code> specifies the service
 * endpoint interface that is supported by the returned proxy.
 * In the implementation of this method, the JAX-WS
 * runtime system takes the responsibility of selecting a protocol
 * binding (and a port) and configuring the proxy accordingly.
 * The returned proxy should not be reconfigured by the client.
 *
 **/
 public <T> T getPort(Class<T> serviceEndpointInterface)
 {
 ...
 }

The Service Endpoint Interface (SEI) is usually generated using tools. For details see Top Down
(WSDL to Java)12.

A generated static Service13 usually also offers typed methods to get ports. These methods also
return dynamic proxies that implement the SEI.

@WebServiceClient(name = "TestEndpointService", targetNamespace = "http://
org.jboss.ws/wsref",
 wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-
webserviceref?wsdl")

 public class TestEndpointService extends Service
 {
 ...

 public TestEndpointService(URL wsdlLocation, QName serviceName) {
 super(wsdlLocation, serviceName);
 }

 @WebEndpoint(name = "TestEndpointPort")
 public TestEndpoint getTestEndpointPort()
 {

12 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
13 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

WebServiceRef

33

 return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);
 }
 }

5.20.3. WebServiceRef
The WebServiceRef annotation is used to declare a reference to a Web service. It follows the
resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250 [5]

There are two uses to the WebServiceRef annotation:

1. To define a reference whose type is a generated service class. In this case, the type and value
element will both refer to the generated service class type. Moreover, if the reference type can be
inferred by the field or method declaration then the annotation is applied to the type, and value
elements may have the default value (Object.class, that is). If the type cannot be inferred, then
at least the type element must be present with a non-default value.

2. To define a reference whose type is a SEI. In this case, the type element may be present with
its default value if the type of the reference can be inferred from the annotated field and method
declaration, but the value element must always be present and refer to a generated service class
type (a subtype of javax.xml.ws.Service). The wsdlLocation element, if present, overrides
theWSDL location information specified in the WebService annotation of the referenced
generated service class.

public class EJB3Client implements EJB3Remote
{
 @WebServiceRef
 public TestEndpointService service4;

 @WebServiceRef
 public TestEndpoint port3;

WebServiceRef Customization
In Jboss Enterprise Application Platform 5.0 we offer a number of overrides and extensions to the
WebServiceRef annotation. These include

• define the port that should be used to resolve a container-managed port

• define default Stub property settings for Stub objects

• define the URL of a final WSDL document to be used

Example:

<service-ref>
<service-ref-name>OrganizationService</service-ref-name>
<wsdl-override>file:/wsdlRepository/organization-service.wsdl</wsdl-
override>
</service-ref>

Chapter 5. Web Services

34

..
<service-ref>
<service-ref-name>OrganizationService</service-ref-name>
<config-name>Secure Client Config</config-name>
<config-file>META-INF/jbossws-client-config.xml</config-file>
<handler-chain>META-INF/jbossws-client-handlers.xml</handler-chain>
</service-ref>

<service-ref>
<service-ref-name>SecureService</service-ref-name>
<service-class-
name>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpointService</service-
class-name>
<service-qname>{http://org.jboss.ws/wsref}SecureEndpointService</service-
qname>
<port-info>
<service-endpoint-
interface>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpoint</service-
endpoint-interface>
<port-qname>{http://org.jboss.ws/wsref}SecureEndpointPort</port-qname>
<stub-property>
<name>javax.xml.ws.security.auth.username</name>
<value>kermit</value>
</stub-property>
<stub-property>
<name>javax.xml.ws.security.auth.password</name>
<value>thefrog</value>
</stub-property>
</port-info>
</service-ref>

5.20.4. Dispatch
XMLWeb Services use XML messages for communication between services and service clients.
The higher level JAX-WS APIs are designed to hide the details of converting between Java method
invocations and the corresponding XML messages, but in some cases operating at the XML message
level is desirable. The Dispatch interface provides support for this mode of interaction.

Dispatch supports two usage modes, identified by the constants
javax.xml.ws.Service.Mode.MESSAGE and javax.xml.ws.Service.Mode.PAYLOAD respectively:

Message
In this mode, client applications work directly with protocol-specific message structures. For example,
when used with a SOAP protocol binding, a client application would work directly with a SOAP
message.

Message Payload
In this mode, client applications work with the payload of messages rather than the messages
themselves. For example, when used with a SOAP protocol binding, a client application would work
with the contents of the SOAP Body rather than the SOAP message as a whole.

Asynchronous Invocations

35

Dispatch is a low level API that requires clients to construct messages or message payloads as
XML and requires an intimate knowledge of the desired message or payload structure. Dispatch is a
generic class that supports input and output of messages or message payloads of any type.

Service service = Service.create(wsdlURL, serviceName);
Dispatch dispatch = service.createDispatch(portName, StreamSource.class,
 Mode.PAYLOAD);

String payload = "<ns1:ping xmlns:ns1='http://
oneway.samples.jaxws.ws.test.jboss.org/'/>";
dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));

payload = "<ns1:feedback xmlns:ns1='http://
oneway.samples.jaxws.ws.test.jboss.org/'/>";
Source retObj = (Source)dispatch.invoke(new StreamSource(new
 StringReader(payload)));

5.20.5. Asynchronous Invocations
The BindingProvider interface represents a component that provides a protocol binding for use by
clients, it is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities. When used,
asynchronous operation invocations are decoupled from the BindingProvider instance at
invocation time such that the response context is not updated when the operation completes. Instead
a separate response context is made available using the Response interface.

public void testInvokeAsync() throws Exception
{
URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-
asynchronous?wsdl");
QName serviceName = new QName(targetNS, "TestEndpointService");
Service service = Service.create(wsdlURL, serviceName);
TestEndpoint port = service.getPort(TestEndpoint.class);

Response response = port.echoAsync("Async");

// access future
String retStr = (String) response.get();
assertEquals("Async", retStr);
}

5.20.6. Oneway Invocations
@Oneway indicates that the given web method has only an input message and no output. Typically,
a one-way method returns the thread of control to the calling application prior to executing the actual
business method.

Chapter 5. Web Services

36

@WebService (name="PingEndpoint")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class PingEndpointImpl
{
 private static String feedback;
..
@WebMethod
@Oneway
public void ping()
{
log.info("ping");
feedback = "ok";
}
..
@WebMethod
public String feedback()
{
log.info("feedback");
return feedback;
}
}

5.21. Common API
This sections describes concepts that apply equally to #Web Service Endpoints14 and #Web Service
Clients15

5.21.1. Handler Framework
The handler framework is implemented by a JAX-WS protocol binding in both client and server side
runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol
bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The
handlers within a handler chain are invoked each time a message is sent or received. Inbound
messages are processed by handlers prior to binding provider processing. Outbound messages are
processed by handlers after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound
and outbound messages and to manage a set of properties. Message context properties may be used
to facilitate communication between individual handlers and between handlers and client and service
implementations. Different types of handlers are invoked with different types of message context.

5.21.1.1. Logical Handler
Handlers that only operate on message context properties and message payloads. Logical handlers
are protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers
are handlers that implement javax.xml.ws.handler.LogicalHandler.

14 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
15 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients

Message Context

37

5.21.1.2. Protocol Handler
Handlers that operate on message context properties and protocol specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol specific
aspects of a message. Protocol handlers are handlers that implement any interface derived from
javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

5.21.1.3. Service endpoint handlers
On the service endpoint, handlers are defined using the @HandlerChain annotation.

@WebService
@HandlerChain(file = "jaxws-server-source-handlers.xml")
public class SOAPEndpointSourceImpl
{
...
}

The location of the handler chain file supports 2 formats

1. An absolute java.net.URL in externalForm. (ex: http://myhandlers.foo.com/handlerfile1.xml)

2. A relative path from the source file or class file. (ex: bar/handlerfile1.xml)

5.21.1.4. Service client handlers
On the client side, handler can be configured using the @HandlerChain annotation on the SEI or
dynamically using the API.

Service service = Service.create(wsdlURL, serviceName);
Endpoint port = (Endpoint)service.getPort(Endpoint.class);

BindingProvider bindingProvider = (BindingProvider)port;
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new LogHandler());
handlerChain.add(new AuthorizationHandler());
handlerChain.add(new RoutingHandler());
bindingProvider.getBinding().setHandlerChain(handlerChain); // important!

5.21.2. Message Context
MessageContext is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that enable
handlers in a handler chain to share processing related state. For example, a handler may use the
put method to insert a property in the message context that one or more other handlers in the handler
chain may subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all
handlers for an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a property
in the message context, that property will also be available to any protocol handlers in the chain during

http://myhandlers.foo.com/handlerfile1.xml

Chapter 5. Web Services

38

the execution of an MEP instance. APPLICATION scoped properties are also made available to client
applications (see section 4.2.1) and service endpoint implementations. The defaultscope for a property
is HANDLER.

5.21.2.1. Accessing the message context
There is currently no portable way of doing this in 4.0.5. @WebServiceContext injection will be
available with 4.2. In the meantime you can access the message context like this:

CommonMessageContext msgContext =
 MessageContextAssociation.peekMessageContext();
msgContext.setProperty(<Name>, <Value>);

5.21.2.2. Logical Message Context
#Logical Handlers are passed a message context of type LogicalMessageContext when invoked.
LogicalMessageContext extends MessageContext with methods to obtain and modify the message
payload, it does not provide access to the protocol specific aspects of amessage. A protocol binding
defines what component of a message are available via a logical message context. The SOAP binding
defines that a logical handler deployed in a SOAP binding can access the contents of the SOAP body
but not the SOAP headers whereas the XML/HTTP binding defines that a logical handler can access
the entire XML payload of a message.

5.21.2.3. SOAP Message Context
SOAP handlers are passed a SOAPMessageContext when invoked. SOAPMessageContext extends
MessageContext with methods to obtain and modify the SOAP message payload.

5.21.3. Fault Handling
An implementation may thow a SOAPFaultException

public void throwSoapFaultException()
{
SOAPFactory factory = SOAPFactory.newInstance();
SOAPFault fault = factory.createFault("this is a fault string!", new
 QName("http://foo", "FooCode"));
fault.setFaultActor("mr.actor");
fault.addDetail().addChildElement("test");
throw new SOAPFaultException(fault);
}

or an application specific user exception

public void throwApplicationException() throws UserException
{
throw new UserException("validation", 123, "Some validation error");

DataBinding

39

}

Note
In case of the latter JBossWS generates the required fault wrapper beans at runtime if
they are not part of the deployment

5.22. DataBinding

5.22.1. Using JAXB with non annotated classes
Since 2.0.2

JAXB is heavily driven by Java Annotations on the Java Bindings. It currently doesn't support an
external binding configuration. This recently became an issue for us on JBossESB since the JBossWS
2.0.0 native SOAP stack uses JAXB to perform the SOAP to Java bindings (see 1, 2). It's an issue
for JBossESB simply because it needs to be able to support user definition of JBossWS native
Webservice Endpoints (e.g. JSR 181) using Java typesets that have not been "JAXB Annotated" (see
JAXB Introductions On JBossWS).

In order to support this, we built on a JAXB RI feature whereby it allows you to specify a
RuntimeInlineAnnotationReader implementation during JAXBContext creation (see JAXBRIContext).

We call this feature "JAXB Annotation Introduction" and we've made it available for general
consumption i.e. it can be checked out, built and used from SVN:

• http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/

Complete documentation can be found here:

• JAXB Introductions16

5.23. Attachments

5.23.1. MTOM/XOP
This section describes Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP), a means of more efficiently serializing XML Infosets that have certain
types of content. The related specifications are

• SOAP Message Transmission Optimization Mechanism (MTOM)17

• XML-binary Optimized Packaging (XOP)18

5.23.1.1. Supported MTOM parameter types

image/jpeg java.awt.Image

http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/
http://wiki.jboss.org/wiki/Wiki.jsp?page=JAXBIntroductions
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/

Chapter 5. Web Services

40

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

application/octet-stream javax.activation.DataHandler

The above table shows a list of supported endpoint parameter types. The recommended approach
is to use the javax.activation.DataHandler19 classes to represent binary data as service endpoint
parameters.

Note
Microsoft endpoints tend to send any data as application/octet-stream. The only Java type
that can easily cope with this ambiguity is javax.activation.DataHandler

5.23.1.2. Enabling MTOM per endpoint
On the server side MTOM processing is enabled through the @BindingType annotation. JBossWS
does handle SOAP1.1 and SOAP1.2. Both come with or without MTOM flavours:

MTOM enabled service implementations

package org.jboss.test.ws.jaxws.samples.xop.doclit;

import javax.ejb.Remote;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.BindingType;

@Remote
@WebService(targetNamespace = "http://org.jboss.ws/xop/doclit")
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT, parameterStyle =
 SOAPBinding.ParameterStyle.BARE)
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true")
 (1)
public interface MTOMEndpoint {

[...]
}

1. The MTOM enabled SOAP 1.1 binding ID

MTOM enabled clients

Web service clients can use the same approach described above or
rely on the Binding API to enable MTOM (Excerpt taken from the
org.jboss.test.ws.jaxws.samples.xop.doclit.XOPTestCase):

19 http://java.sun.com/j2ee/1.4/docs/api/javax/activation/DataHandler.html

http://java.sun.com/j2ee/1.4/docs/api/javax/activation/DataHandler.html
http://java.sun.com/j2ee/1.4/docs/api/javax/activation/DataHandler.html

SwaRef

41

[...]
Service service = Service.create(wsdlURL, serviceName);
port = service.getPort(MTOMEndpoint.class);

// enable MTOM
binding = (SOAPBinding)((BindingProvider)port).getBinding();
binding.setMTOMEnabled(true);

Note
You might as well use the JBossWS configuration templates to setup deployment defaults.

5.23.2. SwaRef
Since 2.0

WS-I Attachment Profile 1.020 defines mechanism to reference MIME attachment parts using
swaRef21. In this mechanism the content of XML element of type wsi:swaRef is sent as MIME
attachment and the element inside SOAP Body holds the reference to this attachment in the CID URI
scheme as defined by RFC 211122.

5.23.2.1. Using SwaRef with JAX-WS endpoints
JAX-WS endpoints delegate all marshalling/unmarshalling to the JAXB API. The most simple
way to enable SwaRef encoding for DataHandler types is to annotate a payload bean with the
@XmlAttachmentRef annotation as shown below:

/**
* Payload bean that will use SwaRef encoding
*/
@XmlRootElement
public class DocumentPayload
{
private DataHandler data;

public DocumentPayload()
{
}

public DocumentPayload(DataHandler data)
{
this.data = data;
}

@XmlElement

20 http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
21 http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope
22 http://www.ietf.org/rfc/rfc2111.txt

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope
http://www.ietf.org/rfc/rfc2111.txt
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope
http://www.ietf.org/rfc/rfc2111.txt

Chapter 5. Web Services

42

@XmlAttachmentRef
public DataHandler getData()
{
return data;
}

public void setData(DataHandler data)
{
this.data = data;
}
}

With document wrapped endpoints you may even specify the @XmlAttachmentRef annotation on
the service endpoint interface:

@WebService
public interface DocWrappedEndpoint
{
@WebMethod
DocumentPayload beanAnnotation(DocumentPayload dhw, String test);

@WebMethod
@XmlAttachmentRef
DataHandler parameterAnnotation(@XmlAttachmentRef DataHandler data, String
 test);

}

The message would then refer to the attachment part by CID:

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header/>
<env:Body>
<ns2:parameterAnnotation xmlns:ns2='http://
swaref.samples.jaxws.ws.test.jboss.org/'>
<arg0>cid:0-1180017772935-32455963@ws.jboss.org</arg0>
<arg1>Wrapped test</arg1>
</ns2:parameterAnnotation>
</env:Body>
</env:Envelope>

5.23.2.2. Starting from WSDL
If you chose the contract first approach then you need to ensure that any element declaration that
should use SwaRef encoding simply refers to wsi:swaRef schema type:

<element name="data" type="wsi:swaRef"

Tools

43

xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"/>

Any wsi:swaRef schema type would then be mapped to DataHandler.

5.24. Tools
The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at
server-side development strategies, and then proceed to the client. When developing a Web Service
Endpoint (the server-side) you have the option of starting from Java (bottom-up development), or
from the abstact contract (WSDL) that defines your service (top-down development). If this is a new
service (no existing contract), the bottom-up approach is the fastest route; you only need to add a few
annotations to your classes to get a service up and running. However, if you are developing a service
with an already defined contract, it is far simpler to use the top-down approach, since the provided tool
will generate the annotated code for you.

Bottom-up use cases:

• Exposing an already existing EJB3 bean as a Web Service

• Providing a new service, and you want the contract to be generated for you

Top-down use cases:

• Replacing the implementation of an existing Web Service, and you can't break compatibility with
older clients

• Exposing a service that conforms to a contract specified by a third party (e.g. a vender that calls you
back using an already defined protocol).

• Creating a service that adheres to the XML Schema and WSDL you developed by hand up front

The following JAX-WS command line tools are included in JBossWS:

Command Description

wsprovide23 Generates JAX-WS portable artifacts, and
provides the abstract contract. Used for bottom-
up development.

wsconsume24 Consumes the abstract contract (WSDL and
Schema files), and produces artifacts for both a
server and client. Used for top-down and client
development

wsrunclient25 Executes a Java client (has a main method)
using the JBossWS classpath.

5.24.1. Bottom-Up (Using wsprovide)
The bottom-up strategy involves developing the Java code for your service, and then annotating
it using JAX-WS annotations. These annotations can be used to customize the contract that is
generated for your service. For example, you can change the operation name to map to anything you
like. However, all of the annotations have sensible defaults, so only the @WebService annotation is
required.

This can be as simple as creating a single class:

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

Chapter 5. Web Services

44

package echo;

@javax.jws.WebService
public class Echo
{
public String echo(String input)
{
return input;
}
}

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to deploy
on JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be generated
for you at deploy time. This actually goes beyond the JAX-WS specification, which requires that
wrapper classes be generated using an offline tool. The reason for this requirement is purely a vender
implementation problem, and since we do not believe in burdening a developer with a bunch of
additional steps, we generate these as well. However, if you want your deployment to be portable
to other application servers, you will need to use a tool and add the generated classes to your
deployment.

This is the primary purpose of the wsprovide26 tool, to generate portable JAX-WS artifacts.
Additionally, it can be used to "provide" the abstract contract (WSDL file) for your service. This can be
obtained by invoking wsprovide27 using the "-w" option:

$ javac -d . -classpath jboss-jaxws.jar Echo.java
$ wsprovide -w echo.Echo
Generating WSDL:
EchoService.wsdl
Writing Classes:
echo/jaxws/Echo.class
echo/jaxws/EchoResponse.class

Inspecting the WSDL reveals a service called EchoService:

<service name='EchoService'>
<port binding='tns:EchoBinding' name='EchoPort'>
<soap:address location='REPLACE_WITH_ACTUAL_URL'/>
</port>
</service>

As expected, this service defines one operation, "echo":

<portType name='Echo'>

26 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
27 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

Bottom-Up (Using wsprovide)

45

<operation name='echo' parameterOrder='echo'>
<input message='tns:Echo_echo'/>
<output message='tns:Echo_echoResponse'/>
</operation>
</portType>

Note
Remember that when deploying on JBossWS you do not need to run this tool. You
only need it for generating portable artifacts and/or the abstract contract for your service.

Let us create a POJO endpoint for deployment on JBoss Enterprise Application Platform. A simple
web.xml needs to be created:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/
xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<servlet>
<servlet-name>Echo</servlet-name>
<servlet-class>echo.Echo</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Echo</servlet-name>
<url-pattern>/Echo</url-pattern>
</servlet-mapping>
</web-app>

The web.xml and the single class can now be used to create a WAR:

$ mkdir -p WEB-INF/classes
$ cp -rp echo WEB-INF/classes/
$ cp web.xml WEB-INF
$ jar cvf echo.war WEB-INF
added manifest
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/Echo.class(in = 340) (out= 247)(deflated 27%)
adding: WEB-INF/web.xml(in = 576) (out= 271)(deflated 52%)

The war can then be deployed:

Chapter 5. Web Services

46

 cp echo.war /usr/local/jboss-4.2.0.GA-ejb3/server/default/deploy

This will internally invoke wsprovide28, which will generate the WSDL. If deployment was successful,
and you are using the default settings, it should be available here: http://localhost:8080/echo/Echo?
wsdl

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the
deployment.

5.24.2. Top-Down (Using wsconsume)
The top-down development strategy begins with the abstract contract for the service, which includes
the WSDL file and zero or more schema files. The wsconsume29 tool is then used to consume this
contract, and produce annotated Java classes (and optionally sources) that define it.

Note
wsconsume seems to have a problem with symlinks on unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this
service can be generated. The "-k" option is passed to wsconsume30 to preserve the Java source files
that are generated, instead of providing just classes:

$ wsconsume -k EchoService.wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java

The following table shows the purpose of each generated file:

File Purpose

Echo.java Service Endpoint Interface

Echo_Type.java Wrapper bean for request message

EchoResponse.java Wrapper bean for response message

28 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
29 http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
30 http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://localhost:8080/echo/Echo?wsdl
http://localhost:8080/echo/Echo?wsdl
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

Client Side

47

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

EchoService.java Used only by JAX-WS clients

Examining the Service Endpoint Interface reveals annotations that are more explicit than in the class
written by hand in the bottom-up example, however, these evaluate to the same contract:

@WebService(name = "Echo", targetNamespace = "http://echo/")
public interface Echo {
@WebMethod
@WebResult(targetNamespace = "")
@RequestWrapper(localName = "echo", targetNamespace = "http://echo/",
 className = "echo.Echo_Type")
@ResponseWrapper(localName = "echoResponse", targetNamespace = "http://
echo/", className = "echo.EchoResponse")
public String echo(
@WebParam(name = "arg0", targetNamespace = "")
String arg0);

}

The only missing piece (besides the packaging) is the implementation class, which can now be written
using the above interface.

package echo;

@javax.jws.WebService(endpointInterface="echo.Echo")
public class EchoImpl implements Echo
{
public String echo(String arg0)
{
return arg0;
}
}

5.24.3. Client Side
Before going into detail on the client-side it is important to understand the decoupling concept that
is central to Web Services. Web Services are not the best fit for internal RPC, even though they can
be used in this way; there are much better technologies for achieving this (CORBA, and RMI for
example). Web Services were designed specifically for interoperable coarse-grained correspondence.
There is no expectation or guarantee that any party participating in a Web Service interaction will
be at any particular location, running on any particular operating system, or written in any particular
programming language. So because of this, it is important to clearly separate client and server
implementations. The only thing they should have in common is the abstract contract definition. If, for
whatever reason, your software does not adhere to this principal, then you should not be using Web
Services. For the above reasons, the recommended methodology for developing a client is to
follow the top-down approach , even if the client is running on the same server.

Chapter 5. Web Services

48

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of
the one generated offline by wsprovide31. The reason why we do this is just to get the right value
for soap:address. This value must be computed at deploy time, since it is based on container
configuration specifics. You could of course edit the WSDL file yourself, although you need to ensure
that the path is correct.

Offline version:

<service name='EchoService'>
<port binding='tns:EchoBinding' name='EchoPort'>
<soap:address location='REPLACE_WITH_ACTUAL_URL'/>
</port>
</service>

Online version:

<service name="EchoService">
<port binding="tns:EchoBinding" name="EchoPort">
<soap:address location="http://localhost.localdomain:8080/echo/Echo"/>
</port>
</service>

Using the online deployed version with wsconsume32:

$ wsconsume -k http://localhost:8080/echo/Echo?wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java

The one class that was not examined in the top-down section, was EchoService.java. Notice how
it stores the location the WSDL was obtained from.

@WebServiceClient(name = "EchoService", targetNamespace = "http://echo/",
 wsdlLocation = "http://localhost:8080/echo/Echo?wsdl")
public class EchoService extends Service

31 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
32 http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

Client Side

49

{
private final static URL ECHOSERVICE_WSDL_LOCATION;

static {
URL url = null;
try {
url = new URL("http://localhost:8080/echo/Echo?wsdl");
} catch (MalformedURLException e) {
e.printStackTrace();
}
ECHOSERVICE_WSDL_LOCATION = url;
}

public EchoService(URL wsdlLocation, QName serviceName) {
super(wsdlLocation, serviceName);
}

public EchoService() {
super(ECHOSERVICE_WSDL_LOCATION, new QName("http://echo/", "EchoService"));
}

@WebEndpoint(name = "EchoPort")
public Echo getEchoPort() {
return (Echo)super.getPort(new QName("http://echo/", "EchoPort"),
 Echo.class);
}
}

As you can see, this generated class extends the main client entry point in JAX-WS,
javax.xml.ws.Service. While you can use Service directly, this is far simpler since it provides
the configuration info for you. The only method we really care about is the getEchoPort() method,
which returns an instance of our Service Endpoint Interface. Any Web Services operation can
then be called by just invoking a method on the returned interface.

Note
It is not recommended to refer to a remote WSDL URL in a production application. This
causes network I/O every time you instantiate the Service Object. Instead, use the tool
on a saved local copy, or use the URL version of the constructor to provide a new WSDL
location.

All that is left to do, is write and compile the client:

import echo.*;
..
public class EchoClient
{
public static void main(String args[])
{
if (args.length != 1)

Chapter 5. Web Services

50

{
System.err.println("usage: EchoClient <message>");
System.exit(1);
}

EchoService service = new EchoService();
Echo echo = service.getEchoPort();
System.out.println("Server said: " + echo.echo(args[0]));
}
}

It can then be easily executed using the wsrunclient33 tool. This is just a convenience tool that invokes
java with the needed classpath:

$ wsrunclient EchoClient 'Hello World!'
Server said: Hello World!

It is easy to change the endpoint address of your operation at runtime, setting
ENDPOINT_ADDRESS_PROPERTY as shown below:

...
EchoService service = new EchoService();
Echo echo = service.getEchoPort();

/* Set NEW Endpoint Location */
String endpointURL = "http://NEW_ENDPOINT_URL";
BindingProvider bp = (BindingProvider)echo;
bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpointURL);

System.out.println("Server said: " + echo.echo(args[0]));
...

5.24.4. Command-line & Ant Task Reference
• wsconsume reference page34

• wsprovide reference page35

• wsrunclient reference page36

5.24.5. JAX-WS binding customization
An introduction to binding customizations:

• http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html

The schema for the binding customization files can be found here:

33 http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

Web Service Extensions

51

• binding customization37

5.25. Web Service Extensions

5.25.1. WS-Addressing
This section describes how WS-Addressing38 can be used to provide a staful service endpoint.

5.25.1.1. Specifications
WS-Addressing is defined by a combination of the following specifications from the W3C Candidate
Recommendation 17 August 2005. The WS-Addressing API is standardized by JSR-261 - Java API for
XML Web Services Addressing39

• Web Services Addressing 1.0 - Core40

• Web Services Addressing 1.0 - SOAP Binding41

5.25.1.2. Addressing Endpoint
The following endpoint implementation has a set of operation for a typical stateful shopping chart
application.

@WebService(name = "StatefulEndpoint", targetNamespace = "http://
org.jboss.ws/samples/wsaddressing", serviceName = "TestService")
@EndpointConfig(configName = "Standard WSAddressing Endpoint")
@HandlerChain(file = "WEB-INF/jaxws-handlers.xml")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class StatefulEndpointImpl implements StatefulEndpoint,
 ServiceLifecycle
{
@WebMethod
public void addItem(String item)
{ ... }

@WebMethod
public void checkout()
{ ... }

@WebMethod
public String getItems()
{ ... }
}

It uses the JAX-WS Endpoint Configuration# Standard WSAddressing Endpoint42 to enable the server
side addressing handler. It processes the incomming WS-Addressing header elements and provides
access to them through the JSR-261 API.

38 http://www.w3.org/TR/ws-addr-core
39 http://www.jcp.org/en/jsr/detail?id=261
42 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint

https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
http://www.w3.org/TR/ws-addr-core
http://www.jcp.org/en/jsr/detail?id=261
http://www.jcp.org/en/jsr/detail?id=261
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-soap
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint
http://www.w3.org/TR/ws-addr-core
http://www.jcp.org/en/jsr/detail?id=261
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint

Chapter 5. Web Services

52

The endpoint handler chain

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 javaee_web_services_1_2.xsd">

<handler-chain>
<protocol-bindings>##SOAP11_HTTP</protocol-bindings>
<handler>
<handler-name>Application Server Handler</handler-name>
<handler-class>org.jboss.test.ws.jaxws.samples.wsaddressing.ServerHandler</
handler-class>
</handler>
</handler-chain>

</handler-chains>

Defines an application specific hander that assignes and processes stateful client IDs.

5.25.1.3. Addressing Client
On the client side there are simmilar handlers that does the reverse. It uses the JSR-261 API to add
WS-Addressing header elements including the clientid association.

The client sets a custom handler chain in the binding

Service service = Service.create(wsdlURL, serviceName);
port1 = (StatefulEndpoint)service.getPort(StatefulEndpoint.class);
BindingProvider bindingProvider = (BindingProvider)port1;

List<Handler> customHandlerChain = new ArrayList<Handler>();
customHandlerChain.add(new ClientHandler());
customHandlerChain.add(new WSAddressingClientHandler());
bindingProvider.getBinding().setHandlerChain(customHandlerChain);

The WSAddressingClientHandler is provided by JBossWS and reads/writes the addressing properties
and puts then into the message context.

A client connecting to the stateful endpoint

public class AddressingStatefulTestCase extends JBossWSTest
{
public void testAddItem() throws Exception
{
port1.addItem("Ice Cream");
port1.addItem("Ferrari");

port2.addItem("Mars Bar");

WS-Addressing

53

port2.addItem("Porsche");
}

public void testGetItems() throws Exception
{
String items1 = port1.getItems();
assertEquals("[Ice Cream, Ferrari]", items1);

String items2 = port2.getItems();
assertEquals("[Mars Bar, Porsche]", items2);
}
}

SOAP message exchange

Below you see the SOAP messages that are beeing exchanged.

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>
<wsa:ReferenceParameters>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</wsa:ReferenceParameters>
</env:Header>
<env:Body>
<ns1:addItem xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
<String_1>Ice Cream</String_1>
</ns1:addItem>
</env:Body>
</env:Envelope>

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</
wsa:Action>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</env:Header>
<env:Body>
<ns1:addItemResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
</env:Body>
</env:Envelope>

...

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>

Chapter 5. Web Services

54

<wsa:ReferenceParameters>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</wsa:ReferenceParameters>
</env:Header>
<env:Body>
<ns1:getItems xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
</env:Body>
</env:Envelope>

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</
wsa:Action>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</env:Header>
<env:Body>
<ns1:getItemsResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
<result>[Ice Cream, Ferrari]</result>
</ns1:getItemsResponse>
</env:Body>
</env:Envelope>

5.25.2. WS-BPEL
WS-BPEL is not supported with JAX-WS, please refer to JAX-RPC User Guide#WS-BPEL43.

5.25.3. WS-Eventing
WS-Eventing specifies a set of operations that allow an event consumer to register (subscribe) with an
event producer (source) to receive events (notifications) in an asynchronous fashion.

5.25.3.1. Specifications
WS-Eventing is defined by the combination of the following specifications:

• WS-Eventing specification44

• WS-Addressing Specifications45

The following section will introduce the main eventing actors and their responsiblities.

Note
The original eventing specification builds upon WS-Addressing 2004/08. JBossWS
however decided to stick to the latest version, which is the W3C candidate release.

43 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide#WS-BPEL

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide#WS-BPEL
http://www.w3.org/TR/ws-addr-core
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide#WS-BPEL

WS-Eventing

55

5.25.3.2. Collaboration
1. An event sink (web service client) sends a subscribtion request to the event source endpoint. This

includes the event sink endpoint address where notifications should delivered. Upon successful
subscription the sink receives a leased subscription ID that can be used to identify the client in
subsequent requests.

2. A successfully registered event sink directs management requests (Renew, GetStatus,
Unsubscribe) to the subscription manager endpoint using the previously received subscription ID.
The subscription manager endpoint address was returned as part of the subscription response in
the first place.

3. The actual event sink (application) emits notification messages through the JBossWS-Eventing
module. JBossWS-Eventing dispatches the notification to any subscriber endpoint that is
registered with a particular event source.s

4. Besides notifications JBossWS-Eventing may emit lifecycle events at any time. For instance, to
inform an event sink that a subscription was canceled. This can be the case when the subscription
expired or the event source was undeployed.

It is the users responsibilty to supply the web service endpoints (EventSourceEndpoint,
SubscriptionManagerEndpoint) that are required for a complete event source deployment. Fortunatly
JBossWS-Eventing already ships with a implementation that can be used right away. All that is left to
do is the packaging of standard JSR-109 deployment archive that includes the event source specific
WSDL and points to the JBossWS-Eventing endpoint implementations.

The relevant steps are:

• Create a custom WSDL that describes your event source, in respect to the notification schema and
the fact that is actually contains an event source port

• Use the JBossWS SEI and endpoint implementations (webservices.xml, web.xml).

5.25.3.3. Setup an event source endpoint
With JAX-WS the event source setup has actually become quiet easy. All you need to do is to
subclass your endpoint implementation from AbstractEventSourceEndpoint and a subscription
manager from AbstractSubscriptionManagerEndpoint and finally point that implementation to
a event source specific WSDL46.

package org.jboss.test.ws.jaxws.samples.wseventing;
..
import javax.jws.WebService;

import org.jboss.logging.Logger;
import org.jboss.ws.annotation.EndpointConfig;
import org.jboss.ws.extensions.eventing.jaxws.AbstractEventSourceEndpoint;

/**
* @author Heiko.Braun@jboss.org
* @version Id

46 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source

Chapter 5. Web Services

56

* @since 18.01.2007
*/
@WebService(
 (1)
name = "EventSource",
portName = "EventSourcePort",
targetNamespace = "http://schemas.xmlsoap.org/ws/2004/08/eventing",
wsdlLocation = "/WEB-INF/wsdl/sysmon.wsdl",
 (2)
endpointInterface =
 "org.jboss.ws.extensions.eventing.jaxws.EventSourceEndpoint")
@EndpointConfig(configName = "Standard WSAddressing Endpoint")
 (3)
public class SysmonRegistrationEndpoint extends AbstractEventSourceEndpoint
 { (4)

private static final Logger log =
 Logger.getLogger(SysmonRegistrationEndpoint.class);

protected Logger getLogger()
{
return log;
}
}

1. Of course we need a @WebService annotation

2. It's important to override the WSDL here

3. You need to tell JBossWS that it requires WS-Addressing for this endpoint

4. Subclass a predefined implementation that knows how to delegate to the actual eventing service
implementation

5.25.3.4. The WSDL that describes an event source
Even though we are already using the annotation driven approach, JBossWS eventing still requires an
event source specific WSDL.

The following excerpt shows the relevant WSDL details that describe an event source.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
targetNamespace="http://www.jboss.org/sysmon"
xmlns:tns="http://www.jboss.org/sysmon"
xmlns:wse='http://schemas.xmlsoap.org/ws/2004/08/eventing'
xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
xmlns:wsa10='http://www.w3.org/2005/08/addressing'
xmlns:xs='http://www.w3.org/2001/XMLSchema'
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

WS-Eventing

57

<wsdl:import
(1) namespace='http://schemas.xmlsoap.org/ws/2004/08/eventing'
location='jbwse.wsdl' />

<wsdl:types>

<xs:schema targetNamespace='http://schemas.xmlsoap.org/ws/2004/08/
eventing'>
(2) <xs:include schemaLocation='jbwse.xsd'/>
</xs:schema>

(3) <xs:schema
targetNamespace="http://www.jboss.org/sysmon"
elementFormDefault="qualified"
blockDefault="#all">
<xs:element name="SystemStatus">
<xs:complexType>
<xs:sequence>
<xs:element name="Time " type="xs:dateTime"/>
<xs:element name="HostName" type="xs:string"/>
<xs:element name="HostAddress" type="xs:string"/>
<xs:element name="ActiveThreadCount" type="xs:int"/>
<xs:element name="FreeMemory" type="xs:string"/>
<xs:element name="MaxMemory" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

</wsdl:types>

<wsdl:message name='SystemInfoMsg'>
<wsdl:part name='body' element='tns:SystemStatus'/>
</wsdl:message>

(4) <wsdl:portType name='SystemInfo' wse:EventSource='true'>
<wsdl:operation name='SysmonOp'>
<wsdl:output message='tns:SystemInfoMsg'/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="SystemInfoBinding" type="tns:SystemInfo">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/
http"/>
<wsdl:operation name="SysmonOp">
<soap:operation soapAction=""/>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>

Chapter 5. Web Services

58

</wsdl:binding>

</wsdl:definitions>

1. Import the default eventing WSDL, that includes service and port declarations.

2. Include the default eventing Types

3. Specifiy the notitification message schema.

4. Declare a port type, attributed "wse:EventSource='true'" that points to your notification
message schema.

5.25.3.5. Emitting notifications
JBossWS-Eventing registeres a event dispatcher within local JNDI tree that can be used to emit
notifications from applications.

java:/EventDispatcher

The event dispatcher interface:

public interface EventDispatcher
{
void dispatch(URI eventSourceNS, Element payload);
}

Example notification

(1) URI eventSourceURI = new URI("http://http://www.jboss.org/sysmon/
SystemInfo");
(2) Element payload = DOMUtils.parse("SOME XML STRING");
try
{
InitialContext iniCtx = getInitialContext();
(3) EventDispatcher delegate = (EventDispatcher)
iniCtx.lookup(EventingConstants.DISPATCHER_JNDI_NAME);
(4) delegate.dispatch(eventSourceURI, payload);
}
catch (Exception e)
{
//
}

1. Address your event source correctly (TargetNamespace+PortTypeName)

2. Create your payload

WS-Security

59

3. Lookup dispatcher from JNDI

4. Dispatch notification.

The SubscriptionManager MBean is the actual core component that drives the JBossWS-Eventing
implementation. It can be accessed through the jmx-console.

jboss.ws.eventing:service=SubscriptionManager

Management operations exist to monitor and maintain active subscritions and deployed event sources.
The current implementation is backed by a ThreadPoolExecutor, that asynchronously delivers
messages to event sink endpoints. It can be configured through the following attributes:

• corePoolSize - average number of idle threads

• maximumPoolSize - maximum number of threads

• eventKeepAlive - keep alive before an undelivered event message is discarded.

5.25.4. WS-Security
WS-Security addresses message level security. It standardizes authorization, encryption, and digital
signature processing of web services. Unlike transport security models, such as SSL, WS-Security
applies security directly to the elements of the web service message. This increases the flexibility of
your web services, by allowing any message model to be used (point to point, multi-hop relay, etc).

This chapter describes how to use WS-Security to sign and encrypt a simple SOAP message.

Specifications

WS-Security is defined by the combination of the following specifications:

• SOAP Message Security 1.047

• Username Token Profile 1.048

• X.509 Token Profile 1.049

• W3C XML Encryption50

• W3C XML Signature51

• Basic Security Profile 1.0 (Still in Draft)52

5.25.4.1. Endpoint configuration
JBossWS uses handlers to identify ws-security encoded requests and invoke the security components
to sign and encrypt messages. In order to enable security processing, the client and server side need
to include a corressponding handler configuration. The preferred way is to reference a predefined
JAX-WS Endpoint Configuration53 or JAX-WS Client Configuration54 respectively.

53 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
54 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmldsig-core
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration

Chapter 5. Web Services

60

Note
You need to setup both the endpoint configuration and the WSSE declarations. That's two
separate steps.

5.25.4.2. Server side WSSE declaration (jboss-wsse-server.xml)
In this example we configure both the client and the server to sign the message body. Both also
require this from each other. So, if you remove either the client or the server security deployment
descriptor, you will notice that the other party will throw a fault explaining that the message did not
conform to the proper security requirements.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.com/ws-security/config
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
(1) <key-store-file>WEB-INF/wsse.keystore</key-store-file>
(2) <key-store-password>jbossws</key-store-password>
(3) <trust-store-file>WEB-INF/wsse.truststore</trust-store-file>
(4) <trust-store-password>jbossws</trust-store-password>
(5) <config>
(6) <sign type="x509v3" alias="wsse"/>
(7) <requires>
(8) <signature/>
</requires>
</config>
</jboss-ws-security>

1. This specifies that the key store we wish to use is WEB-INF/wsse.keystore, which is located in
our war file.

2. This specifies that the store password is "jbossws". Password can be encypted using the {EXT}
and {CLASS} commands. Please see samples for their usage.

3. This specifies that the trust store we wish to use is WEB-INF/wsse.truststore, which is
located in our war file.

4. This specifies that the trust store password is also "jbossws". Password can be encrypted using
the {EXT} and {CLASS} commands. Please see samples for their usage.

5. Here we start our root config block. The root config block is the default configuration for all
services in this war file.

6. This means that the server must sign the message body of all responses. Type means that we are
to use a X.509v3 certificate (a standard certificate). The alias option says that the certificate and
key pair to use for signing is in the key store under the "wsse" alias

7. Here we start our optional requires block. This block specifies all security requirements that must
be met when the server receives a message.

8. This means that all web services in this war file require the message body to be signed.

WS-Security

61

By default an endpoint does not use the WS-Security configuration. Use the proprietary
@EndpointConfig annotation to set the config name. See JAX-WS_Endpoint_Configuration55 for the
list of available config names.

@WebService
@EndpointConfig(configName = "Standard WSSecurity Endpoint")
public class HelloJavaBean
{
...
}

5.25.4.3. Client side WSSE declaration (jboss-wsse-client.xml)

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.com/ws-security/config
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
(1) <config>
(2) <sign type="x509v3" alias="wsse"/>
(3) <requires>
(4) <signature/>
</requires>
</config>
</jboss-ws-security>

1. Here we start our root config block. The root config block is the default configuration for all web
service clients (Call, Proxy objects).

2. This means that the client must sign the message body of all requests it sends. Type means
that we are to use a X.509v3 certificate (a standard certificate). The alias option says that the
certificate/key pair to use for signing is in the key store under the "wsse" alias

3. Here we start our optional requires block. This block specifies all security requirements that must
be met when the client receives a response.

4. This means that all web service clients must receive signed response messages.

5.25.4.3.1. Client side key store configuration
We did not specify a key store or trust store, because client apps instead use the wsse System
properties instead. If this was a web or ejb client (meaning a webservice client in a war or ejb jar file),
then we would have specified them in the client descriptor.

Here is an excerpt from the JBossWS samples:

<sysproperty key="org.jboss.ws.wsse.keyStore"

55 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

Chapter 5. Web Services

62

value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/
wsse.keystore"/>
<sysproperty key="org.jboss.ws.wsse.trustStore"
value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/
wsse.truststore"/>
<sysproperty key="org.jboss.ws.wsse.keyStorePassword" value="jbossws"/>
<sysproperty key="org.jboss.ws.wsse.trustStorePassword" value="jbossws"/>
<sysproperty key="org.jboss.ws.wsse.keyStoreType" value="jks"/>
<sysproperty key="org.jboss.ws.wsse.trustStoreType" value="jks"/>

SOAP message exchange

Below you see the incomming SOAP message with the details of the security headers ommited. The
idea is, that the SOAP body is still plain text, but it is signed in the security header and can therefore
not manipulated in transit.

Incomming SOAPMessage

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header>
<wsse:Security env:mustUnderstand="1" ...>
<wsu:Timestamp wsu:Id="timestamp">...</wsu:Timestamp>
<wsse:BinarySecurityToken ...>
...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
...
</ds:Signature>
</wsse:Security>
</env:Header>
<env:Body wsu:Id="element-1-1140197309843-12388840" ...>
<ns1:echoUserType xmlns:ns1="http://org.jboss.ws/samples/wssecurity">
<UserType_1 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<msg>Kermit</msg>
</UserType_1>
</ns1:echoUserType>
</env:Body>
</env:Envelope>

5.25.4.4. Installing the BouncyCastle JCE provider (JDK 1.4)
The information below has originaly been provided by The Legion of the Bouncy Castle56.

The provider can be configured as part of your environment via static registration by adding an entry to
the java.security properties file (found in $JAVA_HOME/jre/lib/security/java.security,
where $JAVA_HOME is the location of your JDK and JRE distribution). You will find detailed instructions
in the file but basically it comes down to adding a line:

56 http://www.bouncycastle.org/specifications.html#install

http://www.bouncycastle.org/specifications.html#install
http://www.bouncycastle.org/specifications.html#install

WS-Transaction

63

security.provider.<n>=org.bouncycastle.jce.provider.BouncyCastleProvider

Where <n> is the preference you want the provider at.

Note
Issues may arise if the Sun provided providers are not first.

Where you put the jar is mostly up to you, although with jdk1.4 the best (and in some cases only)
place to have it is in $JAVA_HOME/jre/lib/ext. Under Windows there will normally be a JRE and
a JDK install of Java if you think you have installed it correctly and it still doesn't work chances are you
have added the provider to the installation not being used.

5.25.4.5. Keystore, truststore - What?

Note
If you having a hard time understanding how the different trust- and keystore
configurations are used for signature and encryption, then read this thread first: http://
www.jboss.org/index.html?module=bb&op=viewtopic&t=94406

5.25.5. WS-Transaction
Support for the WS-Coordination, WS-AtomicTransaction and WS-BusinessActivity specifications will
be provided by technology recently acquired from Arjuna Technologies Ltd. This technology will be
present within the JBoss Transactions 4.2.1 release. Further information can be obtained from the
JBoss Transactions Project57

5.25.6. XML Registries
J2EE 1.4 mandates support for Java API for XML Registries (JAXR). Inclusion of a XML Registry with
the J2EE 1.4 certified Application Server is optional. Starting jboss-4.0.2, JBoss ships a UDDI v2.0
compliant registry, the Apache jUDDI registry. We also provide support for JAXR Capability Level 0
(UDDI Registries) via integration of Apache Scout.

This chapter describes how to configure the jUDDI registry in JBoss and some sample code outlines
for using JAXR API to publish and query the jUDDI registry.

5.25.6.1. Apache jUDDI Configuration
Configuration of the jUDDI registry happens via an MBean Service that is deployed in the juddi-
service.sar archive in the "all" configuration. The configuration of this service can be done in the
jboss-service.xml of the META-INF directory in the juddi-service.sar

Let us look at the individual configuration items that can be changed.

DataSources configuration

57 http://labs.jboss.org/portal/jbosstm

http://www.jboss.org/index.html?module=bb&op=viewtopic&t=94406
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=94406
http://labs.jboss.org/portal/jbosstm
http://labs.jboss.org/portal/jbosstm

Chapter 5. Web Services

64

<!-- Datasource to Database-->
<attribute name="DataSourceUrl">java:/DefaultDS</attribute>

Database Tables (Should they be created on start, Should they be dropped on stop, Should they be
dropped on start etc)

<!-- Should all tables be created on Start-->
 <attribute name="CreateOnStart">false</attribute>
 <!-- Should all tables be dropped on Stop-->
 <attribute name="DropOnStop">true</attribute>
 <!-- Should all tables be dropped on Start-->
 <attribute name="DropOnStart">false</attribute>

JAXR Connection Factory to be bound in JNDI. (Should it be bound? and under what name?)

<!-- Should I bind a Context to which JaxrConnectionFactory bound-->
<attribute name="ShouldBindJaxr">true</attribute>

<!-- Context to which JaxrConnectionFactory to bind to. If you have remote
 clients, please bind it to the global namespace(default behavior).
To just cater to clients running on the same VM as JBoss, change to java:/
JAXR -->
<attribute name="BindJaxr">JAXR</attribute>

Other common configuration:

Add authorized users to access the jUDDI registry. (Add a sql insert statement in a single line)

Look at the script META-INF/ddl/juddi_data.ddl for more details. Example
 for a user 'jboss'

INSERT INTO PUBLISHER (PUBLISHER_ID,PUBLISHER_NAME,
EMAIL_ADDRESS,IS_ENABLED,IS_ADMIN)
VALUES ('jboss','JBoss User','jboss@xxx','true','true');

5.25.6.2. JBoss JAXR Configuration
In this section, we will discuss the configuration needed to run the JAXR API. The JAXR configuration
relies on System properties passed to the JVM. The System properties that are needed are:

javax.xml.registry.ConnectionFactoryClass=org.apache.ws.scout.registry.ConnectionFactoryImpl
jaxr.query.url=http://localhost:8080/juddi/inquiry
jaxr.publish.url=http://localhost:8080/juddi/publish
juddi.proxy.transportClass=org.jboss.jaxr.juddi.transport.SaajTransport

XML Registries

65

Please remember to change the hostname from "localhost" to the hostname of the UDDI service/
JBoss Server.

You can pass the System Properties to the JVM in the following ways:

• When the client code is running inside JBoss (maybe a servlet or an EJB). Then you will need to
pass the System properties in the run.sh or run.bat scripts to the java process via the "-D"
option.

• When the client code is running in an external JVM. Then you can pass the properties either as "-D"
options to the java process or explicitly set them in the client code(not recommended).

System.setProperty(propertyname, propertyvalue);

5.25.6.3. JAXR Sample Code
There are two categories of API: JAXR Publish API and JAXR Inquiry API. The important JAXR
interfaces that any JAXR client code will use are the following.

• javax.xml.registry.RegistryService58 From J2EE 1.4 JavaDoc: "This is the principal interface
implemented by a JAXR provider. A registry client can get this interface from a Connection to a
registry. It provides the methods that are used by the client to discover various capability specific
interfaces implemented by the JAXR provider."

• javax.xml.registry.BusinessLifeCycleManager59 From J2EE 1.4 JavaDoc: "The
BusinessLifeCycleManager interface, which is exposed by the Registry Service, implements
the life cycle management functionality of the Registry as part of a business level API. There is no
authentication information provided, because the Connection interface keeps that state and context
on behalf of the client."

• javax.xml.registry.BusinessQueryManager60 From J2EE 1.4 JavaDoc: "The
BusinessQueryManager interface, which is exposed by the Registry Service, implements the
business style query interface. It is also referred to as the focused query interface."

Let us now look at some of the common programming tasks performed while using the JAXR API:

Getting a JAXR Connection to the registry.

String queryurl = System.getProperty("jaxr.query.url", "http://
localhost:8080/juddi/inquiry");
String puburl = System.getProperty("jaxr.publish.url", "http://
localhost:8080/juddi/publish");
..
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", queryurl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", puburl);

String transportClass = System.getProperty("juddi.proxy.transportClass",
 "org.jboss.jaxr.juddi.transport.SaajTransport");
System.setProperty("juddi.proxy.transportClass", transportClass);

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/RegistryService.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessLifeCycleManager.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessQueryManager.html

Chapter 5. Web Services

66

// Create the connection, passing it the configuration properties
factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

Authentication with the registry.

/**
* Does authentication with the uddi registry
*/
protected void login() throws JAXRException
{
PasswordAuthentication passwdAuth = new PasswordAuthentication(userid,
 passwd.toCharArray());
Set creds = new HashSet();
creds.add(passwdAuth);

connection.setCredentials(creds);
}

Save a Business

/**
* Creates a Jaxr Organization with 1 or more services
*/
protected Organization createOrganization(String orgname) throws
 JAXRException
{
Organization org = blm.createOrganization(getIString(orgname));
org.setDescription(getIString("JBoss Inc"));
Service service = blm.createService(getIString("JBOSS JAXR Service"));
service.setDescription(getIString("Services of XML Registry"));
//Create serviceBinding
ServiceBinding serviceBinding = blm.createServiceBinding();
serviceBinding.setDescription(blm.createInternationalString("Test Service
 Binding"));

//Turn validation of URI off
serviceBinding.setValidateURI(false);
serviceBinding.setAccessURI("http://testjboss.org");
..
// Add the serviceBinding to the service
service.addServiceBinding(serviceBinding);

User user = blm.createUser();
org.setPrimaryContact(user);
PersonName personName = blm.createPersonName("Anil S");
TelephoneNumber telephoneNumber = blm.createTelephoneNumber();

XML Registries

67

telephoneNumber.setNumber("111-111-7777");
telephoneNumber.setType(null);
PostalAddress address = blm.createPostalAddress("111", "My Drive",
 "BuckHead", "GA", "USA", "1111-111", "");
Collection postalAddresses = new ArrayList();
postalAddresses.add(address);
Collection emailAddresses = new ArrayList();
EmailAddress emailAddress = blm.createEmailAddress("anil@apache.org");
emailAddresses.add(emailAddress);

Collection numbers = new ArrayList();
numbers.add(telephoneNumber);
user.setPersonName(personName);
user.setPostalAddresses(postalAddresses);
user.setEmailAddresses(emailAddresses);
user.setTelephoneNumbers(numbers);

ClassificationScheme cScheme = getClassificationScheme("ntis-gov:naics",
 "");
Key cKey = blm.createKey("uuid:C0B9FE13-324F-413D-5A5B-2004DB8E5CC2");
cScheme.setKey(cKey);
Classification classification = blm.createClassification(cScheme, "Computer
 Systems Design and Related Services", "5415");
org.addClassification(classification);
ClassificationScheme cScheme1 = getClassificationScheme("D-U-N-S", "");
Key cKey1 = blm.createKey("uuid:3367C81E-FF1F-4D5A-B202-3EB13AD02423");
cScheme1.setKey(cKey1);
ExternalIdentifier ei = blm.createExternalIdentifier(cScheme1, "D-U-N-S
 number", "08-146-6849");
org.addExternalIdentifier(ei);
org.addService(service);
return org;
}

Query a Business

/**
* Locale aware Search a business in the registry
*/
public void searchBusiness(String bizname) throws JAXRException
{
try
{
// Get registry service and business query manager
this.getJAXREssentials();

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
Collection namePatterns = new ArrayList();

Chapter 5. Web Services

68

String pattern = "%" + bizname + "%";
LocalizedString ls = blm.createLocalizedString(Locale.getDefault(),
 pattern);
namePatterns.add(ls);

// Find based upon qualifier type and values
BulkResponse response = bqm.findOrganizations(findQualifiers, namePatterns,
 null, null, null, null);

// check how many organisation we have matched
Collection orgs = response.getCollection();
if (orgs == null)
{
log.debug(" -- Matched 0 orgs");

}
else
{
log.debug(" -- Matched " + orgs.size() + " organizations -- ");

// then step through them
for (Iterator orgIter = orgs.iterator(); orgIter.hasNext();)
{
Organization org = (Organization)orgIter.next();
log.debug("Org name: " + getName(org));
log.debug("Org description: " + getDescription(org));
log.debug("Org key id: " + getKey(org));
checkUser(org);
checkServices(org);
}
}
}
finally
{
connection.close();
}
}

For more examples of code using the JAXR API, please refer to the resources in the Resources
Section.

5.25.6.4. Troubleshooting
• I cannot connect to the registry from JAXR. Please check the inquiry and publish url passed to

the JAXR ConnectionFactory.

• I cannot connect to the jUDDI registry. Please check the jUDDI configuration and see if there are
any errors in the server.log. And also remember that the jUDDI registry is available only in the "all"
configuration.

• I cannot authenticate to the jUDDI registry.Have you added an authorized user to the jUDDI
database, as described earlier in the chapter?

WS-Policy

69

• I would like to view the SOAP messages in transit between the client and the UDDI Registry.
Please use the tcpmon tool to view the messages in transit. TCPMon61

5.25.6.5. Resources
• JAXR Tutorial and Code Camps62

• J2EE 1.4 Tutorial63

• J2EE Web Services by Richard Monson-Haefel64

5.25.7. WS-Policy
Since 2.1

The Web Services Policy Framework (WS-Policy) provides a general purpose model and
corresponding syntax to describe the policies of a Web Service.

WS-Policy defines a base set of constructs that can be used and extended by other Web services
specifications to describe a broad range of service requirements and capabilities.

Current JBoss implementations can instrument a webservice with policies attached at endpoint, port
or port-type scope level only. There are two different methods to attach policies: providing a wsdl
decorated with policies and policy attachments as defined by specifications, or using JBoss proprietary
annotations. The first way has the advantage of being standard, while the second one is much more
simple to implement. Of course the wsdl generated by these annotations conforms to standard defined
in specifications and can be used with any ws-policy compliant client.

ws-policy specifications only define policy requirements and their attachment method to wsdl through
specific extensions. It is out of the scope of ws-policy specifications and thus implementation to define
and use the content of assertions. The way these assertions (called domain assertions or domain
policies) have to be deployed and used is left to other specification like WS-Security-Policy or more
generally to domain specific implementation.

5.25.7.1. Specification
WS-Policy is defined by the combination of the following specifications:

* <ulink url="http://www.w3.org/Submission/WS-Policy/"> WS-Policy
 specification</ulink>
* <ulink url="http://www.w3.org/Submission/WS-PolicyAttachment/"> WS-
Policy-Attachment specification</ulink>

5.25.7.2. Using policies in a user provided WSDL
To attach policies in this manner, the only thing you have to do in a webservice class is to provide a
custom wsdl. This will cause JBossws to skip wsdl generation at deploy time, since the wsdl file you
provided will be published. Please refer to specification (WS-Policy-Attachment) to learn how to modify
wsdl to attach a policy.

Here you find an example of a webservice class and provided wsdl with a policy containing a domain
assertion for JBoss WS-Security.

http://tcpmon.dev.java.net/
http://java.sun.com/webservices/jaxr/learning/tutorial/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://www.amazon.com/exec/obidos/ASIN/0321146182

Chapter 5. Web Services

70

@WebService(name = "Hello",
targetNamespace = "http://org.jboss.ws/samples/wssecuritypolicy",
wsdlLocation="WEB-INF/wsdl/HelloService.wsdl")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class HelloJavaBean
{
private Logger log = Logger.getLogger(HelloJavaBean.class);
..
@WebMethod
public UserType echoUserType(@WebParam(name = "user") UserType in0)
{
log.info(in0);
return in0;
}
}
<?xml version="1.0" encoding="UTF-8"?>
<definitions name='HelloService' targetNamespace='http://org.jboss.ws/
samples/wssecuritypolicy' xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:ns1='http://org.jboss.ws/samples/wssecurity' xmlns:soap='http://
schemas.xmlsoap.org/wsdl/soap/' xmlns:tns='http://org.jboss.ws/samples/
wssecuritypolicy' xmlns:wsp='http://schemas.xmlsoap.org/ws/2004/09/policy'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>
<types>
<xs:schema targetNamespace='http://org.jboss.ws/samples/wssecurity'
 version='1.0' xmlns:xs='http://www.w3.org/2001/XMLSchema'>
<xs:complexType name='UserType'>
<xs:sequence>
<xs:element minOccurs='0' name='msg' type='xs:string'/>
</xs:sequence>
</xs:complexType>
</xs:schema>
</types>
<wsp:Policy wsu:Id='X509EndpointPolicy' xmlns:wsu='http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd'>
<wsp:All>
<sp:jboss-ws-security xmlns:sp='http://www.jboss.com/ws-security/schema/
jboss-ws-security_1_0.xsd'>
<sp:key-store-file>WEB-INF/wsse.keystore</sp:key-store-file>
<sp:key-store-password>jbossws</sp:key-store-password>
<sp:trust-store-file>WEB-INF/wsse.truststore</sp:trust-store-file>
<sp:trust-store-password>jbossws</sp:trust-store-password>
<sp:config>
<sp:encrypt alias='wsse' type='x509v3'/>
<sp:requires>
<sp:encryption/>
</sp:requires>
</sp:config>
</sp:jboss-ws-security>
</wsp:All>
</wsp:Policy>

WS-Policy

71

<message name='Hello_echoUserType'>
<part name='user' type='ns1:UserType'/>
</message>
<message name='Hello_echoUserTypeResponse'>
<part name='return' type='ns1:UserType'/>
</message>
<portType name='Hello'>
<operation name='echoUserType' parameterOrder='user'>
<input message='tns:Hello_echoUserType'/>
<output message='tns:Hello_echoUserTypeResponse'/>
</operation>
</portType>
<binding name='HelloBinding' type='tns:Hello'>
<wsp:PolicyReference URI='#X509EndpointPolicy'/>
<soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http'/
>
<operation name='echoUserType'>
<soap:operation soapAction=''/>
<input>
<soap:body namespace='http://org.jboss.ws/samples/wssecuritypolicy'
 use='literal'/>
</input>
<output>
<soap:body namespace='http://org.jboss.ws/samples/wssecuritypolicy'
 use='literal'/>
</output>
</operation>
</binding>
<service name='HelloService'>
<port binding='tns:HelloBinding' name='HelloPort'>
<soap:address location='REPLACE_WITH_ACTUAL_URL'/>
</port>
</service>
</definitions>

Please note in the WSDL file the wsp:Policy element and the wsp:PolicyReference in 'HelloBinding'
binding Element.

5.25.7.3. Using policies with JBoss annotations
Using JBoss proprietary annotation you only have to provide the policy xml, leaving wsdl generation to
the JBossWS deployer.

There are two annotations to use, the first one (@PolicyAttachment) containing an array of the second
one (@Policy): this lets you have many policies attached to a class or method. In future domain policy
implementations might ship domain annotations extending the @Policy annotation to provide needed
metadata directly as annotation parameters. The current @Policy annotation takes a reference to a
xml file containing a generic policy description written respecting ws-policy specification rules.

/**

Chapter 5. Web Services

72

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface PolicyAttachment {
Policy[] value();
}
...
@Retention(RetentionPolicy.RUNTIME)
public @interface Policy {

public String policyFileLocation();

public PolicyScopeLevel scope();
}

And here you have the previous section example re-implemented using annotations and xml policy
file:

@WebService(name = "Hello", targetNamespace = "http://org.jboss.ws/samples/
wssecurityAnnotatedpolicy")
@PolicyAttachment({@Policy(policyFileLocation="WEB-INF/Policy.xml", scope
 = PolicyScopeLevel.WSDL_PORT) })
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class HelloJavaBean
{
private Logger log = Logger.getLogger(HelloJavaBean.class);

@WebMethod
public UserType echoUserType(@WebParam(name = "user") UserType in0)
{
log.info(in0);
return in0;
}
}
<?xml version="1.0" encoding="UTF-8"?>
...
<wsp:Policy wsu:Id="X509EndpointPolicy" xmlns:wsp="http://
schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>
<wsp:All>
<sp:jboss-ws-security xmlns:sp="http://www.jboss.com/ws-security/schema/
jboss-ws-security_1_0.xsd">
<sp:key-store-file>WEB-INF/wsse.keystore</sp:key-store-file>
<sp:key-store-password>jbossws</sp:key-store-password>
<sp:trust-store-file>WEB-INF/wsse.truststore</sp:trust-store-file>
<sp:trust-store-password>jbossws</sp:trust-store-password>
<sp:config>
<sp:encrypt type="x509v3" alias="wsse"/>
<sp:requires>

JBossWS Extensions

73

<sp:encryption/>
</sp:requires>
</sp:config>
</sp:jboss-ws-security>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

5.26. JBossWS Extensions
This section describes propriatary JBoss extensions to JAX-WS.

5.26.1. Proprietary Annotations
For the set of standard annotations, please have a look at JAX-WS Annotations65

5.26.1.1. EndpointConfig

/**
* Defines an endpoint or client configuration.
* This annotation is valid on an endpoint implementaion bean or a SEI.
*
* @author Heiko.Braun@jboss.org
* @since 16.01.2007
*/
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = { ElementType.TYPE })
public @interface EndpointConfig {
...
/**
* The optional config-name element gives the configuration name that must
 be present in
* the configuration given by element config-file.
*
* Server side default: Standard Endpoint
* Client side default: Standard Client
*/
String configName() default "";
...
/**
* The optional config-file element is a URL or resource name for the
 configuration.
*
* Server side default: standard-jaxws-endpoint-config.xml
* Client side default: standard-jaxws-client-config.xml
*/
String configFile() default "";
}

65 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations

Chapter 5. Web Services

74

5.26.1.2. WebContext

/**
* Provides web context specific meta data to EJB based web service
 endpoints.
*
* @author thomas.diesler@jboss.org
* @since 26-Apr-2005
*/
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = { ElementType.TYPE })
public @interface WebContext {
...
/**
* The contextRoot element specifies the context root that the web service
 endpoint is deployed to.
* If it is not specified it will be derived from the deployment short name.
*
* Applies to server side port components only.
*/
String contextRoot() default "";
...
/**
* The virtual hosts that the web service endpoint is deployed to.
*
* Applies to server side port components only.
*/
String[] virtualHosts() default {};

/**
* Relative path that is appended to the contextRoot to form fully qualified
* endpoint address for the web service endpoint.
*
* Applies to server side port components only.
*/
String urlPattern() default "";

/**
* The authMethod is used to configure the authentication mechanism for the
 web service.
* As a prerequisite to gaining access to any web service which are
 protected by an authorization
* constraint, a user must have authenticated using the configured
 mechanism.
*
* Legal values for this element are "BASIC", or "CLIENT-CERT".
*/
String authMethod() default "";

/**
* The transportGuarantee specifies that the communication

Proprietary Annotations

75

* between client and server should be NONE, INTEGRAL, or
* CONFIDENTIAL. NONE means that the application does not require any
* transport guarantees. A value of INTEGRAL means that the application
* requires that the data sent between the client and server be sent in
* such a way that it can't be changed in transit. CONFIDENTIAL means
* that the application requires that the data be transmitted in a
* fashion that prevents other entities from observing the contents of
* the transmission. In most cases, the presence of the INTEGRAL or
* CONFIDENTIAL flag will indicate that the use of SSL is required.
*/
String transportGuarantee() default "";

/**
* A secure endpoint does not by default publish it's wsdl on an unsecure
 transport.
* You can override this behaviour by explicitly setting the
 secureWSDLAccess flag to false.
*
* Protect access to WSDL. See http://jira.jboss.org/jira/browse/JBWS-723
*/
boolean secureWSDLAccess() default true;
}

5.26.1.3. SecurityDomain

/**
* Annotation for specifying the JBoss security domain for an EJB
*
* @author Bill Burke
**/
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME)
public @interface SecurityDomain
{
/**
* The required name for the security domain.
*
* Do not use the JNDI name
*
* Good: "MyDomain"
* Bad: "java:/jaas/MyDomain"
*/
String value();

/**
* The name for the unauthenticated pricipal
*/
String unauthenticatedPrincipal() default "";
}

66 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

Chapter 5. Web Services

76

5.27. Web Services Appendix
JAX-WS Endpoint Configuration66

JAX-WS Client Configuration67

JAX-WS Annotations68

Common features and properties69

5.28. References
1. JSR-224 - Java API for XML-Based Web Services (JAX-WS) 2.070

2. JSR 222 - Java Architecture for XML Binding (JAXB) 2.071

3. JSR-261 - Java API for XML Web Services Addressing72

4. SOAP-1.2 - Messaging Framework73

5. JSR-250 - Common Annotations for the Java Platform74

6. JSR 181 - Web Services Metadata for the Java Platform75

67 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration
68 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations
69 http://jbws.dyndns.org/mediawiki/index.php?title=Common_features_and_properties

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations
http://jbws.dyndns.org/mediawiki/index.php?title=Common_features_and_properties
http://www.jcp.org/en/jsr/detail?id=224
http://jaxb.dev.java.net/
http://www.jcp.org/en/jsr/detail?id=261
http://www.w3.org/TR/soap12-part1
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=181
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations
http://jbws.dyndns.org/mediawiki/index.php?title=Common_features_and_properties

Chapter 6.

77

JBoss5 Virtual Deployment Framework
As indicated in Chapter 1, Introduction the JBoss Enterprise Application Platform 5 is designed around
the advanced concept of a Virtual Deployment Framework (VDF). This chapter discusses the JBoss5
Virtual Deployment Framework further. The following UML diagram illustrates an overview of the key
JBoss5 Deployment Framework classes.

Figure 6.1. The JBoss5 Deployment Framework Classes

The key classes in the above diagram are:
• MainDeployer : this interface defines the contract for the MainDeployer. The MainDeployer handles

parsing of deployment archives into Deployment instances and deployment of those instances
into the microcontainer. This update of the JMX based MainDeployer moves it to one based on the
Microcontainer, JBoss5VirtualFileSystem, and Virtual Deployment Framework (VDF). Deployers are
registered with the MainDeployer as an ordered list of deployers. MainDeployer contains two sets of
deployers:

Chapter 6. JBoss5 Virtual Deployment Framework

78

• StructureDeployers used to analyze the structure of a DeploymentContext when
addDeploymentContext(DeploymentContext) is invoked. For each StructureDeployer the
determineStructure(DeploymentContext) method is invoked to analyze the deployment.
A StructureDeployer returns true to indicate that the deployment was recognized and no further
StructureDeployer should analyze the DeploymentContext.

• Deployers used to translate a DeploymentUnit into runtime kernel beans when the
MainDeployer.process is run. The Deployer methods are:

• isRelevant() : does the deployer want to process the unit.

• prepareDeploy() : take the new deployment to the ready stage

• prepareUndeploy() : get ready to undeploy

• handoff(new, old) : handover control from new to old

• commitDeploy() : new deployment is now in control

• commitUndeploy() : old deployment is out of here

• getRelativeOrder() : specify the relative order of the deployer in a chain

.
• DeploymentUnit : a representation of a runtime unit of work a Deployer operates on.

• DeploymentContext : a representation of structural aspects of deployable content.

• ManagedObject : a representation of the manageable properties for a deployment.

• VFS : the api for representing the read-only file system of the deployment.

• VirtualFile : the api for a file in the deployment.

• DomainClassLoader and ClassLoadingDomain : A generalization of the
legacy JMX based unified class loading model. This is still in progress. The
org.jboss.vfs.classloding.VFSClassLoader is the current simple implementation.

6.1. MainDeployerImpl
The org.jboss.deployers.plugins.deployment.MainDeployerImpl implementation of
the org.jboss.deployers.spi.deployment.MainDeployer interfaces, includes the following
standard method details:

• DeploymentContext getDeploymentContext(String name): obtain the
DeploymentContext associated with the given name from all of the DeploymentContexts that
have been added to the MainDeployer. This includes top level and all child contexts.

• Collection <DeploymentContext> getTopLevel(): get a list of all of the top level
DeploymentContexts added via the addDeploymentContext(DeploymentContext)
method.

• Collection <DeploymentContext> getAll(): get all of the DeploymentContexts, top-
level and child associated with the MainDeployer.

MainDeployerImpl

79

• Collection <DeploymentContext> getErrors(): get the DeploymentContexts that have
failed to be structurally analyzed or deployed.

• Collection <DeploymentContext> getMissingDeployer(): get the
DeploymentContexts that are not deployed (isDeployed() == false) and are not root .jar
files.

• void addDeploymentContext(DeploymentContext context) throws
DeploymentException: add a top-level deployment context. This runs a structural analysis of
the DeploymentContext if its StructureDetermined state is not PREDETERMINED. If the
structural analysis succeeds, the DeploymentContext is added for deployment during process.

• boolean removeDeploymentContext(String name) throws DeploymentException:
remove the top-level deployment associated with name.

• void process(): runs through allDeploymentContexts that have been
removed and undeploys each top-level DeploymentContext. The undeployment
involves invoking the performUndeploy(DeploymentUnit) method on
each DeploymentContext.getDeploymentUnit() method. Then for each
DeploymentContext, performUndeploy(DeploymentUnit) on the component
DeploymentContext.getDeploymentUnit() is performed. Next, the top-level
DeploymentContexts that have been added are deployed by invoking commitDeploy on
each deployer. The details of the deployment process are that each deployer is run on top-
level context DeploymentUnit by invoking Deployer.commitDeploy(DeploymentUnit),
followed by the deployment of each context of the top-level DeploymentContext components
(DeploymentContext.getComponents()).

• void shutdown(): removes all top-level DeploymentContexts, and then invokes the
undeployment process.

In addition, the implementation adds the following methods.

• public synchronized void addDeployer(Deployer deployer): add a component
deployer for non-structurual processing.

• public synchronized void removeDeployer(Deployer deployer): removes a
component Deployer.

• public synchronized Set <Deployer> getDeployers(): get the registered component
deployers.

• public synchronized void setDeployers(Set<Deployer> deployers): set the
component deployers.

• public synchronized void addStructureDeployer(StructureDeployer deployer):
add a structural deployer.

• public synchronized void removeStructureDeployer(StructureDeployer
deployer): remove a structural deployer.

• public synchronized Set<StructureDeployer> getStructureDeployers(): obtain
the registered structural deployers.

• public synchronized void setStructureDeployers(Set<StructureDeployer>
deployers) : set the structural deployers.

Chapter 6. JBoss5 Virtual Deployment Framework

80

6.2. JBoss5StructureDeployerClasses
org.jboss.deployers.plugins.structure.vfs.AbstractStructureDeployer

• org.jboss.deployers.plugins.structure.vfs.file.FileStructure

• org.jboss.deployers.plugins.structure.vfs.jar.JARStructure

• org.jboss.deployers.plugins.structure.vfs.war.WARStructure

6.3. Deployer Helper and Base Classes

JBoss5BaseDeployerClasses
org.jboss.deployers.plugins.deployer.AbstractDeployer: forces isRelevant to return
true and getRelativeOrder to return Integer.MAX_VALUE.

• org.jboss.deployers.plugins.deployers.helpers.AbstractSimpleDeployer:
collapses the Deployer contract to deploy(DeploymentUnit) and
undeploy(DeploymentUnit) by forcing:

• prepareDeploy to not undertake anything

• commitDeploy to call deploy

• prepareUndeploy to call undeploy

• commitUndeploy to not undertake anything

• handoff to not undertake anything

• org.jboss.deployers.plugins.deployers.helpers.AbstractClassLoaderDeployer
implements org.jboss.deployers.spi.classloader.ClassLoaderFactory and
deploy(DeploymentUnit u) as u.createClassLoader(this).

• org.jboss.deployers.plugins.deployers.helpers.AbstractTopLevelClassLoaderDeployer
adds createTopLevelClassLoader(DeploymentContext) and
removeTopLevelClassLoader(DeploymentContext) methods. It also implements
createClassLoader to invoke createTopLevelClassLoader if context.isTopLevel() is
true. Otherwise it will return the value of context.getTopLevel().getClassLoader().

• org.jboss.deployers.plugins.deployers.helpers.AbstractRealDeployer<T> adds
an attachment type T known as the deploymentType and a SimpleDeploymentVisitor<T>
visitor. The deployment implementation obtains a deploymentType metadata from the
deployment unit and then delegates to the visitor.deploy(DeploymentUnit,
metadata) method for each deploymentType metadata. Undeploy similarly delegates to
visitor.undeploy(DeploymentUnit, metadata).

• org.jboss.deployers.plugins.deployers.helpers.AbstractComponentDeployer<D,
C>: In addition to a deployment type D, a component type C is introduced along with a
SimpleDeploymentVisitor<C> compVisitor. Deployer.deploy(DeploymentUnit)
invokes super.deploy(unit) to process the deployment type metadata, and then obtains
unit.getAllMetaData(C) and delegates to compVisitor.deploy(unit, metadata) to
process the component metadata. Undeploy similarly invokes super.undeploy(unit) and the

Deployer Helper and Base Classes

81

delegates to compVisitor.undeploy(unit, metadata). The component visitor is expected
to create DeploymentUnit components (DeploymentUnit.addComponent(String)) for the
component metadata.

• org.jboss.deployers.plugins.deployers.helpers.AbstractTypedDeployer<T>
adds an attachment type T known as the deploymentType and accessor and contains new features.

• org.jboss.deployers.plugins.deployers.helpers.AbstractParsingDeployer<T>
adds a notion of obtaining an instance of the deploymentType by parsing a metadata file. The
helper methods added include:

• protected T getMetaData(DeploymentUnit unit, String key) returns
unit.getAttachment(key, getDeploymentType());

• protected void createMetaData(DeploymentUnit unit, String
name, String suffix) calls createMetaData(unit, name, suffix,
getDeploymentType().getName());

• protected void createMetaData(DeploymentUnit unit, String name,
String suffix, String key) calls parse(unit, name) if suffix is null and
parse(unit, name, suffix) otherwise. The result is added as an attachment to
unit.getTransientManagedObjects() under key with expected type T.

• protected T parse(DeploymentUnit unit, String name) locates VirtualFile
unit.getMetaDataFile(name), and if it is found, calls T result = parse(unit, file);
init(unit, result, file);

• protected T parse(DeploymentUnit unit, String name, String suffix) locates
List<VirtualFile> files = unit.getMetaDataFiles(name, suffix), and if found,
calls T result = parse(unit, files.get(0)); init(unit, result, file);

• protected abstract T parse(DeploymentUnit unit, VirtualFile file) is an
abstract method.

• protected void init(DeploymentUnit unit, T metaData, VirtualFile file) is
empty.

• org.jboss.deployers.plugins.deployers.helpers.JAXPDeployer<T> implements
parse(DeploymentUnit unit, VirtualFile file) to obtain the org.w3c.dom.Document
corresponding to a file using JAXP DocumentBuilder and a file using InputStream. This is
parsed into deploymentType T by calling parse(unit, file, document).

• protected abstract T parse(DeploymentUnit unit, VirtualFile file,
Document document) throws Exception is an abstract method.

• org.jboss.deployers.plugins.deployers.helpers.XSLDeployer<T> adds an
xslPath that corresponds to a class loader resource for an XSL document. It also overrides
the parse(DeploymentUnit unit, VirtualFile file) method to transform the JAXP
document obtained from JAXPDeployer.doParse, and then parses this into deploymentType T
by calling the abstract method, parse(unit, file, document).

• org.jboss.deployers.plugins.deployers.helpers.ObjectModelFactoryDeployer<T>
adds an abstract JBossXB ObjectModelFactory accessor that is used from within an overriden

Chapter 6. JBoss5 Virtual Deployment Framework

82

parse(DeploymentUnit unit, VirtualFile file) to unmarshall the XML document
represented by file into an instance of deploymentType T.

• org.jboss.deployers.plugins.deployers.helpers.SchemaResolverDeployer<T>
uses JBossXB UnmarshallerFactory with a SchemaBindingResolver from within an
overriden parse(DeploymentUnit unit, VirtualFile file) to unmarshall the XML
document represented by the file into an instance of deploymentType T. The XML document must
have a valid schema with JBossXB annotations.

• org.jboss.deployers.plugins.deployers.helpers.AbstractSimpleRealDeployer<T>
adds two abstract methods:

• public abstract void deploy(DeploymentUnit unit, T deployment);

• public abstract void undeploy(DeploymentUnit unit, T deployment);

• Overrides deploy(DeploymentUnit unit) to obtain the deploymentType
instance using unit.unit.getAttachment(getDeploymentType()), and invokes
deploy(DeploymentUnit unit, T deployment).

• Overrides undeploy(DeploymentUnit unit) to obtain the deploymentType
instance using unit.unit.getAttachment(getDeploymentType()), and invokes
undeploy(DeploymentUnit unit, T deployment).

6.4. Current Deployers
• org.jboss.deployers.plugins.deployers.kernel.BeanDeployer

• org.jboss.deployers.plugins.deployers.kernel.KernelDeploymentDeployer

• org.jboss.deployers.plugins.deployers.kernel.BeanMetaDataDeployer

• ServiceDeployments

• org.jboss.system.deployers.SARDeployer

• org.jboss.system.deployers.ServiceClassLoaderDeployer

• org.jboss.system.deployers.ServiceDeploymentDeployer

• org.jboss.system.deployers.ServiceDeployer

• JBoss5WebDeployments

• org.jboss.deployment.WebAppParsingDeployer

• org.jboss.deployment.JBossWebAppParsingDeployer

• org.jboss.web.tomcat.tc6.deployers.TomcatDeployer

• org.jboss.resource.deployers.RARDeployer

• org.jboss.resource.deployers.RARParserDeployer

Virtual File System JBoss5VirtualFileSystem

83

6.5. Virtual File System JBoss5VirtualFileSystem
The virtual file system model of the deployment framework provides a consistent API for accessing
logical files in logical file systems referenced by a URI/URL.
• Virtual File System (VFS): the main API for accessing read-only file system of the deployment. A

VFS instance represents a virtual file system mount for a given root URI/URL.

• VirtualFile: the API for a file in the deployment.

84

Chapter 7.

85

JBoss AOP
JBoss AOP is a 100% Pure Java Aspected Oriented Framework usable in any programming
environment or tightly integrated with our application server. Aspects allow you to more easily
modularize your code base when regular object oriented programming just doesn't fit the bill. It can
provide a cleaner separation from application logic and system code. It provides a great way to expose
integration points into your software. Combined with JDK 1.5 Annotations, it also is a great way to
expand the Java language in a clean pluggable way rather than using annotations solely for code
generation.

JBoss AOP is not only a framework, but also a prepackaged set of aspects that are applied via
annotations, pointcut expressions, or dynamically at runtime. Some of these include caching,
asynchronous communication, transactions, security, remoting, and many many more.

An aspect is a common feature that's typically scattered across methods, classes, object hierarchies,
or even entire object models. It is behavior that looks and smells like it should have structure, but you
can't find a way to express this structure in code with traditional object-oriented techniques.

For example, metrics is one common aspect. To generate useful logs from your application, you have
to (often liberally) sprinkle informative messages throughout your code. However, metrics is something
that your class or object model really shouldn't be concerned about. After all, metrics is irrelevant to
your actual application: it doesn't represent a customer or an account, and it doesn't realize a business
rule. It's simply orthogonal.

7.1. Some key terms

Joinpoint
A joinpoint is any point in your java program. The call of a method. The execution of a constructor the
access of a field. All these are joinpoints. You could also think of a joinpoint as a particular Java event.
Where an event is a method call, constructor call, field access etc...

Invocation
An Invocation is a JBoss AOP class that encapsulates what a joinpiont is at runtime. It could contain
information like which method is being called, the arguments of the method, etc...

Advice
An advice is a method that is called when a particular joinpoint is executed, i.e., the behavior that is
triggered when a method is called. It could also be thought of as the code that does the interception.
Another analogy is that an advice is an "event handler".

Pointcut
Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut
expression matches a particular joinpoint.

Introductions
An introduction modifies the type and structure of a Java class. It can be used to force an existing
class to implement an interface or to add an annotation to anything.

Chapter 7. JBoss AOP

86

Aspect
An Aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins,
or any other JBoss AOP construct.

Interceptor
An interceptor is an Aspect with only one advice named "invoke". It is a specific interface that you can
implement if you want your code to be checked by forcing your class to implement an interface. It also
will be portable and can be reused in other JBoss environments like EJBs and JMX MBeans.

In AOP, a feature like metrics is called a crosscutting concern, as it's a behavior that "cuts" across
multiple points in your object models, yet is distinctly different. As a development methodology, AOP
recommends that you abstract and encapsulate crosscutting concerns.

For example, let's say you wanted to add code to an application to measure the amount of time
it would take to invoke a particular method. In plain Java, the code would look something like the
following.

public class BankAccountDAO
{
 public void withdraw(double amount)
 {
 long startTime = System.currentTimeMillis();
 try
 {
 // Actual method body...
 }
 finally
 {
 long endTime = System.currentTimeMillis() - startTime;
 System.out.println("withdraw took: " + endTime);
 }
 }
}

While this code works, there are a few problems with this approach:
1. It's extremely difficult to turn metrics on and off, as you have to manually add the code in the try>/

finally block to each and every method or constructor you want to benchmark.

2. The profiling code really doesn't belong sprinkled throughout your application code. It makes your
code bloated and harder to read, as you have to enclose the timings within a try/finally block.

3. If you wanted to expand this functionality to include a method or failure count, or even to register
these statistics to a more sophisticated reporting mechanism, you'd have to modify a lot of
different files (again).

This approach to metrics is very difficult to maintain, expand, and extend, because it's dispersed
throughout your entire code base. And this is just a tiny example! In many cases, OOP may not always
be the best way to add metrics to a class.

Aspect-oriented programming gives you a way to encapsulate this type of behavior functionality. It
allows you to add behavior such as metrics "around" your code. For example, AOP provides you

Creating Aspects in JBoss AOP

87

with programmatic control to specify that you want calls to BankAccountDAO to go through a metrics
aspect before executing the actual body of that code.

7.2. Creating Aspects in JBoss AOP
In short, all AOP frameworks define two things: a way to implement crosscutting concerns, and a
programmatic construct -- a programming language or a set of tags -- to specify how you want to apply
those snippets of code. Let's take a look at how JBoss AOP, its cross-cutting concerns, and how you
can implement a metrics aspect in JBoss.

The first step in creating a metrics aspect in JBoss AOP is to encapsulate the metrics feature in its
own Java class. Listing Two extracts the try/finally block in Listing One's BankAccountDAO.withdraw()
method into Metrics, an implementation of a JBoss AOP Interceptor class.

The following listing demonstrates Implementing metrics in a JBoss AOP Interceptor

01. public class Metrics implements org.jboss.aop.advice.Interceptor
02. {
03. public Object invoke(Invocation invocation) throws Throwable
04. {
05. long startTime = System.currentTimeMillis();
06. try
07. {
08. return invocation.invokeNext();
09. }
10. finally
11. {
12. long endTime = System.currentTimeMillis() - startTime;
13. java.lang.reflect.Method m =
 ((MethodInvocation)invocation).method;
14. System.out.println("method " + m.toString() + " time: " + endTime
 + "ms");
15. }
16. }
17. }

Under JBoss AOP, the Metrics class wraps withdraw(): when calling code invokes withdraw(), the AOP
framework breaks the method call into its parts and encapsulates those parts into an Invocation object.
The framework then calls any aspects that sit between the calling code and the actual method body.

When the AOP framework is done dissecting the method call, it calls Metric's invoke method at line 3.
Line 8 wraps and delegates to the actual method and uses an enclosing try/finally block to perform the
timings. Line 13 obtains contextual information about the method call from the Invocation object, while
line 14 displays the method name and the calculated metrics.

Having the metrics code within its own object allows us to easily expand and capture additional
measurements later on. Now that metrics are encapsulated into an aspect, let's see how to apply it.

7.3. Applying Aspects in JBoss AOP
To apply an aspect, you define when to execute the aspect code. Those points in execution are called
pointcuts. An analogy to a pointcut is a regular expression. Where a regular expression matches

Chapter 7. JBoss AOP

88

strings, a pointcut expression matches events/points within your application. For example, a valid
pointcut definition would be "for all calls to the JDBC method executeQuery(), call the aspect that
verifies SQL syntax."

An entry point could be a field access, or a method or constructor call. An event could be an exception
being thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others
use tags. JBoss AOP uses both. Listing Three shows how to define a pointcut for the metrics example.

The following listing demonstrates defining a pointcut in JBoss AOP

1. <bind pointcut="public void com.mc.BankAccountDAO->withdraw(double
 amount)">
2. <interceptor class="com.mc.Metrics"/>
3. </bind >

4. <bind pointcut="* com.mc.billing.*->*(..)">
5. <interceptor class="com.mc.Metrics"/>
6. </bind >]]></programlisting>

Lines 1-3 define a pointcut that applies the metrics aspect to the specific method
BankAccountDAO.withdraw(). Lines 4-6 define a general pointcut that applies the metrics aspect to all
methods in all classes in the com.mc.billing package. There is also an optional annotation mapping if
you do not like XML. See our Reference Guide for more information.

JBoss AOP has a rich set of pointcut expressions that you can use to define various points/events in
your Java application so that you can apply your aspects. You can attach your aspects to a specific
Java class in your application or you can use more complex compositional pointcuts to specify a wide
range of classes within one expression.

With AOP, as this example shows, you're able to pull together crosscutting behavior into one object
and apply it easily and simply, without polluting and bloating your code with features that ultimately
don't belong mingled with business logic. Instead, common crosscutting concerns can be maintained
and extended in one place.

Notice too that the code within the BankAccountDAO class has no idea that it's being profiled. This
is what aspect-oriented programmers deem orthogonal concerns. Profiling is an orthogonal concern.
In the OOP code snippet in Listing One, profiling was part of the application code. With AOP, you
can remove that code. A modern promise of middleware is transparency, and AOP (pardon the pun)
clearly delivers.

Just as important, orthogonal behavior could be bolted on after development. In Listing One,
monitoring and profiling must be added at development time. With AOP, a developer or an
administrator can (easily) add monitoring and metrics as needed without touching the code. This is
a very subtle but significant part of AOP, as this separation (obliviousness, some may say) allows
aspects to be layered on top of or below the code that they cut across. A layered design allows
features to be added or removed at will. For instance, perhaps you snap on metrics only when you're
doing some benchmarks, but remove it for production. With AOP, this can be done without editing,
recompiling, or repackaging the code.

Chapter 8.

89

JBoss Transactions
JBoss Transactions runs in the all server configuration or customized configurations based on the all
configuration.

Figure 8.1. Transactions Architecture

8.1. Why you need JBoss Transactions
In todays business environment data corruption can have serious consequences for the enterprise
including service unavailability, system reconciliation costs, and damage to customer relationships
and business reputation. The JBoss Transaction Service (JBossTS) protects businesses from data
corruption by guaranteeing complete, accurate business transactions for Java based applications
(including those written for the JEE and EJB frameworks) thereby eliminating the risks and costs
associated with time-consuming manual reconciliation that follow failures.

8.2. JBoss Transactions Java EE 5 Support
In the modern business environment of system consolidations, worldwide utilization, and always on
availability, enterprises need distributed transaction processing infrastructure. This enables businesses
to build reliable, sophisticated applications that can guarantee absolute completion and accuracy of
business processes. Transaction services ensure that sequences of database updates have been
accurately and reliably committed as a single complete unit of work or that, in the event of failure, the
database information is recovered. Multimodal Transaction Processing is the term coined by Gartner
to describe the new generation of transactional application required to face the challenges posed by
new business requirements, technologies and innovative computing architectures.

Note
"Multimodal transaction processing will emerge. Users' adoption of client/server, the
Internet, service-oriented architecture, Web services, mobile and wireless devices, and
event-driven architectures means that the next generation of transaction processing
applications will have to be implemented in very different ways to respond to new
business strategies, including multichannel, the real-time enterprise and business process

Chapter 8. JBoss Transactions

90

fusion." Predicts 2004: Prepare for Multimodal Transaction Processing, M. Pezzini,
Gartner, 19 December 2003

JBoss Transaction Services is a middleware solution that supports mission-critical applications
in distributed computing environments. It plays a critical role in building reliable, sophisticated e-
business applications guaranteeing absolute completion and accuracy of business processes;
supporting multimodal transaction processing by enabling reliable transactions to span from front-
end e-commerce applications to back office systems and beyond the enterprise firewall to business
partners across any system, anywhere in the world.

Building on the industry proven Java EE 5 transaction technology, native support is included for Web
service transactions by providing all of the components necessary to build interoperable, reliable,
multi-party, Web service-based applications with minimal effort. The product supports the WS-
AtomicTransaction and WS-BusinessActivity specifications.

8.3. JBoss Transactions Web Services Support
In traditional ACID transaction systems, transactions are short lived, resources (such as databases)
are locked for the duration of the transaction and participants have a high degree of trust with each
other. With the arival of the Internet and Web services, the scenario that is now emerging requires
involvement of participants unknown to each other in distributed transactions. These transactions have
the following characteristics:

1. Transactions may be of a long duration, sometimes lasting hours, days, or more.

2. Participants may not allow their resources to be locked for long durations.

3. The communication infrastructure between participants may not be reliable.

4. Some of the ACID properties of traditional transactions are not mandatory.

5. A transaction may succeed even if only some of the participants choose to confirm and others
cancel.

6. All participants may choose to have their own coordinator (Transaction Manager), because of lack
of trust.

7. All activities are logged.

8. Transactions that have to be rolled back have the concept of compensation.

8.4. How JBossTS address these issues
Programming interfaces are based on the Java API for XML Transactioning (JAXTX) and the
product includes protocol support for the WS-AtomicTransaction and WS-BusinessActivity
specifications. JBoss Transaction Services included with the JBoss Enterprise Application Platform
is designed to support multiple coordination protocols and assist to future-proof transactional
applications. For a more detailed description of the product capabilities, see the full feature list below.

JBoss Transaction Services is a pure Java multi-modal transaction service that supports distributed
transactions in CORBA, JEE and Web services environments.

1. Standards compliance

How JBossTS address these issues

91

a. CORBA Object Transaction Service (OTS)

b. Java Enterprise (JEE) transactions

i. Java Transaction API (JTA)

ii. Java Transaction Service (JTS)

c. Web services transactions

i. Web Services Coordination (WS-Coordination)

ii. Web Services Atomic Transaction (WS-AtomicTransaction)

iii. Web Services Business Activity Framework (WS-BusinessActivity)

2. JEE and CORBA transactioning features

a. Complete distributed transaction support

b. Automated failure recovery system

c. Flexible deployment: centralized and distributed transaction manager options

d. Interposition support for improved distributed transaction performance

e. POA ORB support

f. Support for both checked and unchecked transaction behaviour

g. Support for both flat and nested transaction models, with nested-aware resources and
resource adapters

h. Support for CosTransaction::Current API

i. Direct and indirect transaction management

j. Synchronization interface support

k. Transaction heuristic support

l. Explicit and implicit transaction context propagation

m. Multi-thread aware

3. Web services transactioning features

a. Ensures reliable coordination and application data consistency for business processes that
involve Web services.

b. Supports transaction models for both intra-enterprise (EAI) and inter-enterprise (supply chain)
Web services integration.

c. Allows for consistent real-time updates across any component or resource involved in the
business process.

Chapter 8. JBoss Transactions

92

d. Fully automated crash recovery provides fast, unattended restoration of service after
component failures.

e. Future-proof, generic coordination engine architecture supports pluggable protocols.

f. Currently supports the WS-Coordination WS- AtomicTransaction and WS-BusinessActivity
specifications. Supports the leveraging of existing transaction infrastructure investments.

g. Architected for portability across a wide- range of Web services platforms. Supports the open
source JBoss application server for highly cost effective development and deployment.

h. Close integration with enterprise Java standards, allowing Web services transactions to
seamlessly integrate with JEE application servers, messaging systems and database back-
ends.

i. Easy to use Java programming interfaces, based on the emerging JAXTX standard. A rich
programming framework reduces overhead in adding transactioning capabilities to Web
services.

j. Leverages Arjuna's long history in transaction software, including the industry proven
coordination engine, ArjunaCore - as used in the Bluestone and HP application servers.

Chapter 9.

93

Remoting
The main objective of JBoss Remoting is to provide a single API for most network based invocations
and related services that use pluggable transports and data marshallers. The JBoss Remoting API
provides the ability for making synchronous and asynchronous remote calls, push and pull callbacks,
and automatic discovery of remoting servers. The intention is to allow for the addition of different
transports to fit different needs, yet still maintain the same API for making the remote invocations and
only requiring configuration changes, not code changes, to fit these different needs.

JBoss Remoting can be run as a service within the container with this chapter discussing the JBoss
Remoting service configurations.

9.1. Summary of JBoss Remoting Features
The features available with JBoss Remoting are:

• Server identification: A simple URL based identifier which allows for remoting servers to be identified
and called upon.

• Pluggable transports: Uses different protocol transports but the same remoting API. The provided
transports are:
• Socket (SSL Socket)

• RMI (SSL RMI)

• HTTP(S)

• Multiplex (SSL Multiplex)

• Servlet (SSL Servlet)

• BiSocket (SSL BiSocket)

• Pluggable data marshallers: Uses different data marshallers and unmarshallers to convert the
invocation payloads into desired data formats for wire transfer.

• Pluggable serialization: Uses different serialization implementations for data streams. The provided
serialization implementations are:
• Java serialization

• JBoss serialization

• Automatic discovery: Detects remoting servers as they come on and off line. Provided detection
implementations are:
• Multicast

• JNDI

• Server grouping: Ability to group servers by logical domains, so communication only occurs with
servers within specified domains.

• Callbacks: Receive server callbacks via push and pull models. The pull model specifically allows for
persistent stores and memory management.

Chapter 9. Remoting

94

• Asynchronous calls: Make asynchronous, or one way, calls to a server.

• Local invocation: If you are making an invocation on a remoting server that is within the same
process space, Remoting will automatically make this call by reference to improve performance.

• Remote classloading: Allows for classes, such as custom marshallers, that do not exist within the
client, to be loaded from server.

• Sending of streams: Allows for clients to send input streams to the server, which can be read from
the server on demand.

• Clustering: Seamless client failover for remote invocations.

• Connection failure notification - notification if client or server has failed.

• Data Compression: Uses the compression marshaller and unmarshaller for the compresssion of
large payloads.

All the features within JBoss Remoting were created with ease of use and extensibility in mind. If you
have a suggestion for a new feature or an improvement to a current feature, please log these in the
issue tracking system at http://jira.jboss.com.

9.2. JBoss Remoting Configuration in the JBoss Enterprise
Application Platform
As indicated earlier in this chapter, JBoss Remoting manages synchronous and asynchronous remote
calls, push and pull callbacks, and automatic discovery of Remoting servers. You can configure
JBoss Remoting through the JBoss Messaging service configuration file JBOSS_HOME/server/
<your_configuration>/deploy/messaging/remoting-service.xml.

http://jira.jboss.com

Chapter 10.

95

JBoss Messaging
JBoss Messaging is the new enterprise messaging system from JBoss. It is a complete rewrite
of JBossMQ, the legacy JBoss JMS provider. It is the default JMS provider on JBoss Enterprise
Application Platform 5.

JBoss Messaging is a high Performance JMS 1.1 compliant implementation integrated with JBoss
Transactions. It also offers:

• Clustered Queues and Topics by Default

• Intelligent Message Redistributions

• Transparent Failover

• In memory message Replication

JBoss Messaging is an integral part of Red Hat's strategy for messaging.

JBoss Messaging provides an open source and standards-based messaging platform that brings
enterprise-class messaging to the mass market. It also implements a high performance, robust
messaging core that is designed to support the largest and most heavily utilized SOA, enterprise
service buses (ESBs) and other integration needs ranging from the simplest to the highest network
demands.

It allows you to smoothly distribute your application load across your cluster, intelligently balancing and
utilizing each nodes CPU cycles, with no single point of failure. This provides a highly scalable and
performance implementation for clustering.

JBoss Messaging includes a JMS front-end to deliver messaging in a standards-based format as well
as being designed to be able to support other messaging protocols in the future.

JBoss Messaging is committed to AMQP (AMQP1)- the new messaging standard from Red Hat and
others. Later versions of JBoss Messaging will support AMQP, and JBoss Messaging is focused on
becoming the premier AMQP Java broker.

10.1. Configuring JBoss Messaging
The JBoss Messaging service configuration is spread among several configuration files. Depending
on the functionality provided by the services it configures, the configuration data is distributed between
<JBOSS_HOME>/server/<configuration>/deploy/messaging-service.xml, remoting-
service.xml, connection-factories-service.xml, destinations-service.xml and
xxx-persistence-service.xml (where xxx is the name of your database). The default will be
hsqldb-persistence-service.xml for the hsqldb database.

10.1.1. Configuring the SecurityStore
SecurityStore is a pluggable object, and it has a default implementation in messaging-
service.xml.

<server>
 <mbean code="org.jboss.jms.server.security.SecurityMetadataStore"

1 http://www.amqp.org/

http://www.amqp.org/
http://www.amqp.org/

Chapter 10. JBoss Messaging

96

 name="jboss.messaging:service=SecurityStore">

 <attribute name="DefaultSecurityConfig">
 <security>
 <role name="guest" read="true" write="true" create="true"/>
 </security>
 </attribute>

 <attribute name="SecurityDomain">java:/jaas/messaging</attribute>

 <attribute name="SuckerPassword">CHANGE ME!!</attribute>
</mbean>
...
...file truncated..

10.1.2. SecurityStore Attributes
The following are SecurityStore attributes from the messaging-service.xml file above.

DefaultSecurityConfig
Default security configuration is used when the security configuration for a specific queue or topic has
not been overridden in the destination's deployment descriptor. It has exactly the same syntax and
semantics as in JBossMQ.

The DefaultSecurityConfig attribute element should contain one <security> element. The <security>
element can contain multiple <role> elements. Each <role> element defines the default access for that
particular role.

If the read attribute is true then that role will be able to read (create consumers, receive messaages or
browse) destinations by default. If the write attribute is true then that role will be able to write (create
producers or send messages) to destinations by default. If the create attribute is true then that role will
be able to create durable subscriptions on topics by default.

SecurityDomain
The JAAS security domain to be used by this server peer.

SuckerPassword
This defines how the SecurityStore will authenticate the sucker user (JBM.SUCKER).

10.2. Configuring the ServerPeer
The ServerPeer is the heart of the JBoss Messaging JMS. All JBoss Messaging services are
rooted at the server peer and the server's configuration resides in the messaging-service.xml
configuration file. An example of a Server Peer configuration is presented below, though not all values
for the server peer's attributes are specified in the example.

<!-- ServerPeer MBean configuration
 ============================== -->

Configuring the ServerPeer

97

 <mbean code="org.jboss.jms.server.ServerPeer"
 name="jboss.messaging:service=ServerPeer"
 xmbean-dd="xmdesc/ServerPeer-xmbean.xml">

 <!-- The unique id of the server peer - in a cluster each node MUST have a
 unique value - must be an integer -->

 <attribute name="ServerPeerID">${jboss.messaging.ServerPeerID:0}</
attribute>

 <!-- The default JNDI context to use for queues when they are deployed
 without specifying one -->

 <attribute name="DefaultQueueJNDIContext">/queue</attribute>

 <!-- The default JNDI context to use for topics when they are deployed
 without specifying one -->

 <attribute name="DefaultTopicJNDIContext">/topic</attribute>

 <attribute name="PostOffice">jboss.messaging:service=PostOffice</
attribute>

 <!-- The default Dead Letter Queue (DLQ) to use for destinations.
 This can be overridden on a per destinatin basis -->

 <attribute
 name="DefaultDLQ">jboss.messaging.destination:service=Queue,name=DLQ</
attribute>

 <!-- The default maximum number of times to attempt delivery of a message
 before sending to the DLQ (if configured).
 This can be overridden on a per destinatin basis -->

 <attribute name="DefaultMaxDeliveryAttempts">10</attribute>

 <!-- The default Expiry Queue to use for destinations. This can be
 overridden on a per destinatin basis -->

 <attribute
 name="DefaultExpiryQueue">jboss.messaging.destination:service=Queue,name=ExpiryQueue</
attribute>

 <!-- The default redelivery delay to impose. This can be overridden on a
 per destination basis -->

 <attribute name="DefaultRedeliveryDelay">0</attribute>

 <!-- The periodicity of the message counter manager enquiring on queues
 for statistics -->

Chapter 10. JBoss Messaging

98

 <attribute name="MessageCounterSamplePeriod">5000</attribute>

 <!-- The maximum amount of time for a client to wait for failover to start
 on the server side after
 it has detected failure -->

 <attribute name="FailoverStartTimeout">60000</attribute>

 <!-- The maximum amount of time for a client to wait for failover to
 complete on the server side after
 it has detected failure -->

 <attribute name="FailoverCompleteTimeout">300000</attribute>

 <attribute name="StrictTck">false</attribute>

 <!-- The maximum number of days results to maintain in the message counter
 history -->

 <attribute name="DefaultMessageCounterHistoryDayLimit">-1</attribute>

 <!-- The name of the connection factory to use for creating connections
 between nodes to pull messages -->

 <attribute
 name="ClusterPullConnectionFactoryName">jboss.messaging.connectionfactory:service=ClusterPullConnectionFactory</
attribute>

 <!-- When redistributing messages in the cluster. Do we need to preserve
 the order of messages received
 by a particular consumer from a particular producer? -->

 <attribute name="DefaultPreserveOrdering">false</attribute>

 <!-- Max. time to hold previously delivered messages back waiting for
 clients to reconnect after failover -->

 <attribute name="RecoverDeliveriesTimeout">300000</attribute>

 <!-- The password used by the message sucker connections to create
 connections.
 THIS SHOULD ALWAYS BE CHANGED AT INSTALL TIME TO SECURE SYSTEM
 <attribute name="SuckerPassword"></attribute>
 -->

 <!-- The name of the server aspects configuration resource
 <attribute name="ServerAopConfig">aop/jboss-aop-messaging-server.xml</
attribute>
 -->
 <!-- The name of the client aspects configuration resource

Server Attributes

99

 <attribute name="ClientAopConfig">aop/jboss-aop-messaging-client.xml</
attribute>
 -->

 <depends optional-attribute-
name="PersistenceManager">jboss.messaging:service=PersistenceManager</
depends>

 <depends optional-attribute-
name="JMSUserManager">jboss.messaging:service=JMSUserManager</depends>

 <depends>jboss.messaging:service=Connector,transport=bisocket</depends>
 <depends optional-attribute-name="SecurityStore"
 proxy-
type="org.jboss.jms.server.SecurityStore">jboss.messaging:service=SecurityStore</
depends>
</mbean>
...

10.3. Server Attributes
This section discusses the MBean attributes of the ServerPeer MBean.

10.3.1. ServerPeerID
The ServerPeerID is the unique ID of the server peer that every node you deploy must have. This
applies whether the different nodes form a cluster, or are only linked via a message bridge. The ID
must be a valid integer.

10.3.2. DefaultQueueJNDIContext
The default JNDI context to use when binding queues. Defaults to /queue.

10.3.3. DefaultTopicJNDIContext
The default JNDI context to use when binding topics.wa Defaults to /topic.

10.3.4. PostOffice
This is the post office that the ServerPeer uses. You will not normally need to change this attribute.
The post office is responsible for routing messages to queues and maintaining the mapping between
addresses and queues.

10.3.5. DefaultDLQ
This is the name of the default DLQ (Dead Letter Queue) the server peer will use for destinations.
The DLQ can be overridden on a per destination basis - see the destination MBean configuration for
more details. A DLQ is a special destination where messages are sent when the server has attempted
to deliver them unsuccessfully more than a certain number of times. If the DLQ is not specified at all
then the message will be removed after the maximum number of delivery attempts. The maximum

Chapter 10. JBoss Messaging

100

number of delivery attempts can be specified using the attribute DefaultMaxDeliveryAttempts for a
global default or individually on a per destination basis.

10.3.6. DefaultMaxDeliveryAttempts
The default for the maximum number of times delivery of a message will be attempted before sending
the message to the DLQ, if configured.

The default value is 10.This value can also be overridden on a per destination basis.

10.3.7. DefaultExpiryQueue
This is the name of the default expiry queue the server peer will use for destinations. The expiry can
be overridden on a per destination basis - see the destination MBean configuration for more details.
An expiry queue is a special destination where messages are sent when they have expired. Message
expiry is determined by the value of Message::getJMSExpiration() If the expiry queue is not specified
at all then the message will be removed after it is expired.

10.3.8. DefaultRedeliveryDelay
When redelivering a message after failure of previous delivery it is often beneficial to introduce a delay
perform redelivery in order to prevent thrashing of delivery-failure, delivery-failure etc.

The default value is 0 which means there will be no delay.

Change this if your application could benefit with a delay before redelivery. This value can also be
overridden on a per destination basis.

10.3.9. MessageCounterSamplePeriod
Periodically the server will query each queue to gets its statistics. This is the period.

The default value is 10000 milliseconds.

10.3.10. FailoverStartTimeout
The maximum number of milliseconds the client will wait for failover to start on the server side when a
problem is detected.

The default value is 60000 (one minute).

10.3.11. FailoverCompleteTimeout
The maximum number of milliseconds the client will wait for failover to complete on the server side
after it has started. The default value is 300000 (five minutes).

10.3.12. DefaultMessageCounterHistoryDayLimit
JBoss Messaging provides a message counter history which shows the number of messages arriving
on each queue of a certain number of days. This attribute represents the maxiumum number of days
for which to store message counter history. It can be overridden on a per destination basis.

ClusterPullConnectionFactory

101

10.3.13. ClusterPullConnectionFactory
The name of the connection factory to use for pulling messages between nodes. If you wish to turn
off message sucking between queues altogether, but retain failover, then you can ommit this attribute
altogether.

10.3.14. DefaultPreserveOrdering
If true, then strict JMS ordering is preserved in the cluster. See the cluster configurations section for
more details. Default is false.

10.3.15. RecoverDeliveriesTimeout
When failover occurs, already delivered messages will be kept aside, waiting for clients to reconnect.
In the case that clients never reconnect (e.g. the client is dead) then eventually these messages will
timeout and be added back to the queue. The value is in ms. The default is 5 mins.

10.3.16. SuckerPassword
JBoss Messaging internally makes connections between nodes in order to redistribute messages
between clustered destinations. These connections are made with the user name of a special
reserved user. On this parameter you define the password used as these connections are made. After
JBossMessaging 1.4.1.GA you will need to define the Sucker Password on the ServerPeer and on the
SecurityMetadataStore.

Warning
This must be specified at install time, or the default password will be used. Any one who
then knows the default password will be able to gain access to any destinations on the
server. This value MUST be changed at install time.

10.3.17. StrictTCK
Set to true if you want strict JMS TCK semantiocs

10.3.18. Destinations
Returns a list of the destinations (queues and topics) currently deployed.

10.3.19. MessageCounters
JBoss Messaging provides a message counter for each queue.

10.3.20. MessageCountersStatistics
JBoss Messaging provides statistics for each message counter for each queue.

10.3.21. SupportsFailover
Set to false to prevent server side failover occurring in a cluster when a node crashes.

Chapter 10. JBoss Messaging

102

10.3.22. PersistenceManager
This is the persistence manager that the ServerPeer uses. You will not normally need to change this
attribute.

10.3.23. JMSUserManager
This is the JMS user manager that the ServerPeer uses. You will not normally need to change this
attribute.

10.3.24. SecurityStore
This is the pluggable SecurityStore. If you redefine this SecurityStore, notice it will need to
authenticate the MessageSucker user ("JBM.SUCKER") with all the special permissions required by
clustering.

10.4. MBean operations of the ServerPeer MBean

10.4.1. DeployQueue
This operation lets you programmatically deploy a queue. There are two overloaded versions of this
operation. If the queue already exists but is undeployed it is deployed. Otherwise it is created and
deployed. The name parameter represents the name of the destination to deploy. The jndiName
parameter (optional) represents the full jndi name where to bind the destination. If this is not specified
then the destination will be bound in <DefaultQueueJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters. The
second overloaded version deploys the destination with the specified paging parameters. See the
section on configuring destinations for a discussion of what the paging parameters mean.

10.4.2. UndeployQueue
This operation lets you programmatically undeploy a queue. The queue is undeployed but is NOT
removed from persistent storage. This operation returns true if the queue was successfull undeployed.
otherwise it returns false.

10.4.3. DestroyQueue
This operation lets you programmatically destroy a queue. The queue is undeployed and then all its
data is destroyed from the database.

Warning
Be cautious when using this method since it will delete all data for the queue.

This operation returns true if the queue was successfully destroyed. otherwise it returns false.

10.4.4. DeployTopic
This operation lets you programmatically deploy a topic.

UndeployTopic

103

There are two overloaded versions of this operation.

If the topic already exists but is undeployed it is deployed. Otherwise it is created and deployed.

The name parameter represents the name of the destination to deploy.

The jndiName parameter (optional) represents the full jndi name where to bind the destination. If this is
not specified then the destination will be bound in <DefaultTopicJNDIContext>/<name>.

The first version of this operation deploys the destination with the default paging parameters. The
second overloaded version deploys the destination with the specified paging parameters. See the
section on configuring destinations for a discussion of what the paging parameters mean.

10.4.5. UndeployTopic
This operation lets you programmatically undeploy a topic. The queue is undeployed but is NOT
removed from persistent storage. This operation returns true if the topic was successfully undeployed.
otherwise it returns false.

10.4.6. DestroyTopic
This operation lets you programmatically destroy a topic.

The topic is undeployed and then all its data is destroyed from the database.

Warning
Be careful when using this method since it will delete all data for the topic.

This operation returns true if the topic was successfully destroyed. otherwise it returns false.

10.4.7. ListMessageCountersHTML
This operation returns message counters in an easy to display HTML format.

10.4.8. ResetAllMesageCounters
This operation resets all message counters to zero.

10.4.9. ResetAllMesageCounters
This operation resets all message counter histories to zero.

10.4.10. EnableMessageCounters
This operation enables all message counters for all destinations. Message counters are disabled by
default.

10.4.11. DisableMessageCounters
This operation disables all message counters for all destinations. Message counters are disabled by
default.

Chapter 10. JBoss Messaging

104

10.4.12. RetrievePreparedTransactions
Retrieves a list of the Xids for all transactions currently in a prepared state on the node.

10.4.13. ShowPreparedTransactions
Retrieves a list of the Xids for all transactions currently in a prepared state on the node in an easy to
display HTML format.

Chapter 11.

105

Use Alternative Databases with JBoss
Enterprise Application Platform

11.1. How to Use Alternative Databases
JBoss utilizes the Hypersonic database as its default database. While this is good for development
and prototyping, you or your company will probably require another database to be used for
production. This chapter covers configuring JBoss Enterprise Application Platform to use alternative
databases. We cover the procedures for all officially supported databases on the JBoss Application
Server. They include: MySQL 5.0, PostgreSQL 8.1, Oracle 9i and 10g R2, DB2 7.2 and 8, Sybase
ASE 12.5, as well as MS SQL 2005.

Please note that in this chapter, we explain how to use alternative databases to support all services
in JBoss Enterprise Application Platform. This includes all the system level services such as EJB
and JMS. For individual applications (e.g., WAR or EAR) deployed in JBoss Enterprise Application
Platform, you can still use any backend database by setting up the appropriate data source
connection.

We assume that you have already installed the external database server, and have it running. You
should create an empty database named jboss, accessible via the username / password pair
jbossuser / jbosspass. The jboss database is used to store JBoss Enterprise Application
Platform internal data -- JBoss Enterprise Application Platform will automatically create tables and
data in it.

11.2. Install JDBC Drivers
For the JBoss Application Server and our applications to use the external database, we also need to
install the database's JDBC driver. The JDBC driver is a JAR file, which you'll need to copy into your
JBoss Enterprise Application Platform's <JBoss_Home>/server/all/lib directory. Replace all
with the server configuration you are using if needed. This file is loaded when JBoss starts up. So if
you have the JBoss Enterprise Application Platform running, you'll need to shut down and restart. The
availability of JDBC drivers for different databases are as follows.

• IBM DB2 JDBC drivers can be downloaded from the IBM web site http://www-306.ibm.com/
software/data/db2/java/.

• Sybase JDBC drivers can be downloaded from the Sybase jConnect product page http://
www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

• MS SQL Server JDBC drivers can be downloaded from the MSDN web site http://
msdn.microsoft.com/data/jdbc/.

11.2.1. Special notes on Sybase
Some of the services in JBoss uses null values for the default tables that are created. Sybase
Adaptive Server should be configured to allow nulls by default.

sp_dboption db_name, "allow nulls by default", true

Refer the sybase manuals for more options.

http://www-306.ibm.com/software/data/db2/java/
http://www-306.ibm.com/software/data/db2/java/
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://msdn.microsoft.com/data/jdbc/
http://msdn.microsoft.com/data/jdbc/

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

106

Enable JAVA services
To use any java service like JMS, CMP, timers etc. configured with Sybase, java should be enabled on
Sybase Adaptive Server. To do this use:

sp_configure "enable java",1

Refer to the sybase manuals for more information.

If java is not enabled you might see this exception being thrown when you try to use any of the above
services.

com.sybase.jdbc2.jdbc.SybSQLException: Cannot run this command because Java
 services are not enabled. A user with System Administrator (SA) role must
 reconfigure the system to enable Java

CMP Configuration
To use Container Managed Persistence for user defined Java objects with Sybase Adaptive Server
Enterprise the java classes should be installed in the database. The system table 'sysxtypes' contains
one row for each extended, Java-SQL datatype. This table is only used for Adaptive Servers enabled
for Java. Install java classes using the installjava program.

installjava -f <jar-file-name> -S<sybase-server> -U<super-user> -P<super-
pass> -D<db-name>

Refer the installjava manual in Sybase for more options.

Installing Java Classes
1. You have to be a super-user with required privileges to install java classes.

2. The jar file you are trying to install should be created without compression.

3. Java classes that you install and use in the server must be compiled with JDK 1.2.2.
If you compile a class with a later JDK, you will be able to install it in the server using
the installjava utility, but you will get a java.lang.ClassFormatError exception when you
attempt to use the class. This is because Sybase Adaptive Server uses an older JVM
internally, and hence requires the java classes to be compiled with the same.

11.2.2. Configuring JDBC DataSources
Rather than configuring the connection manager factory related MBeans discussed in the previous
section via a mbean services deployment descriptor, JBoss provides a simplified datasource centric
descriptor. This is transformed into the standard jboss-service.xml MBean services deployment
descriptor using a XSL transform applied by the org.jboss.deployment.XSLSubDeployer
included in the jboss-jca.sar deployment. The simplified configuration descriptor is deployed the
same as other deployable components. The descriptor must be named using a *-ds.xml pattern in
order to be recognized by the XSLSubDeployer.

Configuring JDBC DataSources

107

The schema for the top-level datasource elements of the *-ds.xml configuration deployment file
is shown in Figure 11.1, “The simplified JCA DataSource configuration descriptor top-level schema
elements”.

Figure 11.1. The simplified JCA DataSource configuration descriptor top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child
elements of the datasources root are:

• mbean: Any number mbean elements may be specified to define MBean services that should be
included in the jboss-service.xml descriptor that results from the transformation. This may be
used to configure services used by the datasources.

• no-tx-datasource: This element is used to specify the
(org.jboss.resource.connectionmanager) NoTxConnectionManager service
configuration. NoTxConnectionManager is a JCA connection manager with no transaction
support. The no-tx-datasource child element schema is given in Figure 11.2, “The non-
transactional DataSource configuration schema”.

• local-tx-datasource: This element is used to specify the
(org.jboss.resource.connectionmanager) LocalTxConnectionManager service
configuration. LocalTxConnectionManager implements a ConnectionEventListener that
implements XAResource to manage transactions through the transaction manager. To ensure
that all work in a local transaction occurs over the same ManagedConnection, it includes a xid
to ManagedConnection map. When a Connection is requested or a transaction started with
a connection handle in use, it checks to see if a ManagedConnection already exists enrolled
in the global transaction and uses it if found. Otherwise, a free ManagedConnection has its
LocalTransaction started and is used. The local-tx-datasource child element schema is
given in Figure 11.3, “The non-XA DataSource configuration schema”

• xa-datasource: This element is used to specify the
(org.jboss.resource.connectionmanager) XATxConnectionManager service
configuration. XATxConnectionManager implements a ConnectionEventListener that
obtains the XAResource to manage transactions through the transaction manager from the
adaptor ManagedConnection. To ensure that all work in a local transaction occurs over the same
ManagedConnection, it includes a xid to ManagedConnection map. When a Connection
is requested or a transaction started with a connection handle in use, it checks to see if a
ManagedConnection already exists enrolled in the global transaction and uses it if found.
Otherwise, a free ManagedConnection has its LocalTransaction started and is used. The
xa-datasource child element schema is given in Figure 11.4, “The XA DataSource configuration
schema”.

• ha-local-tx-datasource: This element is identical to local-tx-datasource, with the addition of
the experimental datasource failover capability allowing JBoss to failover to an alternate database in
the event of a database failure.

• ha-xa-datasource: This element is identical to xa-datasource, with the addition of the
experimental datasource failover capability allowing JBoss to failover to an alternate database in the
event of a database failure.

Figure 11.2. The non-transactional DataSource configuration schema

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

108

Figure 11.3. The non-XA DataSource configuration schema

Figure 11.4. The XA DataSource configuration schema

Figure 11.5. The schema for the experimental non-XA DataSource with failover

Figure 11.6. The schema for the experimental XA Datasource with failover

Elements that are common to all datasources include:

• jndi-name: The JNDI name under which the DataSource wrapper will be bound. Note that this
name is relative to the java:/ context, unless use-java-context is set to false. DataSource
wrappers are not usable outside of the server VM, so they are normally bound under the java:/,
which isn't shared outside the local VM.

• use-java-context: If this is set to false the the datasource will be bound in the global JNDI context
rather than the java: context.

• user-name: This element specifies the default username used when creating a new connection.
The actual username may be overridden by the application code getConnection parameters or
the connection creation context JAAS Subject.

• password: This element specifies the default password used when creating a new connection. The
actual password may be overridden by the application code getConnection parameters or the
connection creation context JAAS Subject.

• application-managed-security: Specifying this element indicates that connections in
the pool should be distinguished by application code supplied parameters, such as from
getConnection(user, pw).

• security-domain: Specifying this element indicates that connections in the pool should be
distinguished by JAAS Subject based information. The content of the security-domain is the
name of the JAAS security manager that will handle authentication. This name correlates to the
JAAS login-config.xml descriptor application-policy/name attribute.

• security-domain-and-application: Specifying this element indicates that connections in the pool
should be distinguished both by application code supplied parameters and JAAS Subject based
information. The content of the security-domain is the name of the JAAS security manager
that will handle authentication. This name correlates to the JAAS login-config.xml descriptor
application-policy/name attribute.

• min-pool-size: This element specifies the minimum number of connections a pool should hold.
These pool instances are not created until an initial request for a connection is made. This default to
0.

• max-pool-size: This element specifies the maximum number of connections for a pool. No more
than the max-pool-size number of connections will be created in a pool. This defaults to 20.

• blocking-timeout-millis: This element specifies the maximum time in milliseconds to block while
waiting for a connection before throwing an exception. Note that this blocks only while waiting for

Configuring JDBC DataSources

109

a permit for a connection, and will never throw an exception if creating a new connection takes an
inordinately long time. The default is 5000.

• idle-timeout-minutes: This element specifies the maximum time in minutes a connection may be
idle before being closed. The actual maximum time depends also on the IdleRemover scan time,
which is 1/2 the smallest idle-timeout-minutes of any pool.

• new-connection-sql: This is a SQL statement that should be executed when a new connection is
created. This can be used to configure a connection with database specific settings not configurable
via connection properties.

• check-valid-connection-sql: This is a SQL statement that should be run on a connection before it
is returned from the pool to test its validity to test for stale pool connections. An example statement
could be: select count(*) from x.

• exception-sorter-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ExceptionSorter interface to examine database
exceptions to determine whether or not the exception indicates a connection error. Current
implementations include:

• org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.InformixExceptionSorte

• valid-connection-checker-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ValidConnectionChecker interface to
provide a SQLException isValidConnection(Connection e) method that is called
with a connection that is to be returned from the pool to test its validity. This overrides the
check-valid-connection-sql when present. The only provided implementation is
org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker.

• track-statements: This boolean element specifies whether to check for unclosed statements
when a connection is returned to the pool. If true, a warning message is issued for each unclosed
statement. If the log4j category org.jboss.resource.adapter.jdbc.WrappedConnection
has trace level enabled, a stack trace of the connection close call is logged as well. This is a debug
feature that can be turned off in production.

• prepared-statement-cache-size: This element specifies the number of prepared statements per
connection in an LRU cache, which is keyed by the SQL query. Setting this to zero disables the
cache.

• depends: The depends element specifies the JMX ObjectName string of a service that the
connection manager services depend on. The connection manager service will not be started until
the dependent services have been started.

• type-mapping: This element declares a default type mapping for this datasource. The type mapping
should match a type-mapping/name element from standardjbosscmp-jdbc.xml.

Additional common child elements for both no-tx-datasource and local-tx-datasource
include:

• connection-url: This is the JDBC driver connection URL string, for example,
jdbc:hsqldb:hsql://localhost:1701.

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

110

• driver-class: This is the fully qualified name of the JDBC driver class, for example,
org.hsqldb.jdbcDriver.

• connection-property: The connection-property element allows you to pass in arbitrary
connection properties to the java.sql.Driver.connect(url, props) method. Each
connection-property specifies a string name/value pair with the property name coming from
the name attribute and the value coming from the element content.

Elements in common to the local-tx-datasource and xa-datasource are:

• transaction-isolation: This element specifies the java.sql.Connection transaction isolation
level to use. The constants defined in the Connection interface are the possible element content
values and include:

• TRANSACTION_READ_UNCOMMITTED
• TRANSACTION_READ_COMMITTED
• TRANSACTION_REPEATABLE_READ
• TRANSACTION_SERIALIZABLE
• TRANSACTION_NONE

• no-tx-separate-pools: The presence of this element indicates that two connection pools are
required to isolate connections used with JTA transaction from those used without a JTA transaction.
The pools are lazily constructed on first use. Its use case is for Oracle (and possibly other vendors)
XA implementations that don't like using an XA connection with and without a JTA transaction.

The unique xa-datasource child elements are:

• track-connection-by-tx: Specifying a true value for this element makes the connection
manager keep an xid to connection map and only put the connection back in the pool when the
transaction completes and all the connection handles are closed or disassociated (by the method
calls returning). As a side effect, we never suspend and resume the xid on the connection's
XAResource. This is the same connection tracking behavior used for local transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for
that transaction at any time from any thread (suspending other transactions if necessary). The
original JCA implementation assumed this and aggressively delisted connections and put them
back in the pool as soon as control left the EJB they were used in or handles were closed. Since
some other transaction could be using the connection the next time work needed to be done on
the original transaction, there is no way to get the original connection back. It turns out that most
XADataSource driver vendors do not support this, and require that all work done under a particular
xid go through the same connection.

• xa-datasource-class: The fully qualified name of the javax.sql.XADataSource implementation
class, for example, com.informix.jdbcx.IfxXADataSource.

• xa-datasource-property: The xa-datasource-property element allows for specification of
the properties to assign to the XADataSource implementation class. Each property is identified
by the name attribute and the property value is given by the xa-datasource-property element
content. The property is mapped onto the XADataSource implementation by looking for a
JavaBeans style getter method for the property name. If found, the value of the property is set
using the JavaBeans setter with the element text translated to the true property type using the
java.beans.PropertyEditor for the type.

Creating a DataSource for the External Database

111

• isSameRM-override-value: A boolean flag that allows one to override the behavior of the
javax.transaction.xa.XAResource.isSameRM(XAResource xaRes) method
behavior on the XA managed connection. If specified, this value is used unconditionally as the
isSameRM(xaRes) return value regardless of the xaRes parameter.

The failover options common to ha-xa-datasource and ha-local-tx-datasource are:

• url-delimeter: This element specifies a character used to separate multiple JDBC URLs.

• url-property: In the case of XA datasources, this property specifies the name of the xa-
datasource-property that contains the list of JDBC URLs to use.

11.3. Creating a DataSource for the External Database
JBoss Enterprise Application Platform connects to relational databases via datasources. These
datasource definitions can be found in the <JBoss_Home>/server/all/deploy directory. The
datasource definitions are deployable just like WAR and EAR files. The datasource files can be
recognized by looking for the XML files that end in *-ds.xml.

Datasource definition files
The datasource definition files for all supported external databases can be found in the
<JBoss_Home>/docs/examples/jca directory.

• MySQL: mysql-ds.xml

• PostgreSQL: postgres-ds.xml

• Oracle: oracle-ds.xml

• DB2: db2-ds.xml

• Sybase: sybase-ds.xml

• MS SQL Server: mssql-ds.xml

The following code snippet shows the mysql-ds.xml file as an example. All the other *-ds.xml
files are very similiar. You will need to change the connection-url, as well as the user-name /
password, to fit your own database server installation.

<datasources>
<local-tx-datasource>
<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/jboss</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>jbossuser</user-name>
<password>jbosspass</password>
<exception-sorter-class-name>
org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
</exception-sorter-class-name>
<!-- should only be used on drivers after 3.22.1 with "ping" support
<valid-connection-checker-class-name>
org.jboss.resource.adapter.jdbc.vendor.MySQLValidConnectionChecker

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

112

</valid-connection-checker-class-name>
-->
<!-- sql to call when connection is created
<new-connection-sql>some arbitrary sql</new-connection-sql>
-->
<!-- sql to call on an existing pooled connection when it is obtained from
 pool -
 MySQLValidConnectionChecker is preferred for newer drivers
<check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
 -->

<!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional)
 -->
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </local-tx-datasource>

</datasources>

Once you customized the *-ds.xml file to connect to your external database, you need to copy it
to the <JBoss_Home>/server/all/deploy directory. The database connection is now available
through the JNDI name specified in the *-ds.xml file.

11.4. Common configuration for DataSources and
ConnectionFactorys

11.4.1. General
• <mbean> - a standard jboss mbean deployment

• <depends> - the ObjectName of an MBean service this ConnectionFactory or DataSource
deployment depends upon

• <jndi-name> - the jndi name where it is bound. This is prefixed with java by default:

• <use-java-context> - set this to false to drop the java: context from the jndi name

11.4.2. XA
<xa-resource-timeout> - the number of seconds passed to

XAResource.setTranasctionTimeout()

when not zero. This feature is available on JBoss Enterprise Application Platform 4.0.3 and above.

11.4.3. Security parameters
JCA Login Modules - are used to inject security configuration into the connection when configured

Security parameters

113

• nothing - uses the user/password specified in -ds.xml for DataSources or the getConnection/
createConnection method without a user/password (the default).

• <application-managed-security> - uses the user/password passed on the getConnection or
createConnection request by the application.

• <security-domain> - uses the identified login module configured in conf/login-module.xml.

• <security-domain-and-application> - uses the identified login module configured in conf/login-
module.xml and other connection request information supplied by the application, e.g. queue or
topic in JMS.

11.4.3.1. Pooling parameters
• <no-tx-separate-pools> - whether separate subpools should be created for connections inside and

outside JTA transactions (default false).

• <min-pool-size> - the minimum number of connections in the pool (default 0 - zero)

• <max-pool-size> - the maximum number of connections in the pool (default 20)

• <blocking-timeout-millis> - the length of time to wait for a connection to become available when all
the connections are checked out (default 5000 == 5 seconds, from 3.2.4 it is 30000 == 30 seconds)

• <idle-timeout-minutes> - the number of minutes after which unused connections are closed (default
15 minutes)

• <track-connection-by-tx> - whether the connection should be "locked" to the transaction, returning
it to the pool at the end of the transaction; in pre-JBoss-5.x releases the default value for Local
connection factories is true and false for XA; since JBoss-5.x the default value is true for both Local
and XA and the element is deprecated.

• <interleaving/> - enables interleaving for XA connection factories (this feature was added in
JBoss-5.x)

• <prefill> - whether to attempt to prefill the connection pool to the minimum number of connections.
NOTE: only supporting pools (OnePool) support this feature. A warning can be found in the logs if
the pool does not support this. This feature is available in JBoss 4.0.5 and above.

• <background-validation> - In JBoss 4.0.5, background connection validation was added to
reduce the overall load on the RDBMS system when validating a connection. When using this
feature, JBoss will attempt to validate the current connections in the pool as a seperate thread
(ConnectionValidator).

• <background-validation-minutes> - The interval, in minutes, that the ConnectionValidator will run.
NOTE: It is prudent to set this value to something greater or less than the <idle-timeout-minutes>

• <use-fast-fail> - Whether or not to continue to attempt to acquire a connection from the pool even
if the nth attempt has failed. False by default. This is to address performance issues where SQL
validation may take significant time and resources to execute.

11.4.3.2. Security and Pooling
Unless the ResourceAdapter has <reauthentication-support> using multiple security identities will
create subpools for each identity.

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

114

Note
The min and max pool size are per subpool so be careful with these parameters if you
have lots of identities.

11.5. Change Database for the JMS Services
The JMS service in the JBoss Enterprise Application Platform uses relational databases to persist its
messages. For improved performance, we should change the JMS service to take advantage of the
external database. To do that, we need to replace the file {jboss.dist}/server/${server}/
deploy/messaging/${database}-persistence-service.xml with the file ${jboss.dist}/
docs/examples/jms/${database}-persistence-service.xml depending on your external
database. Notice that if you are using the default server profile, the file path is {jboss.dist}/
server/default/deploy/messaging/${database}-persistence-service.xml.

• MySQL: mysql-jdbc2-service.xml

• PostgreSQL: postgres-jdbc2-service.xml

• Oracle: oracle-jdbc2-service.xml

• DB2: db2-jdbc2-service.xml

• Sybase: sybase-jdbc2-service.xml

• MS SQL Server: mssql-jdbc2-service.xml

What about the hsqldb-jdbc-state-service.xml file?
Despite its name, the hsqldb-jdbc-state-service.xml file applies to all databases.
So, there is no need to use a special jdbc-state-service.xml for each database.

11.6. Support Foreign Keys in CMP Services
Next, we need to go change the <JBoss_Home>/server/all/conf/standardjbosscmp-
jdbc.xml file so that the fk-constraint property is true. That is needed for all external
databases we support on the JBoss Application Server. This file configures the database connection
settings for the EJB2 CMP beans deployed in the JBoss Enterprise Application Platform.

<fk-constraint>true</fk-constraint>

11.7. Specify Database Dialect for Java Persistence API
The Java Persistence API (JPA) entity manager can save EJB3 entity beans to any backend
database. Hibernate provides the JPA implementation in JBoss Enterprise Application Platform.
Hibernate has a dialect auto-detection mechanism that works for most databases including the
dialects for databases referenced in this appendix which are listed below. If a specific dialect is
needed for alternative databases, you can configure the database dialect in the ${jboss.dist}/
server/${server}/deployers/ejb3.deployer/META-INF/jpa-deployers-jboss-

Change Other JBoss Enterprise Application Platform Services to Use the External Database

115

beans.xml file. To configure this file you need to uncomment the set of tags related to the map entry
hibernate.dialect and change the values to the following based on the database you setup.

• Oracle 10g: org.hibernate.dialect.Oracle10gDialect

• Oracle 11g: org.hibernate.dialect.Oracle10gDialect

• Microsoft SQL Server 2005: org.hibernate.dialect.SQLServerDialect

• Microsoft SQL Server 2008: org.hibernate.dialect.SQLServerDialect

• PostgresSQL 8.2.3: org.hibernate.dialect.PostgreSQLDialect

• PostgresSQL 8.3.7: org.hibernate.dialect.PostgreSQLDialect

• MySQL 5.0: org.hibernate.dialect.MySQL5InnoDBDialect

• MySQL 5.1: org.hibernate.dialect.MySQL5InnoDBDialect

• DB2 9.1: org.hibernate.dialect.DB2Dialect

• Sybase ASE 15: org.hibernate.dialect.SybaseDialect

11.8. Change Other JBoss Enterprise Application Platform
Services to Use the External Database
Besides JMS, CMP, and JPA, we still need to hook up the rest of JBoss services with the external
database. There are two ways to do it. One is easy but inflexible. The other is flexible but requires
more steps. Now, let's discuss those two approaches respectively.

11.8.1. The Easy Way
The easy way is just to change the JNDI name for the external database to DefaultDS. Most JBoss
services are hard-wired to use the DefaultDS by default. So, by changing the datasource name, we
do not need to change the configuration for each service individually.

To change the JNDI name, just open the *-ds.xml file for your external database, and change the
value of the jndi-name property to DefaultDS. For instance, in mysql-ds.xml, you'd change
MySqlDS to DefaultDS and so on. You will need to remove the <JBoss_Home>/server/all/
deploy/hsqldb-ds.xml file after you are done to avoid duplicated DefaultDS definition.

In the messaging/${database}-persistence-service.xml file, you should also change the
datasource name in the depends tag for the PersistenceManagers MBean to DefaultDS. For
instance, for mysql-jdbc2-service.xml file, we change the MySqlDS to DefaultDS.

.. ...
<mbean code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"
 name="jboss.messaging:service=PersistenceManager" xmbean-dd="xmdesc/
JDBCPersistenceManager-xmbean.xml">

<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

116

11.8.2. The More Flexible Way
Changing the external datasource to DefaultDS is convenient. But if you have applications that
assume the DefaultDS always points to the factory-default HSQL DB, that approach could break
your application. Also, changing DefaultDS destination forces all JBoss services to use the external
database. What if you want to use the external database only on some services?

A safer and more flexible way to hook up JBoss Enterprise Application Platform services with the
external datasource is to manually change the DefaultDS in all standard JBoss services to the
datasource JNDI name defined in your *-ds.xml file (e.g., the MySqlDS in mysql-ds.xml etc.).
Below is a complete list of files that contain DefaultDS. You can update them all to use the external
database on all JBoss services or update some of them to use different combination of datasources
for different services.

• ${jboss.dist}/server/${server}/conf/login-config.xml: This file is used in Java EE
container managed security services.

• ${jboss.dist}/server/${server}/conf/standardjbosscmp-jdbc.xml: This file
configures the CMP beans in the EJB container.

• <JBoss_Home>/server/all/deploy/ejb-deployer.xml: This file configures the JBoss EJB
deployer.

• ${jboss.dist}/server/${server}/deploy/ejb2-timer-service.xml: This file
configures the EJB timer services.

• ${jboss.dist}/server/${server}/deploy/snmp-adaptor.sar/attributes.xml: This
file is used by the SNMP service.

• ${jboss.dist}/server/${server}/deploy/juddi-service.sar/META-INF/jboss-
service.xml: This file configures the UUDI service.

• ${jboss.dist}/server/${server}/deploy/juddi-service.sar/juddi.war/WEB-
INF/jboss-web.xml: This file configures the UUDI service.

• <JBoss_Home>/server/all/deploy/juddi-service.sar/juddi.war/WEB-INF/
juddi.properties: This file configures the UUDI service.

• ${jboss.dist}/server/${server}/deploy/uuid-key-generator.sar/META-INF/
jboss-service.xml: This file configures the UUDI service.

• ${jboss.dist}/server/${server}/deploy/messaging/messaging-jboss-
beans.xml and ${jboss.dist}/server/${server}/deploy/messaging/persistence-
service.xml: Those files configure the JMS persistence service as we discussed earlier.

11.9. A Special Note About Oracle DataBases
In our setup discussed in this chapter, we rely on the JBoss Enterprise Application Platform to
automatically create needed tables in the external database upon server startup. That works most of
the time. But for databases like Oracle, there might be some minor issues if you try to use the same
database server to back more than one JBoss Enterprise Application Platform instance.

The Oracle database creates tables of the form schemaname.tablename. The TIMERS and
HILOSEQUENCES tables needed by JBoss Enterprise Application Platform would not get created on a
schema if the table already exists on a different schema. To work around this issue, you need to edit

DataSource configuration

117

the ${jboss.dist}/server/${server}/deploy/ejb2-timer-service.xml file to change
the table name from TIMERS to something like schemaname2.tablename.

<mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"
name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
<!-- DataSourceBinding ObjectName -->
<depends optional-attribute-name="DataSource">
 jboss.jca:service=DataSourceBinding,name=DefaultDS
</depends>
<!-- The plugin that handles database persistence -->
<attribute name="DatabasePersistencePlugin">
org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin
</attribute>
<!-- The timers table name -->
<attribute name="TimersTable">TIMERS</attribute>
</mbean>

Similarly, you need to change the <JBoss_Home>/server/all/deploy/uuid-key-
generator.sar/META-INF/jboss-service.xml file to change the table name from
HILOSEQUENCES to something like schemaname2.tablename as well.

<!-- HiLoKeyGeneratorFactory -->
<mbean
 code="org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory"
name="jboss:service=KeyGeneratorFactory,type=HiLo">

<depends>jboss:service=TransactionManager</depends>

<!-- Attributes common to HiLo factory instances -->

<!-- DataSource JNDI name -->
<depends optional-attribute-
name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</
depends>

<!-- table name -->
<attribute name="TableName">HILOSEQUENCES</attribute>

11.10. DataSource configuration
DataSources are defined inside a <datasources> element.

• <no-tx-datasource> - a DataSource that does not take part in JTA transactions using a
java.sql.Driver

• <local-tx-datasource> - a DataSource that does not support two phase commit using a
java.sql.Driver

• <xa-datasource> - a DataSource that does support two phase commit using a
javax.sql.XADataSource

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

118

11.11. Parameters specific for java.sql.Driver usage
• <connection-url> - the JDBC driver connection url string

• <driver-class> - the JDBC driver class implementing java.sql.Driver

• <connection-property> - used to configure the connections retrieved from the java.sql.Driver. For
example:

<connection-property name="char.encoding">UTF-8</connection-property>

11.12. Parameters specific for javax.sql.XADataSource
usage
• <xa-datasource-class> - This is the class that implements the XADataSource

• <xa-datasource-property> - This contains that properties that are used to configure the
XADataSource. For example:

<xa-datasource-property name="IfxWAITTIME">10</xa-datasource-property>
<xa-datasource-property name="IfxIFXHOST">myhost.mydomain.com</xa-
datasource-property>
<xa-datasource-property name="PortNumber">1557</xa-datasource-property>
<xa-datasource-property name="DatabaseName">mydb</xa-datasource-property>
<xa-datasource-property name="ServerName">myserver</xa-datasource-property>

• <isSameRM-override-value> - In order to fix issues with Oracle this property should be set to false

• <track-connection-by-tx/> - This property is deprecated and enabled by default in order to correct
issues with Oracle

• <no-tx-separate-pools/> - This property will pool Transactional and non-Transactional connections
separately and cause your total pool size to be twice the max-pool-size, as two pools will be
created. This is used to fix issues with Oracle.

11.13. Common DataSource parameters
• <jndi-name> - the JNDI name under which the DataSource should be bound.

• <use-java-context> - A boolean indicating if the jndi-name should be prefixed with java: which
causes the DataSource to only be accessible from within the jboss server vm. The default is true.

• <user-name> - the user name used when creating the connection (not used when security is
configured)

• <password> - the password used when creating the connection (not used when security is
configured)

• <transaction-isolation> - the default transaction isolation of the connection (unspecified means use
the default provided by the database):
• TRANSACTION_READ_UNCOMMITTED

Common DataSource parameters

119

• TRANSACTION_READ_COMMITTED

• TRANSACTION_REPEATABLE_READ

• TRANSACTION_SERIALIZABLE

• TRANSACTION_NONE

• <new-connection-sql> - an sql statement that is executed against each new connection. This can be
used to set the connection schema, etc.

• <check-valid-connection-sql> - an sql statement that is executed before it is checked out from the
pool to make sure it is still valid. If the sql fails, the connection is closed and new ones created.

• <valid-connection-checker-class-name> - a class that can check whether a connection is valid using
a vendor specific mechanism

• <exception-sorter-class-name> - a class that looks at vendor specific messages to determine
whether sql errors are fatal and thus the connection should be destroyed. If none specified, no
errors will be treated as fatal.

• <track-statements> - (a) whether to monitor for unclosed Statements and ResultSets and issue
warnings when the user forgets to close them (default nowarn)

• <prepared-statement-cache-size> - the number of prepared statements per connection to be kept
open and reused in subsequent requests. They are stored in a LRU cache. The default is 0 (zero),
meaning no cache.

• <share-prepared-statements> - (b) with prepared statement cache enabled whether two requests in
the same transaction should return the same statement (from jboss-4.0.2 - default false).

• <set-tx-query-timeout> - whether to enable query timeout based on the length of time remaining until
the transaction times out (default false - NOTE: This was NOT ported to 4.0.x until 4.0.3)

• <query-timeout> - a static configuration of the maximum of seconds before a query times out (since
4.0.3)

• <metadata/typemapping> - a pointer to the type mapping in conf/standardjbosscmp.xml (available
from JBoss 4 and above)

• <validate-on-match> - Prior to JBoss 4.0.5, connection validation occurred when the JCA layer
attempted to match a managed connection. With the addition of <background-validation> this is no
longer required. Specifying <validate-on-match> forces the old behavior. NOTE: this is typically NOT
used in conjunction with <background-validation>

• <prefill> - whether to attempt to prefill the connection pool to the minimum number of connections.
NOTE: only supporting pools (OnePool) support this feature. A warning can be found in the logs if
the pool does not support this. This feature will appear in JBoss 4.0.5.

• <background-validation> - In JBoss 4.0.5, background connection validation as been added to
reduce the overall load on the RDBMS system when validating a connection. When using this
feature, JBoss will attempt to validate the current connections in the pool is a seperate thread
(ConnectionValidator). Default is False.

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

120

• <idle-timeout-minutes> - indicates the maximum time a connection may be idle before being closed.
Default is 15 minutes.

• <background-validation-minutes> - The interval, in minutes, that the ConnectionValidator will run.
Default is 10 minutes. NOTE: It is prudent to set this value to something greater or less than the
<idle-timeout-minutes>

• <url-delimiter> - From JBoss5 database failover is part of the main datasource config

• <url-property> - From JBoss5 database failover is part of the main datasource config

• <url-selector-strategy-class-name> - From JBoss5 ONLY database failover is part of the main
datasource config

• <stale-connection-checker-class-name> - An implementation of
org.jboss.resource.adapter.jdbc.StateConnectionChecker that will decide whether SQLExceptions
that notify of bad connections throw org.jboss.resource.adapter.jdbc.StateConnectionException
(from JBoss5)

From JBoss Enterprise Application Platform 3.2.6 and above, track-statements has a new option:

<track-statements>nowarn</track-statements

This option closes Statements and ResultSets without a warning. It is also the new default value.

The purpose is to workaround questionable driver behavior where the driver applies auto-commit
semantics to local transactions.

Connection c = dataSource.getConnection(); // auto-commit == false
PreparedStatement ps1 = c.prepareStatement(...);
ResultSet rs1 = ps1.executeQuery();
PreparedStatement ps2 = c.prepareStatement(...);
ResultSet rs2 = ps2.executeQuery();

Assuming the prepared statements are the same. For some drivers, ps2.executeQuery() will
automatically close rs1 so we actually need two real prepared statements behind the scenes. This
should only be for the auto-commit semantic where re-running the query starts a new transaction
automatically. For drivers that follow the spec, you can set it to true to share the same real prepared
statement.

11.14. Generic Datasource Sample

<datasources>
<local-tx-datasource>
<jndi-name>GenericDS</jndi-name>
<connection-url>[jdbc: url for use with Driver class]</connection-url>
<driver-class>[fully qualified class name of java.sql.Driver
 implementation]</driver-class>
<user-name>x</user-name>
<password>y</password>
<!-- you can include connection properties that will get passed in
the DriverManager.getConnection(props) call-->

Generic Datasource Sample

121

<!-- look at your Driver docs to see what these might be -->
<connection-property name="char.encoding">UTF-8</connection-property>
<transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-isolation>

<!--pooling parameters-->
<min-pool-size>5</min-pool-size>
<max-pool-size>100</max-pool-size>
<blocking-timeout-millis>5000</blocking-timeout-millis>
<idle-timeout-minutes>15</idle-timeout-minutes>
<!-- sql to call when connection is created
<new-connection-sql>some arbitrary sql</new-connection-sql>
-->

<!-- sql to call on an existing pooled connection when it is obtained from
 pool
<check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
-->

<set-tx-query-timeout/>
<query-timeout>300</query-timeout> <!-- maximum of 5 minutes for queries --
>

<!-- pooling criteria. USE AT MOST ONE-->
<!-- If you don't use JAAS login modules or explicit login
getConnection(usr,pw) but rely on user/pw specified above,
don't specify anything here -->

<!-- If you supply the usr/pw from a JAAS login module -->
<security-domain>MyRealm</security-domain>

<!-- if your app supplies the usr/pw explicitly getConnection(usr, pw) -->
<application-managed-security/>

<!--Anonymous depends elements are copied verbatim into the
 ConnectionManager mbean config-->
<depends>myapp.service:service=DoSomethingService</depends>

</local-tx-datasource>

<!-- you can include regular mbean configurations like this one -->
<mbean code="org.jboss.tm.XidFactory"
name="jboss:service=XidFactory">
<attribute name="Pad">true</attribute>
</mbean>

<!-- Here's an xa example -->
<xa-datasource>
<jndi-name>GenericXADS</jndi-name>
<xa-datasource-class>[fully qualified name of class implementing
 javax.sql.XADataSource goes here]</xa-datasource-class>

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

122

<xa-datasource-property name="SomeProperty">SomePropertyValue</xa-
datasource-property>
<xa-datasource-property name="SomeOtherProperty">SomeOtherValue</xa-
datasource-property>

<user-name>x</user-name>
<password>y</password>
<transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-isolation>

<!--pooling parameters-->
<min-pool-size>5</min-pool-size>
<max-pool-size>100</max-pool-size>
<blocking-timeout-millis>5000</blocking-timeout-millis>
<idle-timeout-minutes>15</idle-timeout-minutes>
<!-- sql to call when connection is created
<new-connection-sql>some arbitrary sql</new-connection-sql>
-->

<!-- sql to call on an existing pooled connection when it is obtained from
 pool
<check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
-->

<!-- pooling criteria. USE AT MOST ONE-->
<!-- If you don't use JAAS login modules or explicit login
getConnection(usr,pw) but rely on user/pw specified above,
don't specify anything here -->

<!-- If you supply the usr/pw from a JAAS login module -->
<security-domain/>

<!-- if your app supplies the usr/pw explicitly getConnection(usr, pw) -->
<application-managed-security/>

</xa-datasource>

</datasources>

11.15. Configuring a DataSource for remote usage
From JBoss-4.0.0 and above, there is support for accessing a DataSource from a remote client. The
one change that is necessary for the client to be able to lookup the DataSource from JNDI is to specify
use-java-context=false as shown here:

<datasources>
<local-tx-datasource>
<jndi-name>GenericDS</jndi-name>
<use-java-context>false</use-java-context>
<connection-url>...</connection-url>

Configuring a DataSource to use login modules

123

This results in the DataSource being bound under the JNDI name "GenericDS" instead of the default
of "java:/GenericDS" which restricts the lookup to the same VM as the jboss server.

Note
JBoss does not recommend using this feature on a production environment. It requires
accessing a connection pool remotely and this is an anti-pattern as connections are
not serializable. Besides, transaction propagation is not supported and it could lead to
connection leaks if the remote clients are unreliable (i.e crashes, network failure). If you
do need to access a datasource remotely, JBoss recommends accessing it via a remote
session bean facade.

11.16. Configuring a DataSource to use login modules
Add the security-domain parameter to the *-ds.xml file.

<datasources>
<local-tx-datasource>
...
<security-domain>MyDomain</security-domain>
...
</local-tx-datasource>
</datasources>

Add an application-policy to the login-config.xml file. The authentication section should include the
configuration for your login-module. For example, if you want to encrypt the database password, use
the SecureIdentityLoginModule login module.

<application-policy name="MyDomain">
<authentication>
<login-module code="org.jboss.resource.security.SecureIdentityLoginModule"
 flag="required">
<module-option name="username">scott</module-option>
<module-option name="password">-170dd0fbd8c13748</module-option>
<module-option
 name="managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=OracleDSJAAS</
module-option>
</login-module>
</authentication>
</application-policy>

In case you plan to fetch the data source connection from a web application, make sure authentication
is turned on for the web application. This is in order for the Subject to be populated. If you wish
for users to be able to connect anonymously, an additional login module needs to be added to the
application-policy, in order to populate the security credentials. Add the UsersRolesLoginModule
as the first login module in the chain. The usersProperties and rolesProperties parameters can be
directed to dummy files.

<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag="required">

Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform

124

<module-option name="unauthenticatedIdentity">nobody</module-option>
<module-option name="usersProperties">props/users.properties</module-
option>
<module-option name="rolesProperties">props/roles.properties</module-
option>
</login-module>

Chapter 12.

125

Pooling

12.1. Strategy
JBossJCA1 uses a ManagedConnectionPool to perform the pooling. The
ManagedConnectionPool is made up of subpools depending upon the strategy chosen and other
pooling parameters.

xml mbean Internal Name Description

ByNothing OnePool A single pool
of equivalent
connections

<application-
managed-security/
>

ByApplication PoolByCRI Use the
connection
properties from
allocateConnection()

<security-domain/
>

ByContainer PoolBySubject A pool per
Subject, e.g.
preconfigured or
EJB/Web login
subjects

<security-domain-
and-applicaton/>

ByContainerAndApplicatonPoolBySubjectAndCriA per Subject
and connection
property
combination

Note
The xml names imply this is just about security. This is misleading.

For <security-domain-and-application/> the Subject always overrides any user/password from
createConnection(user, password) in the CRI:

(
ConnectionRequestInfo
)

12.2. Transaction stickness
You can force the same connection from a (sub-)pool to get reused throughout a transaction with the
<track-connection-by-tx/> flag

1 http://www.jboss.org/wiki/JBossJCA

http://www.jboss.org/wiki/JBossJCA
http://www.jboss.org/wiki/JBossJCA

Chapter 12. Pooling

126

Note
This is the only supported behaviour for "local" transactions. This element is deprecated
in JBoss Enterprise Application Platform 5 where transaction stickiness is enabled by
default. XA users can explicitly enable interleaving with <interleaving/> element.

12.3. Workaround for Oracle
Oracle does not like XA connections getting used both inside and outside a JTA transaction. To
workaround the problem you can create separate sub-pools for the different contexts using <no-tx-
separate-pools/>.

12.4. Pool Access
The pool is designed for concurrent usage.

Upto <max-pool-size/> threads can be inside the pool at the same time (or using connections from a
pool).

Once this limit is reached, threads wait for the <blocking-timeout-seconds/> to use the pool before
throwing a No Managed Connections Available2

12.5. Pool Filling
The number of connections in the pool is controlled by the pool sizes.

• <min-pool-size/> - When the number of connections falls below this size, new connections are
created

• <max-pool-size/> - No more than this number of connections are created

• <prefill/> - Feature Request has been implemented for 4.0.5. Note: the only pooling strategy that
supports this feature is OnePool?, or ByNothing? pooling criteria.

The pool filling is done by a separate "Pool Filler" thread rather than blocking application threads.

12.6. Idle Connections
You can configure connections to be closed when they are idle. e.g. If you just had a peak period and
now want to reap the unused ones. This is done via the <idle-timeout-minutes/>.

Idle checking is done on a separate "Idle Remover" thread on an LRU (least recently used) basis. The
check is done every idle-timeout-minutes divided by 2 for connections unused for idle-timeout-minutes.

The pool itself operates on an MRU (most recently used) basis. This allows the excess connections to
be easily identified.

Should closing idle connections cause the pool to fall below the min-pool-size, new/fresh connections
are created.

2 http://www.jboss.org/wiki/WhatDoesTheMessageNoManagedConnectionsAvailableMean

http://www.jboss.org/wiki/WhatDoesTheMessageNoManagedConnectionsAvailableMean
http://www.jboss.org/wiki/WhatDoesTheMessageNoManagedConnectionsAvailableMean

Dead connections

127

Note
If you have long running transactions and you use interleaving (i.e. don't track-connection-
by-tx) make sure the idle timeout is greater than the transaction timeout. When
interleaving the connection is returned to the pool for others to use. If however nobody
does use it, it would be a candidate for removal before the transaction is committed.

12.7. Dead connections
The JDBC protocol does not provide a natural connectionErrorOccured() event when a
connection is broken. To support dead/broken connection checking there are a number of plugins.

12.7.1. Valid connection checking
The simplest format is to just run a "quick" sql statement:

<check-valid-connection-sql>select 1 from dual</check-valid-connection-sql>

before handing the connection to the application. If this fails, another connection is selected until there
are no more connections at which point new connections are constructed.

The potentially more performant check is to use vendor specific features, e.g. Oracle's or MySQL's
pingDatabase() via the

<valid-connection-checker-class-name/>

12.7.2. Errors during SQL queries
You can check if a connection broke during a query by the looking the error codes or messages of the
SQLException for FATAL errors rather than normal SQLExceptions. These codes/messages can be
vendor specific, e.g.

<exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</
exception-sorter-class-name>

For

FATAL

errors the connection will be closed.

12.7.3. Changing/Closing/Flushing the pool
• change or flush()3 the pool

• closing/undeploying the pool will do a flush first

http://www.jboss.org/wiki/HowDoIChangeThePoolingParameters

Chapter 12. Pooling

128

12.7.4. Other pooling
Thirdparty Pools4 - only if you know what you are doing

4 http://www.jboss.org/wiki/IWantToPluginACustomThirdpartyDataSource

http://www.jboss.org/wiki/IWantToPluginACustomThirdpartyDataSource
http://www.jboss.org/wiki/IWantToPluginACustomThirdpartyDataSource

Chapter 13.

129

Frequently Asked Questions

13.1. I have problems with Oracle XA?
Check that you:
1. You have pad=true for the XidFactory? in conf/jboss-service.xml.

2. You have <track-connection-by-tx/> in your oracle-xa-ds.xml (not necessarily for JBoss Enterprise
Application Platform 5.x where it is enabled by default and the element is deprecated).

3. You have <isSameRM-override-value>false</isSameRM-override-value> in your oracle-xa-ds.xml.

4. You have <no-tx-separate-pools/> in your oracle-xa-ds.xml.

5. That your jbosscmp-jdbc.xml is specifying the same version of oracle as the one you use.

6. That the oracle server you connect to has XA.

Configuring Oracle Database for XA Support You can configure Oracle database to support XA
resources. This enables you to use JDBC 2.0-compliant Oracle driver. To XA-initialize Oracle
database, complete the following steps:

Make sure that Oracle JServer is installed with your database. If it is not installed, you must add it
using Oracle Database Configuration Assistant. Choose "Change an Existing DB" and then select the
database to which you want to add Oracle JServer. Choose "Next", then "Oracle JServer" and then
"Finish". If the settings you have made to your database previously, are not suitable or insufficient
for the Oracle JServer installation, the system prompts you to enter additional parameters. The
database configuration file (init.ora) is located in \oracle\admin\<your_db_name>\pfile
directory. Execute initxa.sql over your database. By default, this script file is located in \oracle
\ora81\javavm\install. If errors occur during the execution of the file, you must execute the SQL
statements from the file manually. Use DBA Studio to create a package and package body named
JAVA_XA in SYS schema, and a synonym of this package (also named JAVA_XA) in PUBLIC schema.

A slightly more detailed set of instructions can be found at Configuring and using XA distributed
transactions in WebSphere Studio - Oracle Exception section1.

1 http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woolf.html?
ca=dnp-327#oracle_exception

http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woolf.html?ca=dnp-327#oracle_exception
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woolf.html?ca=dnp-327#oracle_exception
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woolf.html?ca=dnp-327#oracle_exception
http://www.ibm.com/developerworks/websphere/library/techarticles/0407_woolf/0407_woolf.html?ca=dnp-327#oracle_exception

130

Part III. Clustering Guide

Chapter 14.

133

Introduction and Quick Start
Clustering allows you to run an application on several parallel servers (a.k.a cluster nodes) while
providing a single view to application clients. Load is distributed across different servers, and even
if one or more of the servers fails, the application is still accessible via the surviving cluster nodes.
Clustering is crucial for scalable enterprise applications, as you can improve performance by adding
more nodes to the cluster. Clustering is crucial for highly available enterprise applications, as it is the
clustering infrastructure that supports the redundancy needed for high availability.

The JBoss Enterprise Application Platform comes with clustering support out of the box, as part of the
all configuration. The all configuration includes support for the following:
• A scalable, fault-tolerant JNDI implementation (HA-JNDI).

• Web tier clustering, including:

• High availability for web session state via state replication.

• Ability to integrate with hardware and software load balancers, including special integration with
mod_jk and other JK-based software load balancers.

• Single Sign-on support across a cluster.

• EJB session bean clustering, for both stateful and stateless beans, and for both EJB3 and EJB2.

• A distributed cache for JPA/Hibernate entities.

• A framework for keeping local EJB2 entity caches consistent across a cluster by invalidating cache
entries across the cluster when a bean is changed on any node.

• Distributed JMS queues and topics via JBoss Messaging.

• Deploying a service or application on multiple nodes in the cluster but having it active on only one
(but at least one) node is called a HA Singleton.

In this Clustering Guide we aim to provide you with an in depth understanding of how to use JBoss
Enterprise Application Platform's clustering features. In this first part of the guide, the goal is to
provide some basic "Quick Start" steps to encourage you to start experimenting with JBoss Enterprise
Application Platform Clustering, and then to provide some background information that will allow you
to understand how JBoss Enterprise Application Platform Clustering works. The next part of the guide
then explains in detail how to use these features to cluster your JEE services. Finally, we provide
some more details about advanced configuration of JGroups and JBoss Cache, the core technologies
that underlie JBoss Enterprise Application Platform Clustering.

14.1. Quick Start Guide
The goal of this section is to give you the minimum information needed to let you get started
experimenting with JBoss Enterprise Application Platform Clustering. Most of the areas touched on in
this section are covered in much greater detail later in this guide.

14.1.1. Initial Preparation
Preparing a set of servers to act as a JBoss Enterprise Application Platform cluster involves a few
simple steps:

Chapter 14. Introduction and Quick Start

134

• Install JBoss Enterprise Application Platform on all your servers. In its simplest form, this is
just a matter of unzipping the JBoss download onto the filesystem on each server.

If you want to run multiple JBoss Enterprise Application Platform instances on a single server,
you can either install the full JBoss distribution onto multiple locations on your filesystem, or you
can simply make copies of the all configuration. For example, assuming the root of the JBoss
distribution was unzipped to /var/jboss, you would:

$ cd /var/jboss/server
$ cp -r all node1
$ cp -r all node2

• For each node, determine the address to bind sockets to. When you start JBoss, whether
clustered or not, you need to tell JBoss on what address its sockets should listen for traffic. (The
default is localhost which is secure but isn't very useful, particularly in a cluster.) So, you need to
decide what those addresses will be.

• Ensure multicast is working. By default JBoss Enterprise Application Platform uses UDP multicast
for most intra-cluster communications. Make sure each server's networking configuration supports
multicast and that multicast support is enabled for any switches or routers between your servers.
If you are planning to run more than one node on a server, make sure the server's routing table
includes a multicast route. See the JGroups documentation at http://www.jgroups.org for more on
this general area, including information on how to use JGroups' diagnostic tools to confirm that
multicast is working.

Note
JBoss Enterprise Application Platform clustering does not require the use of UDP
multicast; the Enterprise Application Platform can also be reconfigured to use TCP
unicast for intra-cluster communication.

• Determine a unique integer "ServerPeerID" for each node. This is needed for JBoss Messaging
clustering, and can be skipped if you will not be running JBoss Messaging (i.e. you will remove JBM
from your server configuration's deploy directory). JBM requires that each node in a cluster has a
unique integer id, known as a "ServerPeerID", that should remain consistent across server restarts.
A simple 1, 2, 3, ..., x naming scheme is fine. We'll cover how to use these integer ids in the next
section.

Beyond the above required steps, the following two optional steps are recommended to help ensure
that your cluster is properly isolated from other JBoss Enterprise Application Platform clusters that
may be running on your network:

• Pick a unique name for your cluster. The default name for a JBoss Enterprise Application
Platform cluster is "DefaultPartition". Come up with a different name for each cluster in your
environment, e.g. "QAPartition" or "BobsDevPartition". The use of "Partition" is not required; it's just
a semi-convention. As a small aid to performance try to keep the name short, as it gets included
in every message sent around the cluster. We'll cover how to use the name you pick in the next
section.

http://www.jgroups.org

Launching a JBoss Enterprise Application Platform Cluster

135

• Pick a unique multicast address for your cluster. By default JBoss Enterprise Application
Platform uses UDP multicast for most intra-cluster communication. Pick a different multicast address
for each cluster you run. Generally a good multicast address is of the form 239.255.x.y. See
http://www.29west.com/docs/THPM/multicast-address-assignment.html 1 for a good discussion on
multicast address assignment. We'll cover how to use the address you pick in the next section.

See Section 23.2.2, “Isolating JGroups Channels” for more on isolating clusters.

14.1.2. Launching a JBoss Enterprise Application Platform Cluster
The simplest way to start a JBoss server cluster is to start several JBoss instances on the same local
network, using the -c all command line option for each instance. Those server instances will detect
each other and automatically form a cluster.

Let's look at a few different scenarios for doing this. In each scenario we'll be creating a two node
cluster, where the ServerPeerID for the first node is 1 and for the second node is 2 (see ??? [134]).
We've decided to call our cluster "DocsPartition" and to use 239.255.100.100 as our multicast
address. These scenarios are meant to be illustrative; the use of a two node cluster shouldn't be taken
to mean that is the best size for a cluster; it's just that's the simplest way to do the examples.

• Scenario 1: Nodes on Separate Machines

This is the most common production scenario. Assume the machines are named "node1" and
"node2", while node1 has an IP address of 192.168.0.101 and node2 has an address of
192.168.0.102. Assume the "ServerPeerID" for node1 is 1 and for node2 it's 2. Assume on each
machine JBoss is installed in /var/jboss.

On node1, to launch JBoss:

$ cd /var/jboss/bin
$./run.sh -c all -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

On node2, it's the same except for a different -b value and ServerPeerID:

$ cd /var/jboss/bin
$./run.sh -c all -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2

The -c switch says to use the all config, which includes clustering support. The -g switch sets
the cluster name. The -u switch sets the multicast address that will be used for intra-cluster
communication. The -b switch sets the address on which sockets will be bound. The -D switch
sets system property jboss.messaging.ServerPeerId, from which JBoss Messaging gets its
unique id.

• Scenario 2: Two Nodes on a Single, Multihomed, Server

Running multiple nodes on the same machine is a common scenario in a development environment,
and is also used in production in combination with Scenario 1. (Running all the nodes in a
production cluster on a single machine is generally not recommended, since the machine itself

http://www.29west.com/docs/THPM/multicast-address-assignment.html
http://www.29west.com/docs/THPM/multicast-address-assignment.html

Chapter 14. Introduction and Quick Start

136

becomes a single point of failure.) In this version of the scenario, the machine is multihomed,
i.e. has more than one IP address. This allows the binding of each JBoss instance to a different
address, preventing port conflicts when the nodes open sockets.

Assume the single machine has the 192.168.0.101 and 192.168.0.102 addresses assigned,
and that the two JBoss instances use the same addresses and ServerPeerIDs as in Scenario 1. The
difference from Scenario 1 is we need to be sure each Enterprise Application Platform instance has
its own work area. So, instead of using the all config, we are going to use the node1 and node2
configs we copied from all in ??? [134].

To launch the first instance, open a console window and:

$ cd /var/jboss/bin
$./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

For the second instance, it's the same except for different -b and -c values and a different
ServerPeerID:

$ cd /var/jboss/bin
$./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2

• Scenario 3: Two Nodes on a Single, Non-Multihomed, Server

This is similar to Scenario 2, but here the machine only has one IP address available. Two
processes can't bind sockets to the same address and port, so we'll have to tell JBoss to use
different ports for the two instances. This can be done by configuring the ServiceBindingManager
service by setting the jboss.service.binding.set system property.

To launch the first instance, open a console window and:

$ cd /var/jboss/bin
$./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1 \
 -Djboss.service.binding.set=ports-default

For the second instance:

$ cd /var/jboss/bin
$./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=2 \
 -Djboss.service.binding.set=ports-01

This tells the ServiceBindingManager on the first node to use the standard set of ports (e.g. JNDI
on 1099). The second node uses the "ports-01" binding set, which by default for each port has

Web Application Clustering Quick Start

137

an offset of 100 from the standard port number (e.g. JNDI on 1199). See the conf/bootstrap/
bindings.xml file for the full ServiceBindingManager configuration.

Note that this setup is not advised for production use, due to the increased management
complexity that comes with using different ports. But it is a fairly common scenario in development
environments where developers want to use clustering but cannot multihome their workstations.

Note
Including -Djboss.service.binding.set=ports-default on the command line
for node1 isn't technically necessary, since ports-default is the ... default. But using
a consistent set of command line arguments across all servers is helpful to people less
familiar with all the details.

That's it; that's all it takes to get a cluster of JBoss Enterprise Application Platform servers up and
running.

14.1.3. Web Application Clustering Quick Start
JBoss Enterprise Application Platform supports clustered web sessions, where a backup copy of
each user's HttpSession state is stored on one or more nodes in the cluster. In case the primary
node handling the session fails or is shut down, any other node in the cluster can handle subsequent
requests for the session by accessing the backup copy. Web tier clustering is discussed in detail in
Chapter 20, HTTP Services.

There are two aspects to setting up web tier clustering:
• Configuring an External Load Balancer. Web applications require an external load balancer to

balance HTTP requests across the cluster of JBoss Enterprise Application Platform instances (see
Section 15.2.2, “External Load Balancer Architecture” for more on why that is). JBoss Enterprise
Application Platform itself doesn't act as an HTTP load balancer. So, you will need to set up a
hardware or software load balancer. There are many possible load balancer choices, so how to
configure one is really beyond the scope of a Quick Start. But see Section 20.1, “Configuring load
balancing using Apache and mod_jk” for details on how to set up the popular mod_jk software load
balancer.

• Configuring Your Web Application for Clustering. This aspect involves telling JBoss you
want clustering behavior for a particular web app, and it couldn't be simpler. Just add an empty
distributable element to your application's web.xml file:

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd"
 version="2.5">

 <distributable/>

</web-app>

Chapter 14. Introduction and Quick Start

138

Simply doing that is enough to get the default JBoss Enterprise Application Platform web session
clustering behavior, which is appropriate for most applications. See Section 20.2, “Configuring HTTP
session state replication” for more advanced configuration options.

14.1.4. EJB Session Bean Clustering Quick Start
JBoss Enterprise Application Platform supports clustered EJB session beans, whereby requests for a
bean are balanced across the cluster. For stateful beans a backup copy of bean state is maintained on
one or more cluster nodes, providing high availability in case the node handling a particular session
fails or is shut down. Clustering of both EJB2 and EJB3 beans is supported.

For EJB3 session beans, simply add the org.jboss.ejb3.annotation.Clustered annotation to
the bean class for your stateful or stateless bean:

@javax.ejb.Stateless
@org.jboss.ejb3.annotation.Clustered
public class MyBean implements MySessionInt {

 public void test() {
 // Do something cool
 }
}

For EJB2 session beans, or for EJB3 beans where you prefer XML configuration over annotations,
simply add a clustered element to the bean's section in the JBoss-specific deployment descriptor,
jboss.xml:

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>example.StatelessSession</ejb-name>
 <jndi-name>example.StatelessSession</jndi-name>
 <clustered>true</clustered>
 </session>
 </enterprise-beans>
</jboss>

See Chapter 18, Clustered Session EJBs for more advanced configuration options.

14.1.5. Entity Clustering Quick Start
One of the big improvements in the clustering area in JBoss Enterprise Application Platform 5 is the
use of the new Hibernate/JBoss Cache integration for second level entity caching that was introduced
in Hibernate 3.3. In the JPA/Hibernate context, a second level cache refers to a cache whose contents
are retained beyond the scope of a transaction. A second level cache may improve performance by
reducing the number of database reads. You should always load test your application with second
level caching enabled and disabled to see whether it has a beneficial impact on your particular
application.

Entity Clustering Quick Start

139

If you use more than one JBoss Enterprise Application Platform instance to run your JPA/Hibernate
application and you use second level caching, you must use a cluster-aware cache. Otherwise a
cache on server A will still hold out-of-date data after activity on server B updates some entities.

JBoss Enterprise Application Platform provides a cluster-aware second level cache based on JBoss
Cache. To tell JBoss Enterprise Application Platform's standard Hibernate-based JPA provider to
enable second level caching with JBoss Cache, configure your persistence.xml as follows:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="somename" transaction-type="JTA">
 <jta-data-source>java:/SomeDS</jta-data-source>
 <properties>
 <property name="hibernate.cache.use_second_level_cache"
 value="true"/>
 <property name="hibernate.cache.region.factory_class"

 value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
 <property name="hibernate.cache.region.jbc2.cachefactory"
 value="java:CacheManager"/>
 <!-- Other configuration options ... -->
 </properties>
 </persistence-unit>
</persistence>

That tells Hibernate to use the JBoss Cache-based second level cache, but it doesn't tell it what
entities to cache. That can be done by adding the org.hibernate.annotations.Cache
annotation to your entity class:

package org.example.entities;

import java.io.Serializable;
import javax.persistence.Entity;
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;

@Entity
@Cache (usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class Account implements Serializable

See Chapter 19, Clustered Entity EJBs for more advanced configuration options and details on how to
configure the same thing for a non-JPA Hibernate application.

Chapter 14. Introduction and Quick Start

140

Note
Clustering can add significant overhead to a JPA/Hibernate second level cache, so
don't assume that just because second level caching adds a benefit to a non-clustered
application that it will be beneficial to a clustered application. Even if clustered second
level caching is beneficial overall, caching of more frequently modified entity types may
be beneficial in a non-clustered scenario but not in a clustered one. Always load test your
application.

Chapter 15.

141

Clustering Concepts
In the next section, we discuss basic concepts behind JBoss's clustering services. It is helpful that you
understand these concepts before reading the rest of the Clustering Guide. Clustering configurations
for specific types of applications are covered beginning with the next chapter.

15.1. Cluster Definition
A cluster is a set of nodes that communicate with each other and work toward a common goal. In
a JBoss Enterprise Application Platform cluster (also known as a “partition”), a node is an JBoss
Enterprise Application Platform instance. Communication between the nodes is handled by the
JGroups group communication library, with a JGroups Channel providing the core functionality of
tracking who is in the cluster and reliably exchanging messages between the cluster members.
JGroups channels with the same configuration and name have the ability to dynamically discover each
other and form a group. This is why simply executing “run -c all” on two Enterprise Application Platform
instances on the same network is enough for them to form a cluster – each Enterprise Application
Platform starts a Channel (actually, several) with the same default configuration, so they dynamically
discover each other and form a cluster. Nodes can be dynamically added to or removed from clusters
at any time, simply by starting or stopping a Channel with a configuration and name that matches the
other cluster members. In summary, a JBoss cluster is a set of Enterprise Application Platform server
instances each of which is running an identically configured and named JGroups Channel.

On the same Enterprise Application Platform instance, different services can create their own
Channel. In a default 5.0.x Enterprise Application Platform, four different services create channels
– the web session replication service, the EJB3 SFSB replication service, the EJB3 entity caching
service, and a core general purpose clustering service known as HAPartition. In order to differentiate
these channels, each must have a unique name, and its configuration must match its peers yet differ
from the other channels.

So, if you go to two Enterprise Application Platform 5.0.x instances and execute run -c all, the
channels will discover each other and you'll have a conceptual cluster. It's easy to think of this as
a two node cluster, but it's important to understand that you really have 4 channels, and hence 4 two
node clusters.

On the same network, even for the same service, we may have different clusters. Figure 15.1,
“Clusters and server nodes” shows an example network of JBoss server instances divided into three
clusters, with the third cluster only having one node. This sort of topology can be set up simply by
configuring the Enterprise Application Platform instances such that within a set of nodes meant to form
a cluster the Channel configurations and names match while they differ from any other channels on
the same network.

Chapter 15. Clustering Concepts

142

Figure 15.1. Clusters and server nodes

The section on “JGroups Configuration” and on “Isolating JGroups Channels” covers in detail how to
configure Channels such that desired peers find each other and unwanted peers do not. As mentioned
above, by default JBoss Enterprise Application Platform uses four separate JGroups Channels. These
can be divided into two broad categories: the Channel used by the general purpose HAPartition
service, and three Channels created by JBoss Cache for special purpose caching and cluster wide
state replication.

15.2. Service Architectures
The clustering topography defined by the HAPartition MBean on each node is of great importance
to system administrators. But for most application developers, you are probably more concerned about
the cluster architecture from a client application's point of view. Two basic clustering architectures are
used with JBoss Enterprise Application Platform: client-side interceptors (a.k.a smart proxies or stubs)
and external load balancers. Which architecture your application will use will depend on what type of
client you have.

15.2.1. Client-side interceptor architecture
Most remote services provided by the JBoss application server, including JNDI, EJB, JMS, RMI and
JBoss Remoting, require the client to obtain (e.g., to look up and download) a remote proxy object.
The proxy object is generated by the server and it implements the business interface of the service.
The client then makes local method calls against the proxy object. The proxy automatically routes
the call across the network where it is invoked against service objects managed in the server. The
proxy object figures out how to find the appropriate server node, marshal call parameters, un-marshall
call results, and return the result to the caller client. In a clustered environment, the server-generated

Client-side interceptor architecture

143

proxy object includes an interceptor that understands how to route calls to multiple nodes in the
cluster.

The proxy's clustering logic maintains up-to-date knowledge about the cluster. For instance, it knows
the IP addresses of all available server nodes, the algorithm to distribute load across nodes (see next
section), and how to failover the request if the target node not available. As part of handling each
service request, if the cluster topology has changed the server node updates the proxy with the latest
changes in the cluster. For instance, if a node drops out of the cluster, each proxy is updated with the
new topology the next time it connects to any active node in the cluster. All the manipulations done
by the proxy's clustering logic are transparent to the client application. The client-side interceptor
clustering architecture is illustrated in Figure 15.2, “The client-side interceptor (proxy) architecture for
clustering”.

Figure 15.2. The client-side interceptor (proxy) architecture for clustering

Note
Section 18.3, “Stateless Session Bean in EJB 2.x” describes how to enable the client
proxy to handle the entire cluster restart.

Chapter 15. Clustering Concepts

144

15.2.2. External Load Balancer Architecture
Other JBoss services, in particular the HTTP-based services, do not require the client to download
anything. The client (e.g., a web browser) sends in requests and receives responses directly over
the wire using to certain communication protocols (e.g., the HTTP protocol). In this case, an external
load balancer is required to process all requests and dispatch them to server nodes in the cluster.
The client only needs to know how to contact the load balancer; it has no knowledge of the JBoss
Enterprise Application Platform instances behind the load balancer. The load balancer is logically part
of the cluster, but we refer to it as “external” because it is not running in the same process as either
the client or any of the JBoss Enterprise Application Platform instances. It can be implemented either
in software or hardware. There are many vendors of hardware load balancers; the mod_jk Apache
module is an excellent example of a software load balancer. An external load balancer implements its
own mechanism for understanding the cluster configuration and provides its own load balancing and
failover policies. The external load balancer clustering architecture is illustrated in Figure 15.3, “The
external load balancer architecture for clustering”.

Figure 15.3. The external load balancer architecture for clustering

A potential problem with an external load balancer architecture is that the load balancer itself may be a
single point of failure. It needs to be monitored closely to ensure high availability of the entire cluster's
services.

15.3. Load-Balancing Policies
Both the JBoss client-side interceptor (stub) and load balancer use load balancing policies to
determine which server node to which node a new request should be sent. In this section, let's go over
the load balancing policies available in JBoss Enterprise Application Platform.

Client-side interceptor architecture

145

15.3.1. Client-side interceptor architecture
In JBoss 5.0.0, the following load balancing options are available when the client-side interceptor
architecture is used. The client-side stub maintains a list of all nodes providing the target service; the
job of the load balance policy is to pick a node from this list for each request.

• Round-Robin (org.jboss.ha.framework.interfaces.RoundRobin): each call is dispatched
to a new node, proceeding sequentially through the list of nodes. The first target node is randomly
selected from the list.

• Random-Robin (org.jboss.ha.framework.interfaces.RandomRobin): for each call the
target node is randomly selected from the list.

• First Available (org.jboss.ha.framework.interfaces.FirstAvailable): one of the
available target nodes is elected as the main target and is thereafter used for every call; this
elected member is randomly chosen from the list of members in the cluster. When the list of
target nodes changes (because a node starts or dies), the policy will choose a new target node
unless the currently elected node is still available. Each client-side stub elects its own target node
independently of the other stubs, so if a particular client downloads two stubs for the same target
service (e.g., an EJB), each stub will independently pick its target. This is an example of a policy
that provides “session affinity” or “sticky sessions”, since the target node does not change once
established.

• First Available Identical All Proxies
(org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies): has
the same behaviour as the "First Available" policy but the elected target node is shared by all stubs
in the same client-side VM that are associated with the same target service. So if a particular client
downloads two stubs for the same target service (e.g. an EJB), each stub will use the same target.

Each of the above is an implementation of the org.jboss.ha.framework.interfaces.LoadBalancePolicy
interface; users are free to write their own implementation of this simple interface if they need some
special behavior. In later sections we'll see how to configure the load balance policies used by different
services.

15.3.2. External load balancer architecture
As noted above, an external load balancer provides its own load balancing capabilities. What
capabilities are supported depends on the provider of the load balancer. The only JBoss requirement
is that the load balancer support “session affinity” (a.k.a. “sticky sessions”). With session affinitiy
enabled, once the load balancer routes a request from a client to node A and the server initiates a
session, all future requests associated with that session must be routed to node A, so long as node A
is available.

146

Chapter 16.

147

Clustering Building Blocks
The clustering features in JBoss Enterprise Application Platform are built on top of lower level libraries
that provide much of the core functionality. Figure 16.1, “The JBoss Enterprise Application Platform
clustering architecture” shows the main pieces:

Figure 16.1. The JBoss Enterprise Application Platform clustering architecture

JGroups is a toolkit for reliable point-to-point and point-to-multipoint communication. JGroups is used
for all clustering-related communications between nodes in a JBoss Enterprise Application Platform
cluster.

JBoss Cache is a highly flexible clustered transactional caching library. Many Enterprise Application
Platform clustering services need to cache some state in memory while 1) ensuring for high availability
purposes that a backup copy of that state is available on another node if it can't otherwise be
recreated (e.g. the contents of a web session) and 2) ensuring that the data cached on each node in
the cluster is consistent. JBoss Cache handles these concerns for most JBoss Enterprise Application
Platform clustered services. JBoss Cache uses JGroups to handle its group communication
requirements. POJO Cache is an extension of the core JBoss Cache that JBoss Enterprise
Application Platform uses to support fine-grained replication of clustered web session state. See
Section 16.2, “Distributed Caching with JBoss Cache” for more on how JBoss Enterprise Application
Platform uses JBoss Cache and POJO Cache.

HAPartition is an adapter on top of a JGroups channel that allows multiple services to use the
channel. HAPartition also supports a distributed registry of which HAPartition-based services are
running on which cluster members. It provides notifications to interested listeners when the cluster
membership changes or the clustered service registry changes. See Section 16.1, “The HAPartition
Service” for more details on HAPartition.

The other higher level clustering services make use of JBoss Cache or HAPartition, or, in the case
of HA-JNDI, both. The exception to this is JBoss Messaging's clustering features, which interact with
JGroups directly.

16.1. The HAPartition Service
HAPartition is a general purpose service used for a variety of tasks in Enterprise Application Platform
clustering. At its core, it is an abstraction built on top of a JGroups Channel that provides support for
making/receiving RPC invocations on/from one or more cluster members. HAPartition also supports
a distributed registry of which clustering services are running on which cluster members. It provides
notifications to interested listeners when the cluster membership changes or the clustered service
registry changes. HAPartition forms the core of many of the clustering services we'll be discussing in
the rest of this guide, including smart client-side clustered proxies, EJB 2 SFSB replication and entity
cache management, farming, HA-JNDI and HA singletons. Custom services can also make use of
HAPartition.

The following example shows the HAPartition MBean definition packaged with the standard JBoss
Enterprise Application Platform distribution. So, if you simply start JBoss servers with their default
clustering settings on a local network, you would get a default cluster named DefaultPartition
that includes all server instances as its nodes.

<mbean code="org.jboss.ha.framework.server.ClusterPartition"

Chapter 16. Clustering Building Blocks

148

 name="jboss:service=DefaultPartition">

 <! -- Name of the partition being built -->
 <attribute name="PartitionName">
 ${jboss.partition.name:DefaultPartition}
 </attribute>

 <! -- The address used to determine the node name -->
 <attribute name="NodeAddress">${jboss.bind.address}</attribute>

 <! -- Determine if deadlock detection is enabled -->
 <attribute name="DeadlockDetection">False</attribute>

 <! -- Max time (in ms) to wait for state transfer to complete.
 Increase for large states -->
 <attribute name="StateTransferTimeout">30000</attribute>

 <! -- The JGroups protocol configuration -->
 <attribute name="PartitionConfig">

 </attribute>
</mbean>

Here, we omitted the detailed JGroups protocol configuration for this channel. JGroups handles
the underlying peer-to-peer communication between nodes, and its configuration is discussed in
Chapter 23, JGroups Services. The following list shows the available configuration attributes in the
HAPartition MBean.

• PartitionName is an optional attribute to specify the name of the cluster. Its default value is
DefaultPartition. Use the -g (a.k.a. --partition) command line switch to set this value at
JBoss startup.

• NodeAddress is an optional attribute used to help generate a unique name for this node.

• DeadlockDetection is an optional boolean attribute that tells JGroups to run message deadlock
detection algorithms with every request. Its default value is false.

• StateTransferTimeout is an optional attribute to specify the timeout for state replication across the
cluster (in milliseconds). State replication refers to the process of obtaining initial application state
from other already-running cluster members at service startup. Its default value is 30000.

• PartitionConfig is an element to specify JGroup configuration options for this cluster (see
Section 23.1, “Configuring a JGroups Channel's Protocol Stack”).

In order for nodes to form a cluster, they must have the exact same PartitionName and the
ParitionConfig elements. Changes in either element on some but not all nodes would cause the
cluster to split.

You can view the current cluster information by pointing your browser to the JMX console of any JBoss
instance in the cluster (i.e., http://hostname:8080/jmx-console/) and then clicking on the
jboss:service=HAPartition,partition=DefaultPartition MBean (change the MBean
name to reflect your partitionr name if you use the -g startup switch). A list of IP addresses for the
current cluster members is shown in the CurrentView field.

DistributedReplicantManager Service

149

Note
While it is technically possible to put a JBoss server instance into multiple HAPartitions at
the same time, this practice is generally not recommended, as it increases management
complexity.

16.1.1. DistributedReplicantManager Service
The DistributedReplicantManager (DRM) service is a component
of the HAPartition service made available to HAPartition users via the
HAPartition.getDistributedReplicantManager() method. Generally speaking, JBoss
Enterprise Application Platform users will not directly make use of the DRM; we discuss it here as
an aid to those who want a deeper understanding of how Enterprise Application Platform clustering
internals work.

The DRM is a distributed registry that allows HAPartition users to register objects under a given key,
making available to callersthe set of objects registered under that key by the various members of t he
cluster. The DRM also provides a notification mechanism so interested listeners can be notified when
the contents of the registry changes.

There are two main usages for the DRM in JBoss Enterprise Application Platform:

• Clustered Smart Proxies

Here the keys are the names of the various services that need a clustered smart proxy (see
Section 15.2.1, “Client-side interceptor architecture”, e.g. the name of a clustered EJB. The
value object each node stores in the DRM is known as a "target". It's something a smart proxy's
transport layer can use to contact the node (e.g. an RMI stub, an HTTP URL or a JBoss Remoting
InvokerLocator). The factory that builds clustered smart proxies accesses the DRM to get the
set of "targets" that should be injected into the proxy to allow it to communicate with all the nodes in
a cluster.

• HASingleton

Here the keys are the names of the various services that need to function as High Availablity
Singletons (see the HASingleton chapter). The value object each node stores in the DRM is simply
a String that acts as a token to indicate that the node has the service deployed, and thus is a
candidate to become the "master" node for the HA singleton service.

In both cases, the key under which objects are registered identifies a particular clustered service. It is
useful to understand that every node in a cluster doesn't have to register an object under every key.
Only services that are deployed on a particular node will register something under that service's key,
and services don't have to be deployed homogeneously across the cluster. The DRM is thus useful
as a mechanism for understanding a service's "topology" around the cluster -- which nodes have the
service deployed.

16.1.2. DistributedState Service
The DistributedState service is a legacy component of the HAPartition service made available
to HAPartition users via the HAPartition.getDistributedState() method. This service
provides coordinated management of arbitary application state around the cluster. It is supported for

Chapter 16. Clustering Building Blocks

150

backwards compatibility reasons, but new applications should not use it; they should use the much
more sophisticated JBoss Cache instead.

In JBoss 5 the DistributedState service actually delegates to an underlying JBoss Cache
instance.

16.1.3. Custom Use of HAPartition
Custom services can also use make use of HAPartition to handle interactions
with the cluster. Generally the easiest way to do this is to extend the
org.jboss.ha.framework.server.HAServiceImpl base class, or the
org.jboss.ha.jxm.HAServiceMBeanSupport class if JMX registration and notification support
are desired.

16.2. Distributed Caching with JBoss Cache
JBoss Cache is a fully featured distributed cache framework that can be used in any application server
environment or standalone. JBoss Cache provides the underlying distributed caching support used by
many of the standard clustered services in a JBoss Enterprise Application Platform cluster, including:
• Replication of clustered webapp sessions.

• Replication of clustered EJB3 Stateful Session beans.

• Clustered caching of JPA and Hibernate entities.

• Clustered Single Sign-On.

• The HA-JNDI replicated tree.

• DistributedStateService

Users can also create their own JBoss Cache and POJO Cache instances for custom use by their
applications, see Chapter 24, JBoss Cache Configuration and Deployment for more on this.

16.2.1. The JBoss Enterprise Application Platform CacheManager
Service
Many of the standard clustered services in JBoss Enterprise Application Platform use JBoss Cache
to maintain consistent state across the cluster. Different services (e.g. web session clustering or
second level caching of JPA/Hibernate entities) use different JBoss Cache instances, with each
cache configured to meet the needs of the service that uses it. In Enterprise Application Platform 4,
each of these caches was independently deployed in the deploy/ directory, which had a number of
disadvantages:
• Caches that end user applications didn't need were deployed anyway, with each creating an

expensive JGroups channel. For example, even if there were no clustered EJB3 SFSBs, a cache to
store them was started.

• Caches are internal details of the services that use them. They shouldn't be first-class deployments.

• Services would find their cache via JMX lookups. Using JMX for purposes other exposing
management interfaces is just not the JBoss 5 way.

The JBoss Enterprise Application Platform CacheManager Service

151

In JBoss 5, the scattered cache deployments have been replaced with a new CacheManager service,
deployed via the JBOSS_HOME/server/all/deploy/cluster/jboss-cache-manager.sar.
The CacheManager is a factory and registry for JBoss Cache instances. It is configured with a set of
named JBoss Cache configurations. Services that need a cache ask the cache manager for the cache
by name; the cache manager creates the cache (if not already created) and returns it. The cache
manager keeps a reference to each cache it has created, so all services that request the same cache
configuration name will share the same cache. When a service is done with the cache, it releases it to
the cache manager. The cache manager keeps track of how many services are using each cache, and
will stop and destroy the cache when all services have released it.

16.2.1.1. Standard Cache Configurations
The following standard JBoss Cache configurations ship with JBoss Enterprise Application Platform 5.
You can add others to suit your needs, or edit these configurations to adjust cache behavior. Additions
or changes are done by editing the deploy/cluster/jboss-cache-manager.sar/META-
INF/jboss-cache-manager-jboss-beans.xml file (see Section 24.2.1, “Deployment Via the
CacheManager Service” for details). Note however that these configurations are specifically optimized
for their intended use, and except as specifically noted in the documentation chapters for each service
in this guide, it is not advisable to change them.

• standard-session-cache

Standard cache used for web sessions.

• field-granularity-session-cache

Standard cache used for FIELD granularity web sessions.

• sfsb-cache

Standard cache used for EJB3 SFSB caching.

• ha-partition

Used by web tier Clustered Single Sign-On, HA-JNDI, Distributed State.

• mvcc-entity

A config appropriate for JPA/Hibernate entity/collection caching that uses JBC's MVCC locking (see
notes below).

• optimistic-entity

A config appropriate for JPA/Hibernate entity/collection caching that uses JBC's optimistic locking
(see notes below).

• pessimistic-entity

A config appropriate for JPA/Hibernate entity/collection caching that uses JBC's pessimistic locking
(see notes below).

• mvcc-entity-repeatable

Same as "mvcc-entity" but uses JBC's REPEATABLE_READ isolation level instead of
READ_COMMITTED (see notes below).

Chapter 16. Clustering Building Blocks

152

• pessimistic-entity-repeatable

Same as "pessimistic-entity" but uses JBC's REPEATABLE_READ isolation level instead of
READ_COMMITTED (see notes below).

• local-query

A config appropriate for JPA/Hibernate query result caching. Does not replicate query results. DO
NOT store the timestamp data Hibernate uses to verify validity of query results in this cache.

• replicated-query

A config appropriate for JPA/Hibernate query result caching. Replicates query results. DO NOT
store the timestamp data Hibernate uses to verify validity of query result in this cache.

• timestamps-cache

A config appropriate for the timestamp data cached as part of JPA/Hibernate query result caching.
A replicated timestamp cache is required if query result caching is used, even if the query results
themselves use a non-replicating cache like local-query.

• mvcc-shared

A config appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and
timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which
is the least efficient mode. Also requires a full state transfer at startup, which can be expensive.
Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4.
Uses JBC's MVCC locking.

• optimistic-shared

A config appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and
timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which
is the least efficient mode. Also requires a full state transfer at startup, which can be expensive.
Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4.
Uses JBC's optimistic locking.

• pessimistic-shared

A config appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and
timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which
is the least efficient mode. Also requires a full state transfer at startup, which can be expensive.
Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4.
Uses JBC's pessimistic locking.

• mvcc-shared-repeatable

Same as "mvcc-shared" but uses JBC's REPEATABLE_READ isolation level instead of
READ_COMMITTED (see notes below).

• pessimistic-shared-repeatable

Same as "pessimistic-shared" but uses JBC's REPEATABLE_READ isolation level instead of
READ_COMMITTED. (see notes below).

The JBoss Enterprise Application Platform CacheManager Service

153

Note
For more on JBoss Cache's locking schemes, see Section 24.1.4, “Concurrent Access”)

Note
For JPA/Hibernate second level caching, REPEATABLE_READ is only useful if the
application evicts/clears entities from the EntityManager/Hibernate Session and then
expects to repeatably re-read them in the same transaction. Otherwise, the Session's
internal cache provides a repeatable-read semantic.

16.2.1.2. Cache Configuration Aliases
The CacheManager also supports aliasing of caches; i.e. allowing caches registered under one name
to be looked up under a different name. Aliasing is useful for sharing caches between services whose
configuration may specify different cache config names. It's also useful for supporting legacy EJB3
application configurations ported over from Enterprise Application Platform 4.

Aliases can be configured by editing the "CacheManager" bean in the jboss-cache-manager-
jboss-beans.xml file. The following redacted config shows the standard aliases in Enterprise
Application Server 5.0.0:

<bean name="CacheManager" class="org.jboss.ha.cachemanager.CacheManager">

 . . .

 <!-- Aliases for cache names. Allows caches to be shared across
 services that may expect different cache config names. -->
 <property name="configAliases">
 <map keyClass="java.lang.String" valueClass="java.lang.String">
 <!-- Use the HAPartition cache for ClusteredSSO caching -->
 <entry>
 <key>clustered-sso</key>
 <value>ha-partition</value>
 </entry>
 <!-- Handle the legacy name for the EJB3 SFSB cache -->
 <entry>
 <key>jboss.cache:service=EJB3SFSBClusteredCache</key>
 <value>sfsb-cache</value>
 </entry>
 <!-- Handle the legacy name for the EJB3 Entity cache -->
 <entry>
 <key>jboss.cache:service=EJB3EntityTreeCache</key>
 <value>mvcc-shared</value>
 </entry>
 </map>
 </property>

Chapter 16. Clustering Building Blocks

154

 . . .

</bean>

Chapter 17.

155

Clustered JNDI Services
JNDI is one of the most important services provided by the application server. The JBoss HA-JNDI
(High Availability JNDI) service brings the following features to JNDI:

• Transparent failover of naming operations. If an HA-JNDI naming Context is connected to the HA-
JNDI service on a particular JBoss Enterprise Application Platform instance, and that service fails
or is shut down, the HA-JNDI client can transparently fail over to another Enterprise Application
Platform instance.

• Load balancing of naming operations. A HA-JNDI naming Context will automatically load balance its
requests across all the HA-JNDI servers in the cluster.

• Automatic client discovery of HA-JNDI servers (using multicast).

• Unified view of JNDI trees cluster-wide. A client can connect to the HA-JNDI service running on any
node in the cluster and find objects bound in JNDI on any other node. This is accomplished via two
mechanisms:
• Cross-cluster lookups. A client can perform a lookup and the server side HA-JNDI service has the

ability to find things bound in regular JNDI on any node in the cluster.

• A replicated cluster-wide context tree. An object bound into the HA-JNDI service will be replicated
around the cluster, and a copy of that object will be available in-VM on each node in the cluster.

JNDI is a key component for many other interceptor-based clustering services: those services register
themselves with JNDI so the client can look up their proxies and make use of their services. HA-JNDI
completes the picture by ensuring that clients have a highly-available means to look up those proxies.
However, it is important to understand that using HA-JNDI (or not) has no effect whatsoever on the
clustering behavior of the objects that are looked up. To illustrate:

• If an EJB is not configured as clustered, looking up the EJB via HA-JNDI does not somehow result
in the addition of clustering capabilities (load balancing of EJB calls, transparent failover, state
replication) to the EJB.

• If an EJB is configured as clustered, looking up the EJB via regular JNDI instead of HA-JNDI does
not somehow result in the removal of the bean proxy's clustering capabilities.

17.1. How it works
The JBoss client-side HA-JNDI naming Context is based on the client-side interceptor architecture
(see the Introduction and Quick Start chapter). The client obtains an HA-JNDI proxy object (via the
InitialContext object) and invokes JNDI lookup services on the remote server through the proxy.
The client specifies that it wants an HA-JNDI proxy by configuring the naming properties used by the
InitialContext object. This is covered in detail in Section 17.2, “Client configuration”. Other than
the need to ensure the appropriate naming properties are provided to the InitialContext, the fact
that the naming Context is using HA-JNDI is completely transparent to the client.

On the server side, the HA-JNDI service maintains a cluster-wide context tree. The cluster wide
tree is always available as long as there is one node left in the cluster. Each node in the cluster also
maintains its own local JNDI context tree. The HA-JNDI service on each node is able to find objects
bound into the local JNDI context tree, and is also able to make a cluster-wide RPC to find objects
bound in the local tree on any other node. An application can bind its objects to either tree, although

Chapter 17. Clustered JNDI Services

156

in practice most objects are bound into the local JNDI context tree. The design rationale for this
architecture is as follows:

• It avoids migration issues with applications that assume that their JNDI implementation is local. This
allows clustering to work out-of-the-box with just a few tweaks of configuration files.

• In a homogeneous cluster, this configuration actually cuts down on the amount of network traffic. A
homogenous cluster is one where the same types of objects are bound under the same names on
each node.

• Designing it in this way makes the HA-JNDI service an optional service since all underlying cluster
code uses a straight new InitialContext to lookup or create bindings.

On the server side, a naming Context obtained via a call to new InitialContext() will be bound
to the local-only, non-cluster-wide JNDI Context. So, all EJB homes and such will not be bound to the
cluster-wide JNDI Context, but rather, each home will be bound into the local JNDI.

When a remote client does a lookup through HA-JNDI, HA-JNDI will delegate to the local JNDI service
when it cannot find the object within the global cluster-wide Context. The detailed lookup rule is as
follows.

• If the binding is available in the cluster-wide JNDI tree, return it.

• If the binding is not in the cluster-wide tree, delegate the lookup query to the local JNDI service and
return the received answer if available.

• If not available, the HA-JNDI service asks all other nodes in the cluster if their local JNDI service
owns such a binding and returns the answer from the set it receives.

• If no local JNDI service owns such a binding, a NameNotFoundException is finally raised.

In practice, objects are rarely bound in the cluster-wide JNDI tree; rather they are bound in the local
JNDI tree. For example, when EJBs are deployed, their proxies are always bound in local JNDI, not
HA-JNDI. So, an EJB home lookup done through HA-JNDI will always be delegated to the local JNDI
instance.

Note
If different beans (even of the same type, but participating in different clusters) use the
same JNDI name, this means that each JNDI server will have a logically different "target"
bound under the same name. (JNDI on node 1 will have a binding for bean A and JNDI
on node 2 will have a binding, under the same name, for bean B). Consequently, if a client
performs a HA-JNDI query for this name, the query will be invoked on any JNDI server of
the cluster and will return the locally bound stub. Nevertheless, it may not be the correct
stub that the client is expecting to receive! So, it is always best practice to ensure that
across the cluster different names are used for logically different bindings.

Note
If a binding is only made available on a few nodes in the cluster (for example because a
bean is only deployed on a small subset of nodes in the cluster), the probability is higher
that a lookup will hit a HA-JNDI server that does not own this binding and thus the lookup
will need to be forwarded to all nodes in the cluster. Consequently, the query time will be

Client configuration

157

longer than if the binding would have been available locally. Moral of the story: as much as
possible, cache the result of your JNDI queries in your client.

Note
You cannot currently use a non-JNP JNDI implementation (i.e. LDAP) for your local
JNDI implementation if you want to use HA-JNDI. However, you can use JNDI federation
using the ExternalContext MBean to bind non-JBoss JNDI trees into the JBoss JNDI
namespace. Furthermore, nothing prevents you using one centralized JNDI server for
your whole cluster and scrapping HA-JNDI and JNP.

17.2. Client configuration
Configuring a client to use HA-JNDI is a matter of ensuring the correct set of naming environment
properties are available when a new InitialContext is created. How this is done varies depending
on whether the client is running inside JBoss Enterprise Application Platform itself or is in another VM.

17.2.1. For clients running inside the application server
If you want to access HA-JNDI from inside the application server, you must explicitly configure your
InitialContext by passing in JNDI properties to the constructor. The following code shows how to
create a naming Context bound to HA-JNDI:

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
// HA-JNDI is listening on the address passed to JBoss via -b
String bindAddress = System.getProperty("jboss.bind.address", "localhost");
p.put(Context.PROVIDER_URL, bindAddress + ":1100"); // HA-JNDI address and
 port.
return new InitialContext(p);

The Context.PROVIDER_URL property points to the HA-JNDI service configured in the deploy/
cluster/hajndi-jboss-beans.xml file (see Section 17.3, “JBoss configuration”). By default this
service listens on the interface named via the jboss.bind.address system property, which itself
is set to whatever value you assign to the -b command line option when you start JBoss Enterprise
Application Platform (or localhost if not specified). The above code shows an example of accessing
this property.

However, this does not work in all cases, especially when running several JBoss Enterprise
Application Platform instances on the same machine and bound to the same IP address, but
configured to use different ports. A safer method is to not specify the Context.PROVIDER_URL
but instead allow the InitialContext to statically find the in-VM HA-JNDI by specifying the
jnp.partitionName property:

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");

Chapter 17. Clustered JNDI Services

158

// HA-JNDI is registered under the partition name passed to JBoss via -g
String partitionName = System.getProperty("jboss.partition.name",
 "DefaultPartition");
p.put("jnp.partitionName", partitionName);
return new InitialContext(p);

This example uses the jboss.partition.name system property to identify the partition with which
the HA-JNDI service works. This system property is set to whatever value you assign to the -g
command line option when you start JBoss Enterprise Application Platform (or DefaultPartition if
not specified).

Do not attempt to simplify things by placing a jndi.properties file in your deployment or by
editing the Enterprise Application Platform's conf/jndi.properties file. Doing either will almost
certainly break things for your application and quite possibly across the application server. If you
want to externalize your client configuration, one approach is to deploy a properties file not named
jndi.properties, and then programatically create a Properties object that loads that file's
contents.

17.2.1.1. Accessing HA-JNDI Resources from EJBs and WARs --
Environment Naming Context
If your HA-JNDI client is an EJB or servlet, the least intrusive way to configure the lookup of resources
is to bind the resources to the environment naming context of the bean or webapp performing the
lookup. The binding can then be configured to use HA-JNDI instead of a local mapping. Following is
an example of doing this for a JMS connection factory and queue (the most common use case for this
kind of thing).

Within the bean definition in the ejb-jar.xml or in the war's web.xml you will need to define two
resource-ref mappings, one for the connection factory and one for the destination.

<resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

<resource-ref>
 <res-ref-name>jms/Queue</res-ref-name>
 <res-type>javax.jms.Queue</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Using these examples the bean performing the lookup can obtain the connection factory by looking up
'java:comp/env/jms/ConnectionFactory' and can obtain the queue by looking up 'java:comp/env/jms/
Queue'.

Within the JBoss-specific deployment descriptor (jboss.xml for EJBs, jboss-web.xml for a WAR) these
references need to be mapped to a URL that makes use of HA-JNDI.

<resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <jndi-name>jnp://${jboss.bind.address}:1100/ConnectionFactory</jndi-name>

For clients running outside the application server

159

</resource-ref>

<resource-ref>
 <res-ref-name>jms/Queue</res-ref-name>
 <jndi-name>jnp://${jboss.bind.address}:1100/queue/A</jndi-name>
 </resource-ref>

The URL should be the URL to the HA-JNDI server running on the same node as the bean; if the
bean is available the local HA-JNDI server should also be available. The lookup will then automatically
query all of the nodes in the cluster to identify which node has the JMS resources available.

The ${jboss.bind.address} syntax used above tells JBoss to use the value of the
jboss.bind.address system property when determining the URL. That system property is itself
set to whatever value you assign to the -b command line option when you start JBoss Enterprise
Application Platform.

17.2.1.2. Why do this programmatically and not just put this in a
jndi.properties file?
The JBoss application server's internal naming environment is controlled by the conf/
jndi.properties file, which should not be edited.

No other jndi.properties file should be deployed inside the application server because of the possibility
of its being found on the classpath when it shouldn't and thus disrupting the internal operation of the
server. For example, if an EJB deployment included a jndi.properties configured for HA-JNDI, when
the server binds the EJB proxies into JNDI it will likely bind them into the replicated HA-JNDI tree and
not into the local JNDI tree where they belong.

17.2.1.3. How can I tell if things are being bound into HA-JNDI that
shouldn't be?
Go into the the jmx-console and execute the list operation on the jboss:service=JNDIView
mbean. Towards the bottom of the results, the contents of the "HA-JNDI Namespace" are listed.
Typically this will be empty; if any of your own deployments are shown there and you didn't explicitly
bind them there, there's probably an improper jndi.properties file on the classpath. Please visit the
following link for an example: Problem with removing a Node from Cluster1

17.2.2. For clients running outside the application server
The JNDI client needs to be aware of the HA-JNDI cluster. You can pass a list of JNDI servers
(i.e., the nodes in the HA-JNDI cluster) to the java.naming.provider.url JNDI setting in the
jndi.properties file. Each server node is identified by its IP address and the JNDI port number.
The server nodes are separated by commas (see Section 17.3, “JBoss configuration” for how to
configure the servers and ports).

java.naming.provider.url=server1:1100,server2:1100,server3:1100,server4:1100

When initialising, the JNP client code will try to get in touch with each server node from the list, one
after the other, stopping as soon as one server has been reached. It will then download the HA-JNDI
stub from this node.

1 http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715

http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715
http://www.jboss.com/index.html?module=bb&op=viewtopic&t=104715

Chapter 17. Clustered JNDI Services

160

Note
There is no load balancing behavior in the JNP client lookup process itself. It just goes
through the provider lists and uses the first available server to obtain the stub. The HA-
JNDI provider list only needs to contain a subset of HA-JNDI nodes in the cluster; once
the HA-JNDI stub is downloaded, the stub will include information on all the available
servers. A good practice is to include a set of servers such that you are certain that at
least one of those in the list will be available.

The downloaded smart proxy contains the list of currently running nodes and the logic to load balance
naming requests and to fail-over to another node if necessary. Furthermore, each time a JNDI
invocation is made to the server, the list of targets in the proxy interceptor is updated (only if the list
has changed since the last call).

If the property string java.naming.provider.url is empty or if all servers it mentions are not
reachable, the JNP client will try to discover a HA-JNDI server through a multicast call on the network
(auto-discovery). See Section 17.3, “JBoss configuration” for how to configure auto-discovery on
the JNDI server nodes. Through auto-discovery, the client might be able to get a valid HA-JNDI
server node without any configuration. Of course, for auto-discovery to work, the network segment(s)
between the client and the server cluster must be configured to propagate such multicast datagrams.

Note
By default the auto-discovery feature uses multicast group address 230.0.0.4 and port
1102.

In addition to the java.naming.provider.url property, you can specify a set of other properties.
The following list shows all clustering-related client side properties you can specify when creating a
new InitialContext. (All of the standard, non-clustering-related environment properties used with
regular JNDI are also available.)

• java.naming.provider.url: Provides a list of IP addresses and port numbers for HA-JNDI
provider nodes in the cluster. The client tries those providers one by one and uses the first one that
responds.

• jnp.disableDiscovery: When set to true, this property disables the automatic discovery
feature. Default is false.

• jnp.partitionName: In an environment where multiple HA-JNDI services bound to distinct
clusters (a.k.a. partitions), are running, this property allows you to ensure that your client only
accepts automatic-discovery responses from servers in the desired partition. If you do not use the
automatic discovery feature (i.e. jnp.disableDiscovery is true), this property is not used. By default,
this property is not set and the automatic discovery selects the first HA-JNDI server that responds,
regardless of the cluster partition name.

• jnp.discoveryTimeout: Determines how many milliseconds the context will wait for a response
to its automatic discovery packet. Default is 5000 ms.

• jnp.discoveryGroup: Determines which multicast group address is used for the automatic
discovery. Default is 230.0.0.4. Must match the value of the AutoDiscoveryAddress configured on
the server side HA-JNDI service. Note that the server side HA-JNDI service by default listens on the

JBoss configuration

161

address specified via the -u startup switch, so if -u is used on the server side (as is recommended),
jnp.discoveryGroup will need to be configured on the client side.

• jnp.discoveryPort: Determines which multicast port is used for the automatic discovery. Default
is 1102. Must match the value of the AutoDiscoveryPort configured on the server side HA-JNDI
service.

• jnp.discoveryTTL: specifies the TTL (time-to-live) f or autodiscovery IP multicast packets. This
value represents the number of network hops a multicast packet can be allowed to propagate before
networking equipment should drop the packet. Despite its name, it does not represent a unit of time.

17.3. JBoss configuration
The hajndi-jboss-beans.xml file in the JBOSS_HOME/server/all/deploy/cluster
directory includes the following bean to enable HA-JNDI services.

<bean name="HAJNDI" class="org.jboss.ha.jndi.HANamingService">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss:service=HAJNDI",
 exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)</
annotation>

 <!-- The partition used for group RPCs to find locally bound objects
 on other nodes -->
 <property name="HAPartition"><inject bean="HAPartition"/></property>

 <!-- Handler for the replicated tree -->
 <property name="distributedTreeManager">
 <bean
 class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
 <property name="cacheHandler"><inject
 bean="HAPartitionCacheHandler"/></property>
 </bean>
 </property>

 <property name="localNamingInstance">
 <inject bean="jboss:service=NamingBeanImpl"
 property="namingInstance"/>
 </property>

 <!-- The thread pool used to control the bootstrap and auto discovery
 lookups -->
 <property name="lookupPool"><inject
 bean="jboss.system:service=ThreadPool"/></property>

 <!-- Bind address of bootstrap endpoint -->
 <property name="bindAddress">${jboss.bind.address}</property>
 <!-- Port on which the HA-JNDI stub is made available -->
 <property name="port">
 <!-- Get the port from the ServiceBindingManager -->

Chapter 17. Clustered JNDI Services

162

 <value-factory bean="ServiceBindingManager"
 method="getIntBinding">
 <parameter>jboss:service=HAJNDI</parameter>
 <parameter>Port</parameter>
 </value-factory>
 </property>

 <!-- Bind address of the HA-JNDI RMI endpoint -->
 <property name="rmiBindAddress">${jboss.bind.address}</property>

 <!-- RmiPort to be used by the HA-JNDI service once bound. 0 =
 ephemeral. -->
 <property name="rmiPort">
 <!-- Get the port from the ServiceBindingManager -->
 <value-factory bean="ServiceBindingManager"
 method="getIntBinding">
 <parameter>jboss:service=HAJNDI</parameter>
 <parameter>RmiPort</parameter>
 </value-factory>
 </property>

 <!-- Accept backlog of the bootstrap socket -->
 <property name="backlog">50</property>

 <!-- A flag to disable the auto discovery via multicast -->
 <property name="discoveryDisabled">false</property>
 <!-- Set the auto-discovery bootstrap multicast bind address. If not
 specified and a BindAddress is specified, the BindAddress will be
 used. -->
 <property name="autoDiscoveryBindAddress">${jboss.bind.address}</
property>
 <!-- Multicast Address and group port used for auto-discovery -->
 <property name="autoDiscoveryAddress">
${jboss.partition.udpGroup:230.0.0.4}</property>
 <property name="autoDiscoveryGroup">1102</property>
 <!-- The TTL (time-to-live) for autodiscovery IP multicast packets --
>
 <property name="autoDiscoveryTTL">16</property>

 <!-- The load balancing policy for HA-JNDI -->
 <property
 name="loadBalancePolicy">org.jboss.ha.framework.interfaces.RoundRobin</
property>

 <!-- Client socket factory to be used for client-server
 RMI invocations during JNDI queries
 <property name="clientSocketFactory">custom</property>
 -->
 <!-- Server socket factory to be used for client-server
 RMI invocations during JNDI queries
 <property name="serverSocketFactory">custom</property>

JBoss configuration

163

 -->
 </bean>

You can see that this bean has a number of other services injected into different properties:
• HAPartition accepts the core clustering service used manage HA-JNDI's clustered proxies and

to make the group RPCs that find locally bound objects on other nodes. See Section 16.1, “The
HAPartition Service” for more.

• distributedTreeManager accepts a handler for the replicated tree. The standard handler uses
JBoss Cache to manage the replicated tree. The JBoss Cache instance is retrieved using the
injected HAPartitionCacheHandler bean. See Section 16.1, “The HAPartition Service” for more
details.

• localNamingInstance accepts the reference to the local JNDI service.

• lookupPool accepts the thread pool used to provide threads to handle the bootstrap and auto
discovery lookups.

Besides the above dependency injected services, the available configuration attributes for the HAJNDI
bean are as follows:

• bindAddress specifies the address to which the HA-JNDI server will bind to listen for naming proxy
download requests from JNP clients. The default value is the value of the jboss.bind.address
system property, or localhost if that property is not set. The jboss.bind.address system
property is set if the -b command line switch is used when JBoss is started.

• port specifies the port to which the HA-JNDI server will bind to listen for naming proxy download
requests from JNP clients. The value is obtained from the ServiceBindingManager bean configured
in conf/bootstrap/bindings.xml. The default value is 1100.

• Backlog specifies the maximum queue length for incoming connection indications for the TCP
server socket on which the service listens for naming proxy download requests from JNP clients.
The default value is 50.

• rmiBindAddress specifies the address to which the HA-JNDI server will bind to listen for
RMI requests (e.g. for JNDI lookups) from naming proxies. The default value is the value of
the jboss.bind.address system property, or localhost if that property is not set. The
jboss.bind.address system property is set if the -b command line switch is used when JBoss
is started.

• rmiPort specifies the port to which the server will bind to communicate with the downloaded stub.
The value is obtained from the ServiceBindingManager bean configured in conf/bootstrap/
bindings.xml. The default value is 1101. If no value is set, the operating system automatically
assigns a port.

• discoveryDisabled is a boolean flag that disables configuration of the auto discovery multicast
listener. The default is false.

• autoDiscoveryAddress specifies the multicast address to listen to for JNDI automatic discovery.
The default value is the value of the jboss.partition.udpGroup system property, or 230.0.0.4
if that is not set. The jboss.partition.udpGroup system property is set if the -u command line
switch is used when JBoss is started.

Chapter 17. Clustered JNDI Services

164

• autoDiscoveryGroup specifies the port to listen on for multicast JNDI automatic discovery packets.
The default value is 1102.

• autoDiscoveryBindAddress sets the interface on which HA-JNDI should listen for auto-
discovery request packets. If this attribute is not specified and a bindAddress is specified, the
bindAddress will be used.

• autoDiscoveryTTL specifies the TTL (time-to-live) for autodiscovery IP multicast packets. This
value represents the number of network hops a multicast packet can be allowed to propagate before
networking equipment should drop the packet. Despite its name, it does not represent a unit of time.

• loadBalancePolicy specifies the class name of the LoadBalancePolicyimplementation that should
be included in the client proxy. See the Introduction and Quick Start chapter for details.

• clientSocketFactory is an optional attribute that specifies the fully qualified classname of the
java.rmi.server.RMIClientSocketFactory that should be used to create client sockets.
The default is null.

• serverSocketFactory is an optional attribute that specifies the fully qualified classname of the
java.rmi.server.RMIServerSocketFactory that should be used to create server sockets.
The default is null.

17.3.1. Adding a Second HA-JNDI Service
It is possible to start several HA-JNDI services that use different HAPartitions. This can be used, for
example, if a node is part of many logical clusters. In this case, make sure that you set a different port
or IP address for each service. For instance, if you wanted to hook up HA-JNDI to the example cluster
you set up and change the binding port, the bean descriptor would look as follows (properties that do
not vary from the standard deployments are omitted):

 <-- Cache Handler for secondary HAPartition -->
 <bean name="SecondaryHAPartitionCacheHandler"
 class="org.jboss.ha.framework.server.HAPartitionCacheHandlerImpl">
 <property name="cacheManager"><inject bean="CacheManager"/></
property>
 <property name="cacheConfigName">secondary-ha-partition</property>
 </bean>

 <-- The secondary HAPartition -->
 <bean name="SecondaryHAPartition"
 class="org.jboss.ha.framework.server.ClusterPartition">

 <depends>jboss:service=Naming</depends>

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss:service=HAPartition,partition=SecondaryPartition",

 exposedInterface=org.jboss.ha.framework.server.ClusterPartitionMBean.class,
 registerDirectly=true)</annotation>

Adding a Second HA-JNDI Service

165

 <property name="cacheHandler"><inject
 bean="SecondaryHAPartitionCacheHandler"/></property>

 <property name="partitionName">SecondaryPartition</property>

 </bean>

 <bean name="MySpecialPartitionHAJNDI"
 class="org.jboss.ha.jndi.HANamingService">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss:service=HAJNDI,partitionName=SecondaryPartition",
 exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)</
annotation>

 <property name="HAPartition"><inject bean="SecondaryHAPartition"/></
property>

 <property name="distributedTreeManager">
 <bean
 class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
 <property name="cacheHandler"><inject
 bean="SecondaryHAPartitionPartitionCacheHandler"/></property>
 </bean>
 </property>

 <property name="port">56789</property>

 <property name="rmiPort">56790</property>

 <property name="autoDiscoveryGroup">56791</property>

 </bean>

166

Chapter 18.

167

Clustered Session EJBs
Session EJBs provide remote invocation services. They are clustered based on the client-side
interceptor architecture. The client application for a clustered session bean is the same as the client
for the non-clustered version of the session bean, except for some minor changes. No code change
or re-compilation is needed on the client side. Now, let's check out how to configure clustered session
beans in EJB 3.0 and EJB 2.x server applications respectively.

18.1. Stateless Session Bean in EJB 3.0
Clustering stateless session beans is most probably the easiest case: as no state is involved, calls can
be load-balanced on any participating node (i.e. any node that has this specific bean deployed) of the
cluster.

To cluster a stateless session bean in EJB 3.0, all you need to do is to annotate the
bean class with the @Clustered annotation. You can pass in the load balance policy
and cluster partition as parameters to the annotation. The default load balance policy is
org.jboss.ha.framework.interfaces.RandomRobin and the default cluster is
DefaultPartition. Below is the definition of the @Cluster annotation.

public @interface Clustered
{
 Class loadBalancePolicy() default LoadBalancePolicy.class;
 String partition() default "${jboss.partition.name:DefaultPartition}";
}

Here is an example of a clustered EJB 3.0 stateless session bean implementation.

@Stateless
@Clustered
public class MyBean implements MySessionInt
{
 public void test()
 {
 // Do something cool
 }
}

The @Clustered annotation can also be omitted and the clustering configuration applied in jboss.xml:

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>NonAnnotationStateful</ejb-name>
 <clustered>true</clustered>
 <cluster-config>
 <partition-name>FooPartition</partition-name>

Chapter 18. Clustered Session EJBs

168

 <load-balance-
policy>org.jboss.ha.framework.interfaces.RandomRobin</load-balance-policy>
 </cluster-config>
 </session>
 </enterprise-beans>
</jboss>

Note
The <clustered>true</clustered> element is really just an alias for
the <configuration-name>Clustered Stateless SessionBean</
configuration-name> element in the conf/standard-jboss.xml file.

In the bean configuration, only the <clustered> element is mandatory. It indicates that the bean needs
to support clustering features. The <cluster-config> element is optional and the default values of its
attributes are indicated in the sample configuration above. Below is a description of the attributes in
the <cluster-config> element.

• partition-name specifies the name of the cluster the bean participates in. The default value
is DefaultPartition. The default partition name can also be set system-wide using the
jboss.partition.name system property.

• load-balance-policy Indicates the class to be used by the bean stub to balance calls made on the
nodes of the cluster. By default, the proxy will load-balance calls in a RoundRobin fashion. You can
also implement your own load-balance policy class or use the class FirstAvailable that persists
to use the first node available that it meets until it fails.

18.2. Stateful Session Beans in EJB 3.0
Clustering stateful session beans is more complex than clustering their stateless counterparts since
JBoss needs to manage the state information. The state of all stateful session beans are replicated
and synchronized across the cluster each time the state of a bean changes.

18.2.1. The EJB application configuration
To cluster stateful session beans in EJB 3.0, you need to tag the bean implementation class with
the @Cluster annotation, just as we did with the EJB 3.0 stateless session bean earlier. The
@org.jboss.ejb3.annotation.CacheConfig annotation can also be applied to the bean to specify
caching behavior. Below is the definition of the @CacheConfig annotation:

public @interface CacheConfig
{
 String name() default "";
 int maxSize() default 10000;
 long idleTimeoutSeconds() default 300;
 boolean replicationIsPassivation() default true;
 long removalTimeoutSeconds() default 0;
}

The EJB application configuration

169

• name specifies the name of a cache configuration registered with the CacheManager service
discussed in Section 16.2.1, “The JBoss Enterprise Application Platform CacheManager Service”.
By default, the sfsb-cache configuration will be used.

• maxSize specifies the maximum number of beans that can cached before the cache should start
passivating beans, using an LRU algorithm.

• idleTimeoutSeconds specifies the max period of time a bean can go unused before the cache
should passivate it (irregardless of whether maxSize beans are cached.)

• removalTimeoutSeconds specifies the max period of time a bean can go unused before the
cache should remove it altogether.

• replicationIsPassivation specifies whether the cache should consider a replication as
being equivalent to a passivation, and invoke any @PrePassivate and @PostActivate callbacks
on the bean. By default true, since replication involves serializing the bean, and preparing for and
recovering from serialization is a common reason for implementing the callback methods.

Here is an example of a clustered EJB 3.0 stateful session bean implementation.

@Stateful
@Clustered
@CacheConfig(maxSize=5000, removalTimeoutSeconds=18000)
public class MyBean implements MySessionInt
{
 private int state = 0;

 public void increment()
 {
 System.out.println("counter: " + (state++));
 }
}

As with stateless beans, the @Clustered annotation can alternatively be omitted and the clustering
configuration instead applied to jboss.xml:

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>NonAnnotationStateful</ejb-name>
 <clustered>true</clustered>
 <cache-config>
 <cache-max-size>5000</cache-max-size>
 <remove-timeout-seconds>18000</remove-timeout-seconds>
 </cache-config>
 </session>
 </enterprise-beans>
</jboss>

Chapter 18. Clustered Session EJBs

170

18.2.2. Optimize state replication
As the replication process is a costly operation, you can optimise this behaviour by optionally
implementing the org.jboss.ejb3.cache.Optimized interface in your bean class:

public interface Optimized
{
 boolean isModified();
}

Before replicating your bean, the container will check if your bean implements the Optimized
interface. If this is the case, the container calls the isModified() method and will only replicate
the bean when the method returns true. If the bean has not been modified (or not enough to require
replication, depending on your own preferences), you can return false and the replication would not
occur.

18.2.3. CacheManager service configuration
JBoss Cache provides the session state replication service for EJB 3.0 stateful session beans. The
CacheManager service, described in Section 16.2.1, “The JBoss Enterprise Application Platform
CacheManager Service” is both a factory and registry of JBoss Cache instances. By default, stateful
session beans use the sfsb-cache configuration from the CacheManager, defined as follows:

<bean name="StandardSFSBCacheConfig"
 class="org.jboss.cache.config.Configuration">

 <!-- No transaction manager lookup -->

 <!-- Name of cluster. Needs to be the same for all members -->
 <property name="clusterName">${jboss.partition.name:DefaultPartition}-
SFSBCache</property>
 <!--
 Use a UDP (multicast) based stack. Need JGroups flow control (FC)
 because we are using asynchronous replication.
 -->
 <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}</
property>
 <property name="fetchInMemoryState">true</property>

 <property name="nodeLockingScheme">PESSIMISTIC</property>
 <property name="isolationLevel">REPEATABLE_READ</property>
 <property name="cacheMode">REPL_ASYNC</property>

 <!--
 Number of milliseconds to wait until all responses for a
 synchronous call have been received. Make this longer
 than lockAcquisitionTimeout.
 -->
 <property name="syncReplTimeout">17500</property>
 <!-- Max number of milliseconds to wait for a lock acquisition -->

CacheManager service configuration

171

 <property name="lockAcquisitionTimeout">15000</property>
 <!-- The max amount of time (in milliseconds) we wait until the
 state (ie. the contents of the cache) are retrieved from
 existing members at startup. -->
 <property name="stateRetrievalTimeout">60000</property>

 <!--
 SFSBs use region-based marshalling to provide for partial state
 transfer during deployment/undeployment.
 -->
 <property name="useRegionBasedMarshalling">false</property>
 <!-- Must match the value of "useRegionBasedMarshalling" -->
 <property name="inactiveOnStartup">false</property>

 <!-- Disable asynchronous RPC marshalling/sending -->
 <property name="serializationExecutorPoolSize">0</property>
 <!-- We have no asynchronous notification listeners -->
 <property name="listenerAsyncPoolSize">0</property>

 <property name="exposeManagementStatistics">true</property>

 <property name="buddyReplicationConfig">
 <bean class="org.jboss.cache.config.BuddyReplicationConfig">

 <!-- Just set to true to turn on buddy replication -->
 <property name="enabled">false</property>

 <!--
 A way to specify a preferred replication group. We try
 and pick a buddy who shares the same pool name (falling
 back to other buddies if not available).
 -->
 <property name="buddyPoolName">default</property>

 <property name="buddyCommunicationTimeout">17500</property>

 <!-- Do not change these -->
 <property name="autoDataGravitation">false</property>
 <property name="dataGravitationRemoveOnFind">true</property>
 <property name="dataGravitationSearchBackupTrees">true</property>

 <property name="buddyLocatorConfig">
 <bean
 class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
 <!-- The number of backup nodes we maintain -->
 <property name="numBuddies">1</property>
 <!-- Means that each node will *try* to select a buddy on
 a different physical host. If not able to do so
 though, it will fall back to colocated nodes. -->
 <property name="ignoreColocatedBuddies">true</property>
 </bean>

Chapter 18. Clustered Session EJBs

172

 </property>
 </bean>
 </property>
 <property name="cacheLoaderConfig">
 <bean class="org.jboss.cache.config.CacheLoaderConfig">
 <!-- Do not change these -->
 <property name="passivation">true</property>
 <property name="shared">false</property>

 <property name="individualCacheLoaderConfigs">
 <list>
 <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
 <!-- Where passivated sessions are stored -->
 <property name="location">${jboss.server.data.dir}${/}sfsb</
property>
 <!-- Do not change these -->
 <property name="async">false</property>
 <property name="fetchPersistentState">true</property>
 <property name="purgeOnStartup">true</property>
 <property name="ignoreModifications">false</property>
 <property name="checkCharacterPortability">false</property>
 </bean>
 </list>
 </property>
 </bean>
 </property>

 <!-- EJBs use JBoss Cache eviction -->
 <property name="evictionConfig">
 <bean class="org.jboss.cache.config.EvictionConfig">
 <property name="wakeupInterval">5000</property>
 <!-- Overall default -->
 <property name="defaultEvictionRegionConfig">
 <bean class="org.jboss.cache.config.EvictionRegionConfig">
 <property name="regionName">/</property>
 <property name="evictionAlgorithmConfig">
 <bean
 class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
 </property>
 </bean>
 </property>
 <!-- EJB3 integration code will programatically create other regions
 as beans are deployed -->
 </bean>
 </property>
</bean>

Stateless Session Bean in EJB 2.x

173

Eviction
The default SFSB cache is configured to support eviction. The EJB3 SFSB container uses the
JBoss Cache eviction mechanism to manage SFSB passivation. When beans are deployed, the EJB
container will programatically add eviction regions to the cache, one region per bean type.

CacheLoader
A JBoss Cache CacheLoader is also configured; again to support SFSB passivation. When beans
are evicted from the cache, the cache loader passivates them to a persistent store; in this case
to the filesystem in the $JBOSS_HOME/server/all/data/sfsb directory. JBoss Cache supports
a variety of different CacheLoader implementations that know how to store data to different
persistent store types; see the JBoss Cache documentation for details. However, if you change the
CacheLoaderConfiguration, be sure that you do not use a shared store, e.g. a single schema in a
shared database. Each node in the cluster must have its own persistent store, otherwise as nodes
independently passivate and activate clustered beans, they will corrupt each other's data.

Buddy Replication
Using buddy replication, state is replicated to a configurable number of backup servers in the cluster
(aka buddies), rather than to all servers in the cluster. To enable buddy replication, adjust the following
properties in the buddyReplicationConfig property bean:

• Set enabled to true.

• Use the buddyPoolName to form logical subgroups of nodes within the cluster. If possible, buddies
will be chosen from nodes in the same buddy pool.

• Adjust the buddyLocatorConfig.numBuddies property to reflect the number of backup nodes to
which each node should replicate its state.

18.3. Stateless Session Bean in EJB 2.x
To make an EJB 2.x bean clustered, you need to modify its jboss.xml descriptor to contain a
<clustered> tag.

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>nextgen.StatelessSession</ejb-name>
 <jndi-name>nextgen.StatelessSession</jndi-name>
 <clustered>true</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
 <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</bean-load-balance-
policy>
 </cluster-config>

Chapter 18. Clustered Session EJBs

174

 </session>
 </enterprise-beans>
</jboss>

• partition-name specifies the name of the cluster the bean participates in. The default value
is DefaultPartition. The default partition name can also be set system-wide using the
jboss.partition.name system property.

• home-load-balance-policy indicates the class to be used by the home stub to balance calls made
on the nodes of the cluster. By default, the proxy will load-balance calls in a RoundRobin fashion.

• bean-load-balance-policy Indicates the class to be used by the bean stub to balance calls made
on the nodes of the cluster. By default, the proxy will load-balance calls in a RoundRobin fashion.

18.4. Stateful Session Bean in EJB 2.x
Clustering stateful session beans is more complex than clustering their stateless counterparts since
JBoss needs to manage the state information. The state of all stateful session beans are replicated
and synchronized across the cluster each time the state of a bean changes. The JBoss Enterprise
Application Platform uses the HASessionState MBean to manage distributed session states for
clustered EJB 2.x stateful session beans. In this section, we cover both the session bean configuration
and the HASessionState MBean configuration.

18.4.1. The EJB application configuration
In the EJB application, you need to modify the jboss.xml descriptor file for each stateful session
bean and add the <clustered> tag.

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>nextgen.StatefulSession</ejb-name>
 <jndi-name>nextgen.StatefulSession</jndi-name>
 <clustered>True</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-nam>
 <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
 <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-balance-
policy>
 <session-state-manager-jndi-name>/HASessionState/Default</session-
state-manager-jndi-name>
 </cluster-config>
 </session>
 </enterprise-beans>
</jboss>

Optimize state replication

175

In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean works in
a cluster. The <cluster-config> element is optional and its default attribute values are indicated in
the sample configuration above.

The <session-state-manager-jndi-name> tag is used to give the JNDI name of the
HASessionState service to be used by this bean.

The description of the remaining tags is identical to the one for stateless session bean. Actions on the
clustered stateful session bean's home interface are by default load-balanced, round-robin. Once the
bean's remote stub is available to the client, calls will not be load-balanced round-robin any more and
will stay "sticky" to the first node in the list.

18.4.2. Optimize state replication
As the replication process is a costly operation, you can optimise this behaviour by optionally
implementing in your bean class a method with the following signature:

public boolean isModified();

Before replicating your bean, the container will detect if your bean implements this method. If your
bean does, the container calls the isModified() method and it only replicates the bean when
the method returns true. If the bean has not been modified (or not enough to require replication,
depending on your own preferences), you can return false and the replication would not occur. This
feature is available on JBoss Enterprise Application Platform 3.0.1+ only.

18.4.3. The HASessionState service configuration
The HASessionState service MBean is defined in the all/deploy/cluster-service.xml file.

<mbean code="org.jboss.ha.hasessionstate.server.HASessionStateService"
 name="jboss:service=HASessionState">
 <depends>jboss:service=Naming</depends>
 <!--
 We now inject the partition into the HAJNDI service instead
 of requiring that the partition name be passed
 -->
 <depends optional-attribute-name="ClusterPartition" proxy-
type="attribute">
 jboss:service=${jboss.partition.name:DefaultPartition}
 </depends>
 <!-- JNDI name under which the service is bound -->
 <attribute name="JndiName">/HASessionState/Default</attribute>
 <!--
 Max delay before cleaning unreclaimed state.
 Defaults to 30*60*1000 => 30 minutes
 -->
 <attribute name="BeanCleaningDelay">0</attribute>
</mbean>

The configuration attributes in the HASessionState MBean are listed below.

Chapter 18. Clustered Session EJBs

176

• ClusterPartition is a required attribute to inject the HAPartition service that HA-JNDI uses for intra-
cluster communication.

• JndiName is an optional attribute to specify the JNDI name under which this HASessionState
service is bound. The default value is /HAPartition/Default.

• BeanCleaningDelay is an optional attribute to specify the number of miliseconds after which the
HASessionState service can clean a state that has not been modified. If a node, owning a bean,
crashes, its brother node will take ownership of this bean. Nevertheless, the container cache of
the brother node will not know about it (because it has never seen it before) and will never delete
according to the cleaning settings of the bean. That is why the HASessionState service needs to
do this cleanup sometimes. The default value is 30*60*1000 milliseconds (i.e., 30 minutes).

18.4.4. Handling Cluster Restart
We have covered the HA smart client architecture in the section called “Client-side interceptor
architecture”. The default HA smart proxy client can only failover as long as one node in the cluster
exists. If there is a complete cluster shutdown, the proxy becomes orphaned and loses knowledge of
the available nodes in the cluster. There is no way for the proxy to recover from this. The proxy needs
to look up a fresh set of targets out of JNDI/HAJNDI when the nodes are restarted.

The 3.2.7+/4.0.2+ releases contain a RetryInterceptor that can be added to the proxy client side
interceptor stack to allow for a transparent recovery from such a restart failure. To enable it for an
EJB, setup an invoker-proxy-binding that includes the RetryInterceptor. Below is an example jboss.xml
configuration.

<jboss>
 <session>
 <ejb-name>nextgen_RetryInterceptorStatelessSession</ejb-name>
 <invoker-bindings>
 <invoker>
 <invoker-proxy-binding-name>clustered-retry-stateless-rmi-invoker</
invoker-proxy-binding-name>
 <jndi-name>nextgen_RetryInterceptorStatelessSession</jndi-name>
 </invoker>
 </invoker-bindings>
 <clustered>true</clustered>
 </session>
 <invoker-proxy-binding>
 <name>clustered-retry-stateless-rmi-invoker</name>
 <invoker-mbean>jboss:service=invoker,type=jrmpha</invoker-mbean>
 <proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
 <proxy-factory-config>
 <client-interceptors>
 <home>
 <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</
interceptor>

JNDI Lookup Process

177

 </home>
 <bean>
 <interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</
interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</
interceptor>
 </bean>
 </client-interceptors>
 </proxy-factory-config>
 </invoker-proxy-binding>
</jboss>

18.4.5. JNDI Lookup Process
In order to recover the HA proxy, the RetryInterceptor does a lookup in JNDI. This means that
internally it creates a new InitialContext and does a JNDI lookup. But, for that lookup to succeed, the
InitialContext needs to be configured properly to find your naming server. The RetryInterceptor will go
through the following steps in attempting to determine the proper naming environment properties:

1. It will check its own static retryEnv field. This field can be set by client code via a call to
RetryInterceptor.setRetryEnv(Properties). This approach to configuration has two downsides: first,
it reduces portability by introducing JBoss-specific calls to the client code; and second, since a
static field is used only a single configuration per JVM is possible.

2. If the retryEnv field is null, it will check for any environment properties bound to
a ThreadLocal by the org.jboss.naming.NamingContextFactory class. To use
this class as your naming context factory, in your jndi.properties set property
java.naming.factory.initial=org.jboss.naming.NamingContextFactory. The advantage of this
approach is use of org.jboss.naming.NamingContextFactory is simply a configuration option
in your jndi.properties file, and thus your java code is unaffected. The downside is the naming
properties are stored in a ThreadLocal and thus are only visible to the thread that originally
created an InitialContext.

3. If neither of the above approaches yield a set of naming environment properties, a default
InitialContext is used. If the attempt to contact a naming server is unsuccessful, by default the
InitialContext will attempt to fall back on multicast discovery to find an HA-JNDI naming server.
See the section on “ClusteredJNDI Services” for more on multicast discovery of HA-JNDI.

18.4.6. SingleRetryInterceptor
The RetryInterceptor is useful in many use cases, but a disadvantage it has is that it will continue
attempting to re-lookup the HA proxy in JNDI until it succeeds. If for some reason it cannot succeed,
this process could go on forever, and thus the EJB call that triggered the RetryInterceptor will never
return. For many client applications, this possibility is unacceptable. As a result, JBoss doesn't make
the RetryInterceptor part of its default client interceptor stacks for clustered EJBs.

In the 4.0.4.RC1 release, a new flavor of retry interceptor was introduced, the
org.jboss.proxy.ejb.SingleRetryInterceptor. This version works like the RetryInterceptor, but only
makes a single attempt to re-lookup the HA proxy in JNDI. If this attempt fails, the EJB call will fail just

Chapter 18. Clustered Session EJBs

178

as if no retry interceptor was used. Beginning with 4.0.4.CR2, the SingleRetryInterceptor is part of the
default client interceptor stacks for clustered EJBs.

The downside of the SingleRetryInterceptor is that if the retry attempt is made during a portion of a
cluster restart where no servers are available, the retry will fail and no further attempts will be made.

Chapter 19.

179

Clustered Entity EJBs
In a JBoss Enterprise Application Platform cluster, entity bean instance caches need to be kept in sync
across all nodes. If an entity bean provides remote services, the service methods need to be load
balanced as well.

19.1. Entity Bean in EJB 3.0
In EJB 3.0, entity beans primarily serve as a persistence data model. They do not provide remote
services. Hence, the entity bean clustering service in EJB 3.0 primarily deals with distributed caching
and replication, instead of load balancing.

19.1.1. Configure the distributed cache
To avoid round trips to the database, you can use a cache for your entities. JBoss EJB 3.0 entity
beans are implemented by Hibernate, which has support for a second-level cache. The second-level
cache provides the following functionalities:

• If you persist a cache-enabled entity bean instance to the database via the entity manager, the entity
will be inserted into the cache.

• If you update an entity bean instance, and save the changes to the database via the entity manager,
the entity will be updated in the cache.

• If you remove an entity bean instance from the database via the entity manager, the entity will be
removed from the cache.

• If loading a cached entity from the database via the entity manager, and that entity does not exist in
the database, it will be inserted into the cache.

As well as a region for caching entities, the second-level cache also contains regions for caching
collections, queries, and timestamps. The Hibernate setup used for the JBoss EJB 3.0 implementation
uses JBoss Cache as its underlying second-level cache implementation.

Configuration of a the second-level cache is done via your EJB3 deployment's persistence.xml.

e.g.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="tempdb" transaction-type="JTA">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.cache.use_second_level_cache" value="true"/
>
 <property name="hibernate.cache.use_query_cache" value="true"/>
 <property name="hibernate.cache.region.factory_class"
 value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>

Chapter 19. Clustered Entity EJBs

180

 <!-- region factory specific properties -->
 <property name="hibernate.cache.region.jbc2.cachefactory"
 value="java:CacheManager"/>
 <property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-
entity"/>
 <property name="hibernate.cache.region.jbc2.cfg.collection"
 value="mvcc-entity"/>
 </properties>
 </persistence-unit>
</persistence>

hibernate.cache.use_second_level_cache
Enables second-level caching of entities and collections.

hibernate.cache.use_query_cache
Enables second-level caching of queries.

hibernate.cache.region.factory_class
Defines the RegionFactory implementation that dictates region-specific caching behavior.
Hibernate ships with 2 types of JBoss Cache-based second-level caches: shared and multiplexed.

A shared region factory uses the same Cache for all cache regions - much like the legacy
CacheProvider implementation in older Hibernate versions.

Hibernate ships with 2 shared region factory implementations:

org.hibernate.cache.jbc2.SharedJBossCacheRegionFactory
Uses a single JBoss Cache configuration, from a newly instantiated CacheManager, for all
cache regions.

Property Default Description

hibernate.cache.region.jbc2.cfg.sharedtreecache.xml The classpath or filesystem
resource containing the
JBoss Cache configuration
settings.

hibernate.cache.region.jbc2.cfg.jgroups.stacksorg/hibernate/cache/jbc2/
builder/jgroups-stacks.xml

The classpath or filesystem
resource containing the
JGroups protocol stack
configurations.

Table 19.1. Additional properties for SharedJBossCacheRegionFactory

org.hibernate.cache.jbc2.JndiSharedJBossCacheRegionFactory
Uses a single JBoss Cache configuration, from an existing CacheManager bound to JNDI, for
all cache regions.

Property Default Description

hibernate.cache.region.jbc2.cfg.sharedRequired JNDI name to which the
shared Cache instance is
bound.

Table 19.2. Additional properties for JndiSharedJBossCacheRegionFactory

Configure the distributed cache

181

A multiplexed region factory uses separate Cache instances, using optimized configurations for
each cache region.

Property Default Description

hibernate.cache.region.jbc2.cfg.entityoptimistic-entity The JBoss Cache
configuration used for the
entity cache region. Alternative
configurations: mvcc-entity,
pessimistic-entity, mvcc-entity-
repeatable, optimistic-entity-
repeatable, pessimistic-entity-
repeatable

hibernate.cache.region.jbc2.cfg.collectionoptimistic-entity The JBoss Cache
configuration used for the
collection cache region.
The collection cache region
typically uses the same
configuration as the entity
cache region.

hibernate.cache.region.jbc2.cfg.querylocal-query The JBoss Cache
configuration used for the
query cache region. By
default, cached query results
are not replicated. Alternative
configurations: replicated-
query

hibernate.cache.region.jbc2.cfg.tstimestamps-cache The JBoss Cache
configuration used for the
timestamp cache region. If
query caching is used, the
corresponding timestamp
cache must be replicating,
even if the query cache is non-
replicating. The timestamp
cache region must never
share the same cache as the
query cache.

Table 19.3. Common properties for multiplexed region factory implementations

Hibernate ships with 2 shared region factory implementations:

org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory
Uses separate JBoss Cache configurations, from a newly instantiated CacheManager, per
cache region.

Property Default Description

hibernate.cache.region.jbc2.configsorg/hibernate/cache/jbc2/
builder/jbc2-configs.xml

The classpath or filesystem
resource containing the
JBoss Cache configuration
settings.

Chapter 19. Clustered Entity EJBs

182

hibernate.cache.region.jbc2.cfg.jgroups.stacksorg/hibernate/cache/jbc2/
builder/jgroups-stacks.xml

The classpath or filesystem
resource containing the
JGroups protocol stack
configurations.

Table 19.4. Additional properties for MultiplexedJBossCacheRegionFactory

org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory
Uses separate JBoss Cache configurations, from a JNDI-bound CacheManager, see
Section 16.2.1, “The JBoss Enterprise Application Platform CacheManager Service”, per
cache region.

Property Default Description

hibernate.cache.region.jbc2.cachefactoryRequired JNDI name to which the
CacheManager instance is
bound.

Table 19.5. Additional properties for JndiMultiplexedJBossCacheRegionFactory

Now, we have JBoss Cache configured to support distributed caching of EJB 3.0 entity beans. We still
have to configure individual entity beans to use the cache service.

19.1.2. Configure the entity beans for cache
Next we need to configure which entities to cache. The default is to not cache anything, even with the
settings shown above. We use the @org.hibernate.annotations.Cache annotation to tag entity
beans that needs to be cached.

@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL)
public class Account implements Serializable
{
 //
}

A very simplified rule of thumb is that you will typically want to do caching for objects that rarely
change, and which are frequently read. You can fine tune the cache for each entity bean in the
appropriate JBoss Cache configuration file, e.g. jboss-cache-manager-jboss-beans.xml. For instance,
you can specify the size of the cache. If there are too many objects in the cache, the cache could
evict oldest objects (or least used objects, depending on configuration) to make room for new objects.
Assuming the region_prefix specified in persistence.xml was myprefix, the default name of the
cache region for the com.mycompany.entities.Account entity bean would be /myprefix/com/
mycompany/entities/Account.

<bean name="..." class="org.jboss.cache.config.Configuration">

 <property name="evictionConfig">
 <bean class="org.jboss.cache.config.EvictionConfig">
 <property name="wakeupInterval">5000</property>
 <!-- Overall default -->
 <property name="defaultEvictionRegionConfig">

Configure the entity beans for cache

183

 <bean class="org.jboss.cache.config.EvictionRegionConfig">
 <property name="regionName">/</property>
 <property name="evictionAlgorithmConfig">
 <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
 <!-- Evict LRU node once we have more than this number of
 nodes -->
 <property name="maxNodes">10000</property>
 <!-- And, evict any node that hasn't been accessed in this
 many seconds -->
 <property name="timeToLiveSeconds">1000</property>
 <!-- Don't evict a node that's been accessed within this many
 seconds.
 Set this to a value greater than your max expected
 transaction length. -->
 <property name="minTimeToLiveSeconds">120</property>
 </bean>
 </property>
 </bean>
 </property>
 <property name="evictionRegionConfigs">
 <list>
 <bean class="org.jboss.cache.config.EvictionRegionConfig">
 <property name="regionName">/com/mycompany/entities/Account</
property>
 <property name="evictionAlgorithmConfig">
 <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
 <property name="maxNodes">10000</property>
 <property name="timeToLiveSeconds">5000</property>
 <property name="minTimeToLiveSeconds">120</property>
 </bean>
 </property>
 </bean>

 </list>
 </property>
 </bean>
 </property>
</bean>

If you do not specify a cache region for an entity bean class, all instances of this class will be cached
in the /_default region as defined above. The @Cache annotation exposes an optional attribute
“region” that lets you specify the cache region where an entity is to be stored, rather than having it be
automatically be created from the fully-qualified class name of the entity class.

@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = ”Account”)
public class Account implements Serializable
{
 //
}

Chapter 19. Clustered Entity EJBs

184

The eviction configuration would then become:

<server>
 <mbean code="org.jboss.cache.TreeCache"
 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">
 <config>
 <attribute name="wakeUpIntervalSeconds">5</attribute>
 <region name="/_default_">
 <attribute name="maxNodes">5000</attribute>
 <attribute name="timeToLiveSeconds">1000</attribute>
 </region>
 <!-- Separate eviction rules for Account entities -->
 <region name="/myprefix/Account">
 <attribute name="maxNodes">10000</attribute>
 <attribute name="timeToLiveSeconds">5000</attribute>
 </region>

 </config>
 </attribute>
 </mbean>
</server>

19.1.3. Query result caching
The EJB3 Query API also provides means for you to save in the second-level cache the results (i.e.,
collections of primary keys of entity beans, or collections of scalar values) of specified queries. Here
we show a simple example of annotating a bean with a named query, also providing the Hibernate-
specific hints that tells Hibernate to cache the query.

First, in persistence.xml you need to tell Hibernate to enable query caching:

<property name="hibernate.cache.use_query_cache" value="true"/>

Next, you create a named query associated with an entity, and tell Hibernate you want to cache the
results of that query:

@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = ”Account”)
@NamedQueries(
{
 @NamedQuery(
 name = "account.bybranch",
 query = "select acct from Account as acct where acct.branch = ?1",
 hints = { @QueryHint(name = "org.hibernate.cacheable", value =
 "true") }
)

Query result caching

185

})
public class Account implements Serializable
{
 //
}

The @NamedQueries, @NamedQuery and @QueryHint annotations are all in the javax.persistence
package. See the Hibernate and EJB3 documentation for more on how to use EJB3 queries and on
how to instruct EJB3 to cache queries.

By default, Hibernate stores query results in JBoss Cache in a region named {region_prefix}/org/
hibernate/cache/StandardQueryCache. Based on this, you can set up separate eviction handling for
your query results. So, if the region prefix were set to myprefix in persistence.xml, you could, for
example, create this sort of eviction handling:

<server>
 <mbean code="org.jboss.cache.TreeCache"
 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">
 <config>
 <attribute name="wakeUpIntervalSeconds">5</attribute>
 <region name="/_default_">
 <attribute name="maxNodes">5000</attribute>
 <attribute name="timeToLiveSeconds">1000</attribute>
 </region>
 <!-- Separate eviction rules for Account entities -->
 <region name="/myprefix/Account">
 <attribute name="maxNodes">10000</attribute>
 <attribute name="timeToLiveSeconds">5000</attribute>
 </region>
 <!-- Cache queries for 10 minutes -->
 <region name="/myprefix/org/hibernate/cache/StandardQueryCache">
 <attribute name="maxNodes">100</attribute>
 <attribute name="timeToLiveSeconds">600</attribute>
 </region>

 </config>
 </attribute>
 </mbean>
</server>

The @NamedQuery.hints attribute shown above takes an array of vendor-specific @QueryHints as a
value. Hibernate accepts the “org.hibernate.cacheRegion” query hint, where the value is the name of a
cache region to use instead ofthe default /org/hibernate/cache/StandardQueryCache. For example:

@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = ”Account”)
@NamedQueries(

Chapter 19. Clustered Entity EJBs

186

{
 @NamedQuery(
 name = "account.bybranch",
 query = "select acct from Account as acct where acct.branch = ?1",
 hints =
 {
 @QueryHint(name = "org.hibernate.cacheable", value = "true"),
 @QueryHint(name = ”org.hibernate.cacheRegion, value = ”Queries”)
 }
)
})
public class Account implements Serializable
{
 //
}

The related eviction configuration:

<server>
 <mbean code="org.jboss.cache.TreeCache"
 name="jboss.cache:service=EJB3EntityTreeCache">

 <attribute name="EvictionPolicyConfig">
 <config>
 <attribute name="wakeUpIntervalSeconds">5</attribute>
 <region name="/_default_">
 <attribute name="maxNodes">5000</attribute>
 <attribute name="timeToLiveSeconds">1000</attribute>
 </region>
 <!-- Separate eviction rules for Account entities -->
 <region name="/myprefix/Account">
 <attribute name="maxNodes">10000</attribute>
 <attribute name="timeToLiveSeconds">5000</attribute>
 </region>
 <!-- Cache queries for 10 minutes -->
 <region name="/myprefix/Queries">
 <attribute name="maxNodes">100</attribute>
 <attribute name="timeToLiveSeconds">600</attribute>
 </region>

 </config>
 </attribute>
 </mbean>
</server>

19.2. Entity Bean in EJB 2.x
First of all, it is worth noting that clustering 2.x entity beans is a bad thing to do. Its exposes elements
that generally are too fine grained for use as remote objects to clustered remote objects and
introduces data synchronization problems that are non-trivial. Do NOT use EJB 2.x entity bean

Entity Bean in EJB 2.x

187

clustering unless you fit into the sepecial case situation of read-only, or one read-write node with read-
only nodes synched with the cache invalidation services.

To use a clustered entity bean, the application does not need to do anything special, except for looking
up EJB 2.x remote bean references from the clustered HA-JNDI.

To cluster EJB 2.x entity beans, you need to add the <clustered> element to the application's
jboss.xml descriptor file. Below is a typical jboss.xml file.

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>nextgen.EnterpriseEntity</ejb-name>
 <jndi-name>nextgen.EnterpriseEntity</jndi-name>
 <clustered>True</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
 <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-balance-
policy>
 </cluster-config>
 </entity>
 </enterprise-beans>
</jboss>

The EJB 2.x entity beans are clustered for load balanced remote invocations. All the bean instances
are synchronized to have the same contents on all nodes.

However, clustered EJB 2.x Entity Beans do not have a distributed locking mechanism or a distributed
cache. They can only be synchronized by using row-level locking at the database level (see <row-
lock> in the CMP specification) or by setting the Transaction Isolation Level of your JDBC driver to
be TRANSACTION_SERIALIZABLE. Because there is no supported distributed locking mechanism
or distributed cache Entity Beans use Commit Option "B" by default (See standardjboss.xml
and the container configurations Clustered CMP 2.x EntityBean, Clustered CMP EntityBean, or
Clustered BMP EntityBean). It is not recommended that you use Commit Option "A" unless your
Entity Bean is read-only. (There are some design patterns that allow you to use Commit Option "A"
with read-mostly beans. You can also take a look at the Seppuku pattern http://dima.dhs.org/misc/
readOnlyUpdates.html. JBoss may incorporate this pattern into later versions.)

Note
If you are using Bean Managed Persistence (BMP), you are going to have to implement
synchronization on your own. The MVCSoft CMP 2.0 persistence engine (see http://
www.jboss.org/jbossgroup/partners.jsp) provides different kinds of optimistic locking
strategies that can work in a JBoss cluster.

http://dima.dhs.org/misc/readOnlyUpdates.html
http://dima.dhs.org/misc/readOnlyUpdates.html
http://www.jboss.org/jbossgroup/partners.jsp
http://www.jboss.org/jbossgroup/partners.jsp

188

Chapter 20.

189

HTTP Services
HTTP session replication is used to replicate the state associated with web client sessions to other
nodes in a cluster. Thus, in the event one of your nodes crashes, another node in the cluster will be
able to recover. Two distinct functions must be performed:

• Session state replication

• Load-balancing of incoming invocations

State replication is directly handled by JBoss. When you run JBoss in the all configuration, session
state replication is enabled by default. Just configure your web application as <distributable> in
its web.xml (see below), deploy it, and its session state is automtically replicated across all JBoss
instances in the cluster.

However, load-balancing is a different story; it is not handled by JBoss itself and requires an external
load balancer. This function could be provided by specialized hardware switches or routers (Cisco
LoadDirector for example) or by specialized software running on commodity hardware. As a very
common scenario, we will demonstrate how to set up a software load balancer using Apache httpd
and mod_jk.

Note
A load-balancer tracks HTTP requests and, depending on the session to which the
request is linked, it dispatches the request to the appropriate node. This is called load-
balancing with sticky-sessions or session affinity: once a session is created on a node,
every future request will also be processed by that same node. Using a load-balancer that
supports sticky-sessions but not configuring your web application for session replication
allows you to scale very well by avoiding the cost of session state replication: each
request for a session will always be handled by the same node. But in case a node dies,
the state of all client sessions hosted by this node (the shopping carts, for example) will
be lost and the clients will most probably need to login on another node and restart with a
new session. In many situations, it is acceptable not to replicate HTTP sessions because
all critical state is stored in a database. In other situations, losing a client session is not
acceptable and, in this case, session state replication is the price one has to pay.

20.1. Configuring load balancing using Apache and mod_jk
Apache is a well-known web server which can be extended by plugging in modules. One of these
modules, mod_jk has been specifically designed to allow the forwarding of requests from Apache to a
Servlet container. Furthermore, it is also able to load-balance HTTP calls to a set of Servlet containers
while maintaining sticky sessions, which is what is most interesting for us in this section.

20.1.1. Download the software
First of all, make sure that you have Apache installed. You can download Apache directly from Apache
web site at http://httpd.apache.org/. Its installation is pretty straightforward and requires no
specific configuration. As several versions of Apache exist, we advise you to use version 2.0.x. We will
consider, for the next sections, that you have installed Apache in the APACHE_HOME directory.

Next, download mod_jk binaries. Several versions of mod_jk exist as well. We strongly advise you
to use mod_jk 1.2.x, as both mod_jk and mod_jk2 are deprecated, unsupported and no further

Chapter 20. HTTP Services

190

developments are going on in the community. The mod_jk 1.2.x binary can be downloaded from
http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/. Rename the
downloaded file to mod_jk.so and copy it under APACHE_HOME/modules/.

20.1.2. Configure Apache to load mod_jk
Modify APACHE_HOME/conf/httpd.conf and add a single line at the end of the file:

Include mod_jk's specific configuration file
Include conf/mod-jk.conf

Next, create a new file named APACHE_HOME/conf/mod-jk.conf:

Load mod_jk module
Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y]"

JkOptions indicates to send SSK KEY SIZE
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat
JkRequestLogFormat "%w %V %T"

Mount your applications
JkMount /application/* loadbalancer

You can use external file for mount points.
It will be checked for updates each 60 seconds.
The format of the file is: /url=worker
/examples/*=loadbalancer
JkMountFile conf/uriworkermap.properties

Add shared memory.
This directive is present with 1.2.10 and
later versions of mod_jk, and is needed for
for load balancing to work properly
JkShmFile logs/jk.shm

Configure worker nodes in mod_jk

191

Add jkstatus for managing runtime data
<Location /jkstatus/>
 JkMount status
 Order deny,allow
 Deny from all
 Allow from 127.0.0.1
</Location>

Please note that two settings are very important:

• The LoadModule directive must reference the mod_jk library you have downloaded in the previous
section. You must indicate the exact same name with the "modules" file path prefix.

• The JkMount directive tells Apache which URLs it should forward to the mod_jk module (and, in
turn, to the Servlet containers). In the above file, all requests with URL path /application/* are
sent to the mod_jk load-balancer. This way, you can configure Apache to server static contents (or
PHP contents) directly and only use the loadbalancer for Java applications. If you only use mod_jk
as a loadbalancer, you can also forward all URLs (i.e., /*) to mod_jk.

In addition to the JkMount directive, you can also use the JkMountFile directive to specify a mount
points configuration file, which contains multiple Tomcat forwarding URL mappings. You just need
to create a uriworkermap.properties file in the APACHE_HOME/conf directory. The format of
the file is /url=worker_name. To get things started, paste the following example into the file you
created:

Simple worker configuration file

Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/web-console=loadbalancer
/web-console/*=loadbalancer

This will configure mod_jk to forward requests to /jmx-console and /web-console to Tomcat.

You will most probably not change the other settings in mod_jk.conf. They are used to tell mod_jk
where to put its logging file, which logging level to use and so on.

20.1.3. Configure worker nodes in mod_jk
Next, you need to configure mod_jk workers file conf/workers.properties. This file specifies
where the different Servlet containers are located and how calls should be load-balanced across them.
The configuration file contains one section for each target servlet container and one global section. For
a two nodes setup, the file could look like this:

Define list of workers that will be used
for mapping requests
worker.list=loadbalancer,status

Chapter 20. HTTP Services

192

Define Node1
modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.lbfactor=1
worker.node1.cachesize=10

Define Node2
modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host= node2.mydomain.com
worker.node2.type=ajp13
worker.node2.lbfactor=1
worker.node2.cachesize=10

Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1
#worker.list=loadbalancer

Status worker for managing load balancer
worker.status.type=status

Basically, the above file configures mod_jk to perform weighted round-robin load balancing with sticky
sessions between two servlet containers (JBoss Tomcat) node1 and node2 listening on port 8009.

In the works.properties file, each node is defined using the worker.XXX naming convention
where XXX represents an arbitrary name you choose for each of the target Servlet containers. For
each worker, you must specify the host name (or IP address) and the port number of the AJP13
connector running in the Servlet container.

The lbfactor attribute is the load-balancing factor for this specific worker. It is used to define the
priority (or weight) a node should have over other nodes. The higher this number is for a given worker
relative to the other workers, the more HTTP requests the worker will receive. This setting can be used
to differentiate servers with different processing power.

The cachesize attribute defines the size of the thread pools associated to the Servlet container
(i.e. the number of concurrent requests it will forward to the Servlet container). Make sure this
number does not outnumber the number of threads configured on the AJP13 connector of the Servlet
container. Please review http://jakarta.apache.org/tomcat/connectors-doc/config/
workers.html for comments on cachesize for Apache 1.3.x.

The last part of the conf/workers.properties file defines the loadbalancer worker. The only thing
you must change is the worker.loadbalancer.balanced_workers line: it must list all workers
previously defined in the same file: load-balancing will happen over these workers.

The sticky_session property specifies the cluster behavior for HTTP sessions. If you specify
worker.loadbalancer.sticky_session=0, each request will be load balanced between node1
and node2; i.e., different requests for the same session will go to different servers. But when a user
opens a session on one server, it is always necessary to always forward this user's requests to the
same server, as long as that server is available. This is called a "sticky session", as the client is always

Configuring JBoss to work with mod_jk

193

using the same server he reached on his first request. To enable session stickiness, you need to set
worker.loadbalancer.sticky_session to 1.

Note
A non-loadbalanced setup with a single node requires a worker.list=node1 entry.

20.1.4. Configuring JBoss to work with mod_jk
Finally, we must configure the JBoss Tomcat instances on all clustered nodes so that they can expect
requests forwarded from the mod_jk loadbalancer.

On each clustered JBoss node, we have to name the node according to the name specified in
workers.properties. For instance, on JBoss instance node1, edit the JBOSS_HOME/server/
all/deploy/jboss-web.deployer/server.xml file (replace /all with your own server name if
necessary). Locate the <Engine> element and add an attribute jvmRoute:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
... ...
</Engine>

You also need to be sure the AJP connector in server.xml is enabled (i.e., uncommented). It is enabled
by default.

<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connector port="8009" address="${jboss.bind.address}" protocol="AJP/1.3"
emptySessionPath="true" enableLookups="false" redirectPort="8443" />

Then, for each JBoss Tomcat instance in the cluster, we need to tell it that mod_jk is in use, so it can
properly manage the jvmRoute appended to its session cookies so that mod_jk can properly route
incoming requests. Edit the JBOSS_HOME/server/all/deploy/jbossweb-tomcat50.sar/
META-INF/jboss-service.xml file (replace /all with your own server name). Locate the
<attribute> element with a name of UseJK, and set its value to true:

<attribute name="UseJK">true</attribute>

At this point, you have a fully working Apache+mod_jk load-balancer setup that will balance call to the
Servlet containers of your cluster while taking care of session stickiness (clients will always use the
same Servlet container).

Note
For more updated information on using mod_jk 1.2 with JBoss Tomcat, please
refer to the JBoss wiki page at http://wiki.jboss.org/wiki/Wiki.jsp?
page=UsingMod_jk1.2WithJBoss.

Chapter 20. HTTP Services

194

20.2. Configuring HTTP session state replication
The preceding discussion has been focused on using mod_jk as a load balancer. The content of the
remainder our discussion of clustering HTTP services in JBoss Enterprise Application Platform applies
no matter what load balancer is used.

In Section 20.1.3, “Configure worker nodes in mod_jk”, we covered how to use sticky sessions to
make sure that a client in a session always hits the same server node in order to maintain the session
state. However, sticky sessions by themselves are not an ideal solution. If a node goes down, all its
session data is lost. A better and more reliable solution is to replicate session data across the nodes in
the cluster. This way, the client can hit any server node and obtain the same session state.

The jboss.cache:service=TomcatClusteringCache MBean makes use of JBoss Cache to
provide HTTP session replication services to the JBoss Tomcat cluster. This MBean is defined in the
deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file.

Note
Before JBoss Enterprise Application Platform 4.2.0, the location of the HTTP session
cache configuration file was deploy/tc5-cluster.sar/META-INF/jboss-
service.xml.

Below is a typical deploy/jbossweb-cluster.sar/META-INF/jboss-service.xml file. The
configuration attributes in the TomcatClusteringCache MBean are very similar to those in the
JBoss Enterprise Application Platform cache configuration.

<mbean code="org.jboss.cache.aop.TreeCacheAop"
 name="jboss.cache:service=TomcatClusteringCache">

 <depends>jboss:service=Naming</depends>
 <depends>jboss:service=TransactionManager</depends>
 <depends>jboss.aop:service=AspectDeployer</depends>

 <attribute name="TransactionManagerLookupClass">
 org.jboss.cache.BatchModeTransactionManagerLookup
 </attribute>

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <attribute name="CacheMode">REPL_ASYNC</attribute>

 <attribute name="ClusterName">
 Tomcat-${jboss.partition.name:Cluster}
 </attribute>

 <attribute name="UseMarshalling">false</attribute>

 <attribute name="InactiveOnStartup">false</attribute>

 <attribute name="ClusterConfig">

Enabling session replication in your application

195

 </attribute>

 <attribute name="LockAcquisitionTimeout">15000</attribute>
 <attribute name="SyncReplTimeout">20000</attribute>
</mbean>

Note that the value of the mbean element's code attribute is org.jboss.cache.aop.TreeCacheAop,
which is different from the other JBoss Cache Mbeans used in JBoss Enterprise Application Platform.
This is because FIELD granularity HTTP session replication (covered below) needs the added
features of the TreeCacheAop (a.k.a. PojoCache) class.

The details of all the configuration options for a TreeCache MBean are covered in the JBoss Cache
documentation. Below, we will just discuss several attributes that are most relevant to the HTTP
cluster session replication.

• TransactionManagerLookupClass sets the transaction manager factory. The default value is
org.jboss.cache.BatchModeTransactionManagerLookup. It tells the cache NOT to
participate in JTA-specific transactions. Instead, the cache manages its own transactions. Please do
not change this.

• CacheMode controls how the cache is replicated. The valid values are REPL_SYNC and
REPL_ASYNC. With either setting the client request thread updates the local cache with the current
sesssion contents and then sends a message to the caches on the other members of the cluster,
telling them to make the same change. With REPL_ASYNC (the default) the request thread returns
as soon as the update message has been put on the network. With REPL_SYNC, the request
thread blocks until it gets a reply message from all cluster members, informing it that the update was
successfully applied. Using synchronous replication makes sure changes are applied aroundthe
cluster before the web request completes. However, synchronous replication is much slower.

• ClusterName specifies the name of the cluster that the cache works within. The default cluster
name is the the word "Tomcat-" appended by the current JBoss partition name. All the nodes must
use the same cluster name.

• The UseMarshalling and InactiveOnStartup attributes must have the same value. They must be
true if FIELD level session replication is needed (see later). Otherwise, they are default to false.

• ClusterConfig configures the underlying JGroups stack. Please refer to Section 23.1, “Configuring
a JGroups Channel's Protocol Stack” for more information.

• LockAcquisitionTimeout sets the maximum number of milliseconds to wait for a lock acquisition
when trying to lock a cache node. The default value is 15000.

• SyncReplTimeout sets the maximum number of milliseconds to wait for a response from all nodes
in the cluster when a synchronous replication message is sent out. The default value is 20000;
should be a few seconds longer than LockAcquisitionTimeout.

20.2.1. Enabling session replication in your application
To enable clustering of your web application you must tag it as distributable in the web.xml descriptor.
Here's an example:

<?xml version="1.0"?>

Chapter 20. HTTP Services

196

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd"
 version="2.4">
 <distributable/>
 <!-- ... -->
</web-app>

You can futher configure session replication using the replication-config element in the jboss-
web.xml file. Here is an example:

<jboss-web>
 <replication-config>
 <replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-
trigger>
 <replication-granularity>SESSION</replication-granularity>
 <replication-field-batch-mode>true</replication-field-batch-mode>
 </replication-config>
</jboss-web>

The replication-trigger element determines what triggers a session replication (i.e. when is a
session is considered dirty and in need of replication). It has 4 options:

• SET: With this policy, the session is considered dirty only when an attribute is set in the session (i.e.,
HttpSession.setAttribute() is invoked.) If your application always writes changed values back into
the session, this option will be most optimal in terms of performance. The downside of SET is that
if an object is retrieved from the session and modified without being written back into the session,
the session manager will not know the attribute is dirty and the change to that object may not be
replicated.

• SET_AND_GET: With this policy, any attribute that is get or set will be marked as dirty. If an object
is retrieved from the session and modified without being written back into the session, the change
to that object will be replicated. The downside of SET_AND_GET is that it can have significant
performance implications, since even reading immutable objects from the session (e.g., strings,
numbers) will mark the read attributes as needing to be replicated.

• SET_AND_NON_PRIMITIVE_GET: This policy is similar to the SET_AND_GET policy except that
get operationsthat return attribute values with primitive types do not mark the attribute as dirty.
Primitive system types (i.e., String, Integer, Long, etc.) are immutable, so there is no reason to mark
an attribute with such a type as dirty just because it has been read. If a get operation returns a
value of a non-primitive type, the session manager has no simple way to know whether the object is
mutable, so it assumes it is an marks the attribute as dirty. This setting avoids the downside of SET
while reducing the performance impact of SET_AND_GET. It is the default setting.

• ACCESS: This option causes the session to be marked as dirty whenever it is accessed. Since
a the session is accessed during each HTTP request, it will be replicated with each request. The
purpose of ACCESS is to ensure session last-access timestamps are kept in sync around the
cluster.. Since with the other replication-trigger options the time stamp may not be updated in other
clustering nodes because of no replication, the session in other nodes may expire before the active
node if the HTTP request does not retrieve or modify any session attributes. When this option is

Using FIELD level replication

197

set, the session timestamps will be synchronized throughout the cluster nodes. Note that use of this
option can have a significant performance impact, so use it with caution. With the other replication-
trigger options, if a session has gone 80% of its expiration interval without being replicated, as a
safeguard its timestamp will be replicated no matter what. So, ACCESS is only useful in special
circumstances where the above safeguard is considered inadequate.

The replication-granularity element controls the size of the replication units. The supported
values are:

• ATTRIBUTE: Replication is only for the dirty attributes in the session plus some session data, like
the last-accessed timestamp. For sessions that carry large amounts of data, this option can increase
replication performance. However, attributes will be separately serialized, so if there are any shared
references between objects stored in the attributes, those shared references may be broken on
remote nodes. For example, say a Person object stored under key “husband” has a reference to an
Address, while another Person object stored under key “wife” has a reference to that same Address
object. When the “husband” and “wife” attributes are separately deserialized on the remote nodes,
each Person object will now have a reference to its own Address object; the Address object will no
longer be shared.

• SESSION: The entire session object is replicated if any attribute is dirty. The entire session is
serialized in one unit, so shared object references are maintained on remote nodes. This is the
default setting.

• FIELD: Replication is only for individual changed data fields inside session attribute objects. Shared
object references will be preserved across the cluster. Potentially most performant, but requires
changes to your application (this will be discussed later).

The replication-field-batch-mode element indicates whether you want all replication
messages associated with a request to be batched into one message. Only applicable if replication-
granularity is FIELD. Default is true.

If your sessions are generally small, SESSION is the better policy. If your session is larger and some
parts are infrequently accessed, ATTRIBUTE replication will be more effective. If your application has
very big data objects in session attributes and only fields in those objects are frequently modified,
the FIELD policy would be the best. In the next section, we will discuss exactly how the FIELD level
replication works.

20.2.2. Using FIELD level replication
FIELD-level replication only replicates modified data fields inside objects stored in the session. Its
use could potentially drastically reduce the data traffic between clustered nodes, and hence improve
the performance of the whole cluster. To use FIELD-level replication, you have to first prepare (i.e.,
bytecode enhance) your Java class to allow the session cache to detect when fields in cached objects
have been changed and need to be replicated.

The first step in doing this is to identify the classes that need to be prepared. This is done via
annotations. For example:

@org.jboss.cache.aop.AopMarker
public class Address
{
...

Chapter 20. HTTP Services

198

}

If you annotate a class with InstanceAopMarker instead, then all of its subclasses will be automatically
annotated as well. Similarly, you can annotate an interface with InstanceofAopMarker and all of its
implementing classes will be annotated. For example:

@org.jboss.cache.aop.InstanceOfAopMarker
public class Person
{
...
}
then when you have a sub-class like
public class Student extends Person
{
...
}

There will be no need to annotate Student. It will be annotated automatically because it is a sub-
class of Person. Jboss Enterprise Application Platform 4.2 requires JDK 5 at runtime, but some users
may still need to build their projects using JDK 1.4. In this case, annotating classes can be done via
JDK 1.4 style annotations embedded in JavaDocs. For example:

/*
 * My usual comments here first.
 * @@org.jboss.web.tomcat.tc5.session.AopMarker
 */
public class Address
{
...
}

The anologue for @InstanceAopMarker is:

/*
 *
 * @@org.jboss.web.tomcat.tc5.session.InstanceOfAopMarker
 */
public class Person
{
...
}

Once you have annotated your classes, you will need to perform a pre-processing step to bytecode
enhance your classes for use by TreeCacheAop. You need to use the JBoss AOP pre-compiler
annotationc and post-compiler aopc to process the above source code before and after they are
compiled by the Java compiler. The annotationc step is only need if the JDK 1.4 style annotations are
used; if JDK 5 annotations are used it is not necessary. Here is an example on how to invoke those
commands from command line.

Using FIELD level replication

199

$ annotationc [classpath] [source files or directories]
$ javac -cp [classpath] [source files or directories]
$ aopc [classpath] [class files or directories]

Please see the JBoss AOP documentation for the usage of the pre- and post-compiler. The JBoss
AOP project also provides easy to use ANT tasks to help integrate those steps into your application
build process.

Note
You can see a complete example on how to build, deploy, and validate a FIELD-
level replicated web application from this page: http://wiki.jboss.org/wiki/Wiki.jsp?
page=Http_session_field_level_example. The example bundles the pre- and post-compile
tools so you do not need to download JBoss AOP separately.

When you deploy the web application into JBoss Enterprise Application Platform, make sure that the
following configurations are correct:

• In the server's deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml file, the
inactiveOnStartup and useMarshalling attributes must both be true.

• In the application's jboss-web.xml file, the replication-granularity attribute must be
FIELD.

Finally, let's see an example on how to use FIELD-level replication on those data classes. Notice that
there is no need to call session.setAttribute() after you make changes to the data object, and
all changes to the fields are automatically replicated across the cluster.

// Do this only once. So this can be in init(), e.g.
if(firstTime)
{
 Person joe = new Person("Joe", 40);
 Person mary = new Person("Mary", 30);
 Address addr = new Address();
 addr.setZip(94086);

 joe.setAddress(addr);
 mary.setAddress(addr); // joe and mary share the same address!

 session.setAttribute("joe", joe); // that's it.
 session.setAttribute("mary", mary); // that's it.
}

Person mary = (Person)session.getAttribute("mary");
mary.getAddress().setZip(95123); // this will update and replicate the zip
 code.

http://wiki.jboss.org/wiki/Wiki.jsp?page=Http_session_field_level_example
http://wiki.jboss.org/wiki/Wiki.jsp?page=Http_session_field_level_example

Chapter 20. HTTP Services

200

Besides plain objects, you can also use regular Java collections of those objects as session attributes.
JBoss cache automatically figures out how to handle those collections and replicate field changes in
their member objects.

20.3. Monitoring session replication
If you have deployed and accessed your application, go to the
jboss.cache:service=TomcatClusteringCache MBean and invoke the printDetails
operation. You should see output resembling the following.

/JSESSION

/localhost

/quote

/FB04767C454BAB3B2E462A27CB571330
VERSION: 6
FB04767C454BAB3B2E462A27CB571330:
 org.jboss.invocation.MarshalledValue@1f13a81c

/AxCI8Ovt5VQTfNyYy9Bomw**
VERSION: 4
AxCI8Ovt5VQTfNyYy9Bomw**: org.jboss.invocation.MarshalledValue@e076e4c8

This output shows two separate web sessions, in one application named quote, that are being
shared via JBossCache. This example uses a replication-granularity of session. Had
ATTRIBUTE level replication been used, there would be additional entries showing each replicated
session attribute. In either case, the replicated values are stored in an opaque MarshelledValue
container. There aren't currently any tools that allow you to inspect the contents of the replicated
session values. If you do not see any output, either the application was not correctly marked as
distributable or you haven't accessed a part of application that places values in the HTTP
session. The org.jboss.cache and org.jboss.web logging categories provide additional insight
into session replication useful for debugging purposes.

20.4. Using Clustered Single Sign On
JBoss supports clustered single sign-on, allowing a user to authenticate to one web application and
to be recognized on all web applications that are deployed on the same virtual host, whether or not
they are deployed on that same machine or on another node in the cluster. Authentication replication
is handled by JBoss Cache. Clustered single sign-on support is a JBoss-specific extension of the non-
clustered org.apache.catalina.authenticator.SingleSignOn valve that is a standard part
of Tomcat and JBoss Web. Both the non-clustered and clustered versions allow users to sign on to
any one of the web apps associated with a virtual host and have their identity recognized by all other
web apps on the same virtual host. The clustered version brings the added benefits of enabling SSO
failover and allowing a load balancer to direct requests for different webapps to different servers, while
maintaining the SSO.

Configuration

201

20.4.1. Configuration
To enable clustered single sign-on, you must add the ClusteredSingleSignOn valve to the
appropriate Host elements of the JBOSS_HOME/server/all/deploy/jbossweb.sar/
server.xml file. The valve element is already included in the standard file; you just need to
uncomment it. The valve configuration is shown here:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" /
>

The element supports the following attributes:

• className is a required attribute to set the Java class name of the valve implementation to use.
This must be set to org.jboss.web.tomcat.service.sso.ClusteredSingleSign.

• cacheConfig is the name of the cache configuration (see the Editing the CacheManager
Configuration section) to use for the clustered SSO cache. Default is clustered-sso.

• treeCacheName is deprecated; use cacheConfig. Specifies a JMX ObjectName of the
JBoss Cache MBean to use for the clustered SSO cache. If no cache can be located from the
CacheManager service using the value of cacheConfig (see see the Editing the CacheManager
Configuration section), an attempt to locate an mbean registered in JMX under this ObjectName will
be made. Default value is jboss.cache:service=TomcatClusteringCache.

• cookieDomain is used to set the host domain to be used for sso cookies. See Section 20.4.4,
“Configuring the Cookie Domain” for more. Default is "/".

• maxEmptyLife is the maximum number of seconds an SSO with no active sessions will be usable
by a request. The clustered SSO valve tracks what cluster nodes are managing sessions related to
an SSO. A positive value for this attribute allows proper handling of shutdown of a node that is the
only one that had handled any of the sessions associated with an SSO. The shutdown invalidates
the local copy of the sessions, eliminating all sessions from the SSO. If maxEmptyLife were zero,
the SSO would terminate along with the local session copies. But, backup copies of the sessions
(if they are from clustered webapps) are available on other cluster nodes. Allowing the SSO to live
beyond the life of its managed sessions gives the user time to make another request which can fail
over to a different cluster node, where it activates the the backup copy of the session. Default is
1800, i.e. 30 minutes.

• processExpiresInterval is the minimum number of seconds between efforts by the valve to find
and invalidate SSO's that have exceeded their 'maxEmptyLife'. Does not imply effort will be spent
on such cleanup every 'processExpiresInterval', just that it won't occur more frequently than that.
Default is 60.

• requireReauthentication is a flag to determine whether each request needs to be reauthenticated
to the security Realm. If "true", this Valve uses cached security credentials (username and
password) to reauthenticate to the JBoss Web security Realm each request associated with an SSO
session. If false, the valve can itself authenticate requests based on the presence of a valid SSO
cookie, without rechecking with the Realm. Setting to true can allow web applications with different
security-domain configurations to share an SSO. Default is false.

Chapter 20. HTTP Services

202

20.4.2. SSO Behavior
The user will not be challenged as long as he accesses only unprotected resources in any of the web
applications on the virtual host.

Upon access to a protected resource in any web app, the user will be challenged to authenticate,
using the login method defined for the web app.

Once authenticated, the roles associated with this user will be utilized for access control decisions
across all of the associated web applications, without challenging the user to authenticate themselves
to each application individually.

If the web application invalidates a session (by invoking the
javax.servlet.http.HttpSession.invalidate() method), the user's sessions in all web
applications will be invalidated.

A session timeout does not invalidate the SSO if other sessions are still valid.

20.4.3. Limitations
There are a number of known limitations to this Tomcat valve-based SSO implementation:
• Only useful within a cluster of JBoss servers; SSO does not propagate to other resources.

• Requires use of container managed authentication (via <login-config> element in web.xml)

• Requires cookies. SSO is maintained via a cookie and URL rewriting is not supported.

• Unless requireReauthentication is set to true, all web applications configured for the same
SSO valve must share the same JBoss Web Realm and JBoss Security security-domain. This
means:
• In server.xml you can nest the Realm element inside the Host element (or the surrounding
Engine element), but not inside a context.xml packaged with one of the involved web
applications.

• The security-domain configured in jboss-web.xml or jboss-app.xml must be consistent
for all of the web applications.

• Even if you set requireReauthentication to true and use a different security-domain
(or, less likely, a different Realm) for different webapps, the varying security integrations must all
accept the same credentials (e.g. username and password).

20.4.4. Configuring the Cookie Domain
As noted above the SSO valve supports a cookieDomain configuration attribute. This attribute allows
configuration of the SSO cookie's domain (i.e. the set of hosts to which the browser will present the
cookie). By default the domain is "/", meaning the browser will only present the cookie to the host
that issued it. The cookieDomain attribute allows the cookie to be scoped to a wider domain.

For example, suppose we have a case where two apps, with URLs http://app1.xyz.com and
http://app2.xyz.com, that wish to share an SSO context. These apps could be running on
different servers in a cluster or the virtual host with which they are associated could have multiple
aliases. This can be supported with the following configuration:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"

Configuring the Cookie Domain

203

 cookieDomain="xyz.com" />

204

Chapter 21.

205

JBoss Messaging Clustering Notes

21.1. Unique server peer id
JBoss Messaging clustering should work out of the box in the all configuration with no configuration
changes. It is however crucial that every node is assigned a unique server id.

Every node deployed must have a unique id, including those in a particular LAN cluster, and also
those only linked by message bridges.

21.2. Clustered destinations
JBoss Messaging clusters JMS queues and topics transparently across the cluster. Messages sent
to a distributed queue or topic on one node are consumable on other nodes. To designate that a
particular destination is clustered simply set the clustered attribute in the destination deployment
descriptor to true.

JBoss Messaging balances messages between nodes, catering for faster or slower consumers to
efficiently balance processing load across the cluster.

If you do not want message redistribution between nodes, but still want to retain
the other characteristics of clustered destinations, you can specify the attribute
ClusterPullConnectionFactoryName on the server peer.

21.3. Clustered durable subs
JBoss Messaging durable subscriptions can also be clustered. This means multiple subscribers
can consume from the same durable subscription from different nodes of the cluster. A durable
subscription will be clustered if it's topic is clustered.

21.4. Clustered temporary destinations
JBoss Messaging also supports clustered temporary topics and queues. All temporary topics and
queues will be clustered if the post office is clustered.

21.5. Non clustered servers
If you don't want your nodes to participate in a cluster, or only have one non clustered server you can
set the clustered attribute on the postoffice to false.

21.6. Message ordering in the cluster
If you wish to apply strict JMS ordering to messages, such that a particular JMS consumer consumes
messages in the same order as they were produced by a particular producer, you can set the
DefaultPreserveOrdering attribute in the server peer to true. By default this is false.

Note
The side effect of setting this to true is that messages cannot be distributed as freely
around the cluster.

Chapter 21. JBoss Messaging Clustering Notes

206

21.7. Idempotent operations
If the call to send a persistent message to a persistent destination returns successfully with no
exception, then you can be sure that the message was persisted. However if the call doesn't return
successfully e.g. if an exception is thrown, then you can't be sure the message wasn't persisted.
This is because the failure might have occurred after persisting the message but before writing the
response to the caller. This is a common attribute of any RPC type call: You can't tell by the call not
returning that the call didn't actually succeed. Whether it's a web services call, a HTTP get request,
an EJB invocation the same applies. The trick is to code your application so your operations are
idempotent i.e. they can be repeated without getting the system into an inconsistent state. With a
message system you can do this on the application level, by checking for duplicate messages, and
discarding them if they arrive. Duplicate checking is a very powerful technique that can remove the
need for XA transactions in many cases.

21.7.1. Clustered connection factories
If the supportsLoadBalancing attribute of the connection factory is set to true then consecutive
create connection attempts will round robin between available servers. The first node to try is chosen
randomly.

If the supportsFailover attribute of the connection factory is set to true then automatic failover is
enabled. This will automatically failover from one server to another, transparently to the user, in case
of failure.

If automatic failover is not required or you wish to do manual failover (JBoss MQ style) this can be set
to false, and you can supply a standard JMS ExceptionListener on the connection which will be called
in case of connection failure. You would then need to manually close the connection, lookup a new
connection factory from HA JNDI and recreate the connection.

Chapter 22.

207

Clustered Deployment Options

22.1. Clustered Singleton Services
A clustered singleton service (also known as an HA singleton) is a service that is deployed on multiple
nodes in a cluster, but is providing its service on only one of the nodes. The node running the singleton
service is typically called the master node. When the master fails or is shut down, another master is
selected from the remaining nodes and the service is restarted on the new master. Thus, other than
a brief interval when one master has stopped and another has yet to take over, the service is always
being provided by one but only one node.

Figure 22.1. Topology after the Master Node fails

22.1.1. HASingleton Deployment Options
The JBoss Enterprise Application Platform provides support for a number of strategies for helping you
deploy clustered singleton services. In this section we will explore the different strategies. All of the
strategies are built on top of the HAPartition service described in the introduction. They rely on the
HAPartition to provide notifications when different nodes in the cluster start and stop; based on
those notifications each node in the cluster can independently (but consistently) determine if it is now
the master node and needs to begin providing a service.

22.1.1.1. HASingletonDeployer service
The simplest and most commonly used strategy for deploying an HA singleton is to take an
ordinary deployment (war, ear, jar, whatever you would normally put in deploy) and deploy it
in the $JBOSS_HOME/server/all/deploy-hasingleton directory instead of in deploy.
The deploy-hasingleton directory does not lie under deploy or farm, so its contents
are not automatically deployed when an Enterprise Application Platform instance starts.

Chapter 22. Clustered Deployment Options

208

Instead, deploying the contents of this directory is the responsibility of a special service, the
jboss.ha:service=HASingletonDeployer MBean (which itself is deployed via the deploy/
deploy-hasingleton-service.xml file.) The HASingletonDeployer service is itself an HA Singleton, one
whose provided service when it becomes master is to deploy the contents of deploy-hasingleton
and whose service when it stops being the master (typically at server shutdown) is to undeploy the
contents of deploy-hasingleton.

So, by placing your deployments in deploy-hasingleton you know that they will be deployed
only on the master node in the cluster. If the master node cleanly shuts down, they will be cleanly
undeployed as part of shutdown. If the master node fails or is shut down, they will be deployed on
whatever node takes over as master.

Using deploy-hasingleton is very simple, but it does have two drawbacks:

• There is no hot-deployment feature for services in deploy-hasingleton . Redeploying a service
that has been deployed to deploy-hasingleton requires a server restart.

• If the master node fails and another node takes over as master, your singleton service needs to
go through the entire deployment process before it will be providing services. Depending on how
complex the deployment of your service is and what sorts of startup activities it engages in, this
could take a while, during which time the service is not being provided.

22.1.1.2. Mbean deployments using HASingletonController
If your service is an Mbean (i.e., not a J2EE deployment like an ear or war or jar), you can deploy
it along with a service called an HASingletonController in order to turn it into an HA singleton. It is
the job of the HASingletonController to work with the HAPartition service to monitor the cluster and
determine if it is now the master node for its service. If it determines it has become the master node, it
invokes a method on your service telling it to begin providing service. If it determines it is no longer the
master node, it invokes a method on your service telling it to stop providing service. Let's walk through
an illustration.

First, we have an MBean service that we want to make an HA singleton. The only thing special about it
is it needs to expose in its MBean interface a method that can be called when it should begin providing
service, and another that can be called when it should stop providing service:

public class HASingletonExample implements HASingletonExampleMBean
{
 private boolean isMasterNode = false;

 public void startSingleton()
 {
 isMasterNode = true;
 }

 public boolean isMasterNode()
 {
 return isMasterNode;
 }

 public void stopSingleton()
 {

HASingleton Deployment Options

209

 isMasterNode = false;
 }
}

We used startSingleton and stopSingleton in the above example, but you could name the
methods anything.

Next, we deploy our service, along with an HASingletonController to control it, most likely packaged in
a .sar file, with the following META-INF/jboss-service.xml:

<server>
 <!-- This MBean is an example of a clustered singleton -->
 <mbean code="org.jboss.ha.examples.HASingletonExample"
 name=“jboss:service=HASingletonExample"/>

 <!-- This HASingletonController manages the cluster Singleton -->
 <mbean code="org.jboss.ha.singleton.HASingletonController"
 name="jboss:service=ExampleHASingletonController">

 <!-- Inject a ref to the HAPartition -->
 <depends optional-attribute-name="ClusterPartition" proxy-
type="attribute">
 jboss:service=${jboss.partition.name:DefaultPartition}
 </depends>
 <!-- Inject a ref to the service being controlled -->
 <depends optional-attribute-
name="TargetName">jboss:service=HASingletonExample</depends>

 <!-- Methods to invoke when become master / stop being master -->
 <attribute name="TargetStartMethod">startSingleton</attribute>
 <attribute name="TargetStopMethod">stopSingleton</attribute>
 </mbean>
</server>

Voila! A clustered singleton service.

The obvious downside to this approach is it only works for MBeans. Upsides are that the above
example can be placed in deploy or farm and thus can be hot deployed and farmed deployed. Also,
if our example service had complex, time-consuming startup requirements, those could potentially
be implemented in create() or start() methods. JBoss will invoke create() and start() as soon as the
service is deployed; it doesn't wait until the node becomes the master node. So, the service could be
primed and ready to go, just waiting for the controller to implement startSingleton() at which point it
can immediately provide service.

The jboss.ha:service=HASingletonDeployer service discussed above is itself an interesting example
of using an HASingletonController. Here is its deployment descriptor (extracted from the deploy/
deploy-hasingleton-service.xml file):

<mbean code="org.jboss.ha.singleton.HASingletonController"
 name="jboss.ha:service=HASingletonDeployer">

Chapter 22. Clustered Deployment Options

210

 <depends optional-attribute-name="ClusterPartition" proxy-
type="attribute">
 jboss:service=${jboss.partition.name:DefaultPartition}
 </depends>
 <depends optional-attributeame="TargetName">
 jboss.system:service=MainDeployer
 </depends>
 <attribute name="TargetStartMethod">deploy</attribute>
 <attribute name="TargetStartMethodArgument">
 ${jboss.server.home.url}/deploy-hasingleton
 </attribute>
 <attribute name="TargetStopMethod">undeploy</attribute>
 <attribute name="TargetStopMethodArgument">
 ${jboss.server.home.url}/deploy-hasingleton
 </attribute>
</mbean>

A few interesting things here. First the service being controlled is the MainDeployer service, which
is the core deployment service in JBoss. That is, it's a service that wasn't written with an intent that
it be controlled by an HASingletonController. But it still works! Second, the target start and
stop methods are deploy and undeploy. No requirement that they have particular names, or even
that they logically have start and stop functionality. Here the functionality of the invoked methods is
more like do and undo. Finally, note the TargetStart(Stop)MethodArgument attributes. Your
singleton service's start/stop methods can take an argument, in this case the location of the directory
the MainDeployer should deploy/undeploy.

22.1.1.3. HASingleton deployments using a Barrier
Services deployed normally inside deploy or farm that want to be started/stopped whenever the
content of deploy-hasingleton gets deployed/undeployed, (i.e., whenever the current node becomes
the master), need only specify a dependency on the Barrier mbean:

<depends>jboss.ha:service=HASingletonDeployer,type=Barrier</depends>

The way it works is that a BarrierController is deployed along with the
jboss.ha:service=HASingletonDeployer MBean and listens for JMX notifications from it. A
BarrierController is a relatively simple Mbean that can subscribe to receive any JMX notification in
the system. It uses the received notifications to control the lifecycle of a dynamically created Mbean
called the Barrier.The Barrier is instantiated, registered and brought to the CREATE state when
the BarrierController is deployed. After that, the BarrierController starts and stops the Barrier when
matching JMX notifications are received. Thus, other services need only depend on the Barrier MBean
using the usual <depends> tag, and they will be started and stopped in tandem with the Barrier. When
the BarrierController is undeployed the Barrier is destroyed too.

This provides an alternative to the deploy-hasingleton approach in that we can use farming to
distribute the service, while content in deploy-hasingleton must be copied manually on all nodes.

On the other hand, the barrier-dependent service will be instantiated/created (i.e., any create()
method invoked) on all nodes, but only started on the master node. This is different with the deploy-
hasingleton approach that will only deploy (instantiate/create/start) the contents of the deploy-
hasingleton directory on one of the nodes.

Determining the master node

211

So services depending on the barrier will need to make sure they do minimal or no work inside their
create() step, rather they should use start() to do the work.

Note
The Barrier controls the start/stop of dependent services, but not their destruction, which
happens only when the BarrierController is itself destroyed/undeployed. Thus
using the Barrier to control services that need to be "destroyed" as part of their normal
“undeploy” operation (like, for example, an EJBContainer) will not have the desired
effect.

22.1.2. Determining the master node
The various clustered singleton management strategies all depend on the fact that each node in the
cluster can independently react to changes in cluster membership and correctly decide whether it is
now the “master node”. How is this done?

For each member of the cluster, the HAPartition mbean maintains an attribute called the CurrentView,
which is basically an ordered list of the current members of the cluster. As nodes join and leave the
cluster, JGroups ensures that each surviving member of the cluster gets an updated view. You can
see the current view by going into the JMX console, and looking at the CurrentView attribute in the
jboss:service=DefaultPartition mbean. Every member of the cluster will have the same
view, with the members in the same order.

Let's say, for example, that we have a 4 node cluster, nodes A through D, and the current view can be
expressed as {A, B, C, D}. Generally speaking, the order of nodes in the view will reflect the order in
which they joined the cluster (although this is not always the case, and should not be assumed to be
the case).

To further our example, let's say there is a singleton service (i.e. an HASingletonController)
named Foo that's deployed around the cluster, except, for whatever reason, on B. The HAPartition
service maintains across the cluster a registry of what services are deployed where, in view order. So,
on every node in the cluster, the HAPartition service knows that the view with respect to the Foo
service is {A, C, D} (no B).

Whenever there is a change in the cluster topology of the Foo service, the HAPartition service
invokes a callback on Foo notifying it of the new topology. So, for example, when Foo started on D, the
Foo service running on A, C and D all got callbacks telling them the new view for Foo was {A, C, D}.
That callback gives each node enough information to independently decide if it is now the master. The
Foo service on each node does this by checking if they are the first member of the view – if they are,
they are the master; if not, they're not. Simple as that.

If A were to fail or shutdown, Foo on C and D would get a callback with a new view for Foo of {C, D}. C
would then become the master. If A restarted, A, C and D would get a callback with a new view for Foo
of {C, D, A}. C would remain the master – there's nothing magic about A that would cause it to become
the master again just because it was before.

22.1.2.1. HA singleton election policy
The HASingletonElectionPolicy object is responsible for electing a master node from a list of
available nodes, on behalf of an HA singleton, following a change in cluster topology.

Chapter 22. Clustered Deployment Options

212

public interface HASingletonElectionPolicy
{
 ClusterNode elect(List<ClusterNode> nodes);
}

JBoss ships with 2 election policies:

HASingletonElectionPolicySimple
This policy selects a master node based relative age. The desired age is configured via the
position property, which corresponds to the index in the list of available nodes. position =
0, the default, refers to the oldest node; position = 1, refers to the 2nd oldest; etc. position
can also be negative to indicate youngness; imagine the list of available nodes as a circular linked
list. position = -1, refers to the youngest node; position = -2, refers to the 2nd youngest
node; etc.

<bean class="org.jboss.ha.singleton.HASingletonElectionPolicySimple">
 <property name="position">-1</property>
</bean>

PreferredMasterElectionPolicy
This policy extends HASingletonElectionPolicySimple, allowing the configuration of a
preferred node. The preferredMaster property, specified as host:port or address:port, identifies
a specific node that should become master, if available. If the preferred node is not available, the
election policy will behave as described above.

<bean class="org.jboss.ha.singleton.PreferredMasterElectionPolicy">
 <property name="preferredMaster">server1:12345</property>
</bean>

22.2. Farming Deployment
The Farm Service previously available in JBoss 4.x is not available in JBoss 5.0 as it was incompatible
with the new Profile Service at the core of the Enterprise Application Platform. A new Profile Service-
based replacement for the Farm Service will be added in a future release.

Chapter 23.

213

JGroups Services
JGroups provides the underlying group communication support for JBoss Enterprise Application
Platform clusters. JBoss Enterprise Application Platform ships with a reasonable set of default
JGroups configurations. Most applications just work out of the box with the default configurations.
You only need to tweak them when you are deploying an application that has special network or
performance requirements.

23.1. Configuring a JGroups Channel's Protocol Stack
The JGroups framework provides services to enable peer-to-peer communications between nodes in a
cluster. It is built on top a stack of network communication protocols that provide transport, discovery,
reliability and failure detection, and cluster membership management services. Figure 23.1, “Protocol
stack in JGroups” shows the protocol stack in JGroups.

Figure 23.1. Protocol stack in JGroups

JGroups configurations often appear as a nested attribute in cluster related MBean services, such
as the PartitionConfig attribute in the ClusterPartition MBean or the ClusterConfig
attribute in the TreeCache MBean. You can configure the behavior and properties of each
protocol in JGroups via those MBean attributes. Below is an example JGroups configuration in the
ClusterPartition MBean.

<mbean code="org.jboss.ha.framework.server.ClusterPartition"
 name="jboss:service=${jboss.partition.name:DefaultPartition}">

 <attribute name="PartitionConfig">
 <Config>

 <UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"
 mcast_port="${jboss.hapartition.mcast_port:45566}"
 tos="8"
 ucast_recv_buf_size="20000000"
 ucast_send_buf_size="640000"
 mcast_recv_buf_size="25000000"
 mcast_send_buf_size="640000"
 loopback="false"
 discard_incompatible_packets="true"
 enable_bundling="false"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 ip_ttl="${jgroups.udp.ip_ttl:2}"
 down_thread="false" up_thread="false"/>

 <PING timeout="2000"

Chapter 23. JGroups Services

214

 down_thread="false" up_thread="false" num_initial_members="3"/>

 <MERGE2 max_interval="100000"
 down_thread="false" up_thread="false" min_interval="20000"/>
 <FD_SOCK down_thread="false" up_thread="false"/>

 <FD timeout="10000" max_tries="5"
 down_thread="false" up_thread="false" shun="true"/>
 <VERIFY_SUSPECT timeout="1500" down_thread="false" up_thread="false"/>
 <pbcast.NAKACK max_xmit_size="60000"
 use_mcast_xmit="false" gc_lag="0"
 retransmit_timeout="300,600,1200,2400,4800"
 down_thread="false" up_thread="false"
 discard_delivered_msgs="true"/>
 <UNICAST timeout="300,600,1200,2400,3600"
 down_thread="false" up_thread="false"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 down_thread="false" up_thread="false"
 max_bytes="400000"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000" shun="true"
 view_bundling="true"/>
 <FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>
 <pbcast.STATE_TRANSFER down_thread="false"
 up_thread="false" use_flush="false"/>
 </Config>
 </attribute>
</mbean>

All the JGroups configuration data is contained in the <Config> element under the JGroups config
MBean attribute. This information is used to configure a JGroups Channel; the Channel is conceptually
similar to a socket, and manages communication between peers in a cluster. Each element inside the
<Config> element defines a particular JGroups Protocol; each Protocol performs one function, and the
combination of those functions is what defines the characteristics of the overall Channel. In the next
several sections, we will dig into the commonly used protocols and their options and explain exactly
what they mean.

23.1.1. Common Configuration Properties
The following common properties are exposed by all of the JGroups protocols discussed below:

• down_thread whether the protocol should create an internal queue and a queue processing
thread (aka the down_thread) for messages passed down from higher layers. The higher layer
could be another protocol higher in the stack, or the application itself, if the protocol is the top one
on the stack. If true (the default), when a message is passed down from a higher layer, the calling
thread places the message in the protocol's queue, and then returns immediately. The protocol's
down_thread is responsible for reading messages off the queue, doing whatever protocol-specific
processing is required, and passing the message on to the next protocol in the stack.

• up_thread is conceptually similar to down_thread, but here the queue and thread are for
messages received from lower layers in the protocol stack.

Transport Protocols

215

Generally speaking, up_thread and down_thread should be set to false.

23.1.2. Transport Protocols
The transport protocols send messages from one cluster node to another (unicast) or from cluster
node to all other nodes in the cluster (mcast). JGroups supports UDP, TCP, and TUNNEL as transport
protocols.

Note
The UDP, TCP, and TUNNEL elements are mutually exclusive. You can only have one
transport protocol in each JGroups Config element

23.1.2.1. UDP configuration
UDP is the preferred protocol for JGroups. UDP uses multicast or multiple unicasts to send and
receive messages. If you choose UDP as the transport protocol for your cluster service, you need to
configure it in the UDP sub-element in the JGroups Config element. Here is an example.

<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"
 mcast_port="${jboss.hapartition.mcast_port:45566}"
 tos="8"
 ucast_recv_buf_size="20000000"
 ucast_send_buf_size="640000"
 mcast_recv_buf_size="25000000"
 mcast_send_buf_size="640000"
 loopback="false"
 discard_incompatible_packets="true"
 enable_bundling="false"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 use_outgoing_packet_handler="false"
 ip_ttl="${jgroups.udp.ip_ttl:2}"
 down_thread="false" up_thread="false"/>

The available attributes in the above JGroups configuration are listed below.

• ip_mcast specifies whether or not to use IP multicasting. The default is true. If set to false, it will
send n unicast packets rather than 1 multicast packet. Either way, packets are UDP datagrams.

• mcast_addr specifies the multicast address (class D) for joining a group (i.e., the cluster). If
omitted, the default is 228.8.8.8 .

• mcast_port specifies the multicast port number. If omitted, the default is 45566.

• bind_addr specifies the interface on which to receive and send multicasts (uses the -
Djgroups.bind_address system property, if present). If you have a multihomed machine, set
the bind_addr attribute or system property to the appropriate NIC IP address. By default, system
property setting takes priority over XML attribute unless -Djgroups.ignore.bind_addr system property
is set.

Chapter 23. JGroups Services

216

• receive_on_all_interfaces specifies whether this node should listen on all interfaces for multicasts.
The default is false. It overrides the bind_addr property for receiving multicasts. However,
bind_addr (if set) is still used to send multicasts.

• send_on_all_interfaces specifies whether this node send UDP packets via all the NICs if you have
a multi NIC machine. This means that the same multicast message is sent N times, so use with
care.

• receive_interfaces specifies a list of of interfaces to receive multicasts on. The multicast receive
socket will listen on all of these interfaces. This is a comma-separated list of IP addresses or
interface names. E.g. "192.168.5.1,eth1,127.0.0.1".

• ip_ttl specifies time-to-live for IP Multicast packets. TTL is the commonly used term in multicast
networking, but is actually something of a misnomer, since the value here refers to how many
network hops a packet will be allowed to travel before networking equipment will drop it.

• use_incoming_packet_handler specifies whether to use a separate thread to process incoming
messages. Sometimes receivers are overloaded (they have to handle de-serialization etc). Packet
handler is a separate thread taking care of de-serialization, receiver thread(s) simply put packet in
queue and return immediately. Setting this to true adds one more thread. The default is true.

• use_outgoing_packet_handler specifies whether to use a separate thread to process outgoing
messages. The default is false.

• enable_bundling specifies whether to enable message bundling. If it is true, the node
would queue outgoing messages until max_bundle_size bytes have accumulated, or
max_bundle_time milliseconds have elapsed, whichever occurs first. Then bundle queued
messages into a large message and send it. The messages are unbundled at the receiver. The
default is false.

• loopback specifies whether to loop outgoing message back up the stack. In unicast mode, the
messages are sent to self. In mcast mode, a copy of the mcast message is sent. The default is
false

• discard_incompatibe_packets specifies whether to discard packets from different JGroups
versions. Each message in the cluster is tagged with a JGroups version. When a message from a
different version of JGroups is received, it will be discarded if set to true, otherwise a warning will be
logged. The default is false

• mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size, ucast_recv_buf_size
define receive and send buffer sizes. It is good to have a large receiver buffer size, so packets are
less likely to get dropped due to buffer overflow.

• tos specifies traffic class for sending unicast and multicast datagrams.

Note
On Windows 2000 machines, because of the media sense feature being broken with
multicast (even after disabling media sense), you need to set the UDP protocol's
loopback attribute to true.

Transport Protocols

217

23.1.2.2. TCP configuration
Alternatively, a JGroups-based cluster can also work over TCP connections. Compared with UDP,
TCP generates more network traffic when the cluster size increases. TCP is fundamentally a unicast
protocol. To send multicast messages, JGroups uses multiple TCP unicasts. To use TCP as a
transport protocol, you should define a TCP element in the JGroups Config element. Here is an
example of the TCP element.

<TCP start_port="7800"
 bind_addr="192.168.5.1"
 loopback="true"
 down_thread="false" up_thread="false"/>

Below are the attributes available in the TCP element.

• bind_addr specifies the binding address. It can also be set with the -Djgroups.bind_address
command line option at server startup.

• start_port, end_port define the range of TCP ports the server should bind to. The server socket
is bound to the first available port from start_port. If no available port is found (e.g., because
of a firewall) before the end_port, the server throws an exception. If no end_port is provided
or end_port < start_port then there is no upper limit on the port range. If start_port
== end_port, then we force JGroups to use the given port (start fails if port is not available).
The default is 7800. If set to 0, then the operating system will pick a port. Please, bear in mind
that setting it to 0 will work only if we use MPING or TCPGOSSIP as discovery protocol because
TCCPING requires listing the nodes and their corresponding ports.

• loopback specifies whether to loop outgoing message back up the stack. In unicast mode, the
messages are sent to self. In mcast mode, a copy of the mcast message is sent. The default is
false.

• recv_buf_size, send_buf_size define receive and send buffer sizes. It is good to have a large
receiver buffer size, so packets are less likely to get dropped due to buffer overflow.

• conn_expire_time specifies the time (in milliseconds) after which a connection can be closed by
the reaper if no traffic has been received.

• reaper_interval specifies interval (in milliseconds) to run the reaper. If both values are 0, no reaping
will be done. If either value is > 0, reaping will be enabled. By default, reaper_interval is 0, which
means no reaper.

• sock_conn_timeout specifies max time in millis for a socket creation. When doing the initial
discovery, and a peer hangs, don't wait forever but go on after the timeout to ping other members.
Reduces chances of *not* finding any members at all. The default is 2000.

• use_send_queues specifies whether to use separate send queues for each connection. This
prevents blocking on write if the peer hangs. The default is true.

• external_addr specifies external IP address to broadcast to other group members (if different to
local address). This is useful when you have use (Network Address Translation) NAT, e.g. a node
on a private network, behind a firewall, but you can only route to it via an externally visible address,
which is different from the local address it is bound to. Therefore, the node can be configured to
broadcast its external address, while still able to bind to the local one. This avoids having to use the

Chapter 23. JGroups Services

218

TUNNEL protocol, (and hence a requirement for a central gossip router) because nodes outside the
firewall can still route to the node inside the firewall, but only on its external address. Without setting
the external_addr, the node behind the firewall will broadcast its private address to the other nodes
which will not be able to route to it.

• skip_suspected_members specifies whether unicast messages should not be sent to suspected
members. The default is true.

• tcp_nodelay specifies TCP_NODELAY. TCP by default nagles messages, that is, conceptually,
smaller messages are bundled into larger ones. If we want to invoke synchronous cluster method
calls, then we need to disable nagling in addition to disabling message bundling (by setting
enable_bundling to false). Nagling is disabled by setting tcp_nodelay to true. The default is
false.

23.1.2.3. TUNNEL configuration
The TUNNEL protocol uses an external router to send messages. The external router is known as
a GossipRouter. Each node has to register with the router. All messages are sent to the router
and forwarded on to their destinations. The TUNNEL approach can be used to setup communication
with nodes behind firewalls. A node can establish a TCP connection to the GossipRouter through the
firewall (you can use port 80). The same connection is used by the router to send messages to nodes
behind the firewall as most firewalls do not permit outside hosts to initiate a TCP connection to a
host inside the firewall. The TUNNEL configuration is defined in the TUNNEL element in the JGroups
Config element. Here is an example..

<TUNNEL router_port="12001"
 router_host="192.168.5.1"
 down_thread="false" up_thread="false/>

The available attributes in the TUNNEL element are listed below.

• router_host specifies the host on which the GossipRouter is running.

• router_port specifies the port on which the GossipRouter is listening.

• loopback specifies whether to loop messages back up the stack. The default is true.

23.1.3. Discovery Protocols
The cluster needs to maintain a list of current member nodes at all times so that the load balancer
and client interceptor know how to route their requests. Discovery protocols are used to discover
active nodes in the cluster and detect the oldest member of the cluster, which is the coordinator. All
initial nodes are discovered when the cluster starts up. When a new node joins the cluster later, it is
only discovered after the group membership protocol (GMS, see Section 23.1.6, “Group Membership
(GMS)”) admits it into the group.

Since the discovery protocols sit on top of the transport protocol, you can choose to use different
discovery protocols based on your transport protocol. These are also configured as sub-elements in
the JGroups MBean Config element.

Discovery Protocols

219

23.1.3.1. PING
PING is a discovery protocol that works by either multicasting PING requests to an IP multicast
address or connecting to a gossip router. As such, PING normally sits on top of the UDP or TUNNEL
transport protocols. Each node responds with a packet {C, A}, where C=coordinator's address and
A=own address. After timeout milliseconds or num_initial_members replies, the joiner determines the
coordinator from the responses, and sends a JOIN request to it (handled by). If nobody responds, we
assume we are the first member of a group.

Here is an example PING configuration for IP multicast.

<PING timeout="2000"
 num_initial_members="2"
 down_thread="false" up_thread="false"/>

Here is another example PING configuration for contacting a Gossip Router.

<PING gossip_host="localhost"
 gossip_port="1234"
 timeout="3000"
 num_initial_members="3"
 down_thread="false" up_thread="false"/>

The available attributes in the PING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses. The default is
3000.

• num_initial_members specifies the maximum number of responses to wait for unless timeout has
expired. The default is 2.

• gossip_host specifies the host on which the GossipRouter is running.

• gossip_port specifies the port on which the GossipRouter is listening on.

• gossip_refresh specifies the interval (in milliseconds) for the lease from the GossipRouter. The
default is 20000.

• initial_hosts is a comma-seperated list of addresses (e.g., host1[12345],host2[23456]),
which are pinged for discovery.

If both gossip_host and gossip_port are defined, the cluster uses the GossipRouter for the
initial discovery. If the initial_hosts is specified, the cluster pings that static list of addresses for
discovery. Otherwise, the cluster uses IP multicasting for discovery.

Note
The discovery phase returns when the timeout ms have elapsed or the
num_initial_members responses have been received.

Chapter 23. JGroups Services

220

23.1.3.2. TCPGOSSIP
The TCPGOSSIP protocol only works with a GossipRouter. It works essentially the same way as the
PING protocol configuration with valid gossip_host and gossip_port attributes. It works on top of
both UDP and TCP transport protocols. Here is an example.

<TCPGOSSIP timeout="2000"
 initial_hosts="192.168.5.1[12000],192.168.0.2[12000]"
 num_initial_members="3"
 down_thread="false" up_thread="false"/>

The available attributes in the TCPGOSSIP element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses. The default is
3000.

• num_initial_members specifies the maximum number of responses to wait for unless timeout has
expired. The default is 2.

• initial_hosts is a comma-seperated list of addresses (e.g., host1[12345],host2[23456]) for
GossipRouters to register with.

23.1.3.3. TCPPING
The TCPPING protocol takes a set of known members and ping them for discovery. This is essentially
a static configuration. It works on top of TCP. Here is an example of the TCPPING configuration
element in the JGroups Config element.

<TCPPING timeout="2000"
 initial_hosts="hosta[2300],hostb[3400],hostc[4500]"
 port_range="3"
 num_initial_members="3"
 down_thread="false" up_thread="false"/>

The available attributes in the TCPPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses. The default is
3000.

• num_initial_members specifies the maximum number of responses to wait for unless timeout has
expired. The default is 2.

• initial_hosts is a comma-seperated list of addresses (e.g., host1[12345],host2[23456]) for
pinging.

• port_range specifies the number of consecutive ports to be probed when getting the initial
membership, starting with the port specified in the initial_hosts parameter. Given the current
values of port_range and initial_hosts above, the TCPPING layer will try to connect to hosta:2300,
hosta:2301, hosta:2302, hostb:3400, hostb:3401, hostb:3402, hostc:4500, hostc:4501, hostc:4502.
The configuration options allows for multiple nodes on the same host to be pinged.

Failure Detection Protocols

221

23.1.3.4. MPING
MPING uses IP multicast to discover the initial membership. It can be used with all transports, but
usually this is used in combination with TCP. TCP usually requires TCPPING, which has to list all
group members explicitly, but MPING doesn't have this requirement. The typical use case for this is
when we want TCP as transport, but multicasting for discovery so we don't have to define a static list
of initial hosts in TCPPING or require external Gossip Router.

<MPING timeout="2000"
 bind_to_all_interfaces="true"
 mcast_addr="228.8.8.8"
 mcast_port="7500"
 ip_ttl="8"
 num_initial_members="3"
 down_thread="false" up_thread="false"/>

The available attributes in the MPING element are listed below.

• timeout specifies the maximum number of milliseconds to wait for any responses. The default is
3000.

• num_initial_members specifies the maximum number of responses to wait for unless timeout has
expired. The default is 2..

• bind_addr specifies the interface on which to send and receive multicast packets.

• bind_to_all_interfaces overrides the bind_addr and uses all interfaces in multihome nodes.

• mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in the UDP protocol
configuration.

23.1.4. Failure Detection Protocols
The failure detection protocols are used to detect failed nodes. Once a failed node is detected, a
suspect verification phase can occur after which, if the node is still considered dead, the cluster
updates its view so that the load balancer and client interceptors know to avoid the dead node. The
failure detection protocols are configured as sub-elements in the JGroups MBean Config element.

23.1.4.1. FD
FD is a failure detection protocol based on heartbeat messages. This protocol requires each node to
periodically send are-you-alive messages to its neighbour. If the neighbour fails to respond, the calling
node sends a SUSPECT message to the cluster. The current group coordinator can optionally double
check whether the suspected node is indeed dead after which, if the node is still considered dead,
updates the cluster's view. Here is an example FD configuration.

<FD timeout="2000"
 max_tries="3"
 shun="true"
 down_thread="false" up_thread="false"/>

Chapter 23. JGroups Services

222

The available attributes in the FD element are listed below.

• timeout specifies the maximum number of milliseconds to wait for the responses to the are-you-
alive messages. The default is 3000.

• max_tries specifies the number of missed are-you-alive messages from a node before the node is
suspected. The default is 2.

• shun specifies whether a failed node will be shunned. Once shunned, the node will be expelled
from the cluster even if it comes back later. The shunned node would have to re-join the cluster
through the discovery process. JGroups allows to configure itself such that shunning leads to
automatic rejoins and state transfer, which is the default behaivour within JBoss Application Server.

Note
Regular traffic from a node counts as if it is a live. So, the are-you-alive messages are
only sent when there is no regular traffic to the node for sometime.

23.1.4.2. FD_SOCK
FD_SOCK is a failure detection protocol based on a ring of TCP sockets created between group
members. Each member in a group connects to its neighbor (last member connects to first) thus
forming a ring. Member B is suspected when its neighbor A detects abnormally closed TCP socket
(presumably due to a node B crash). However, if a member B is about to leave gracefully, it lets its
neighbor A know, so that it does not become suspected. The simplest FD_SOCK configuration does
not take any attribute. You can just declare an empty FD_SOCK element in JGroups's Config element.

<FD_SOCK_down_thread="false" up_thread="false"/>

There available attributes in the FD_SOCK element are listed below.

• bind_addr specifies the interface to which the server socket should bind to. If -
Djgroups.bind_address system property is defined, XML value will be ignore. This behaivour can be
reversed setting -Djgroups.ignore.bind_addr=true system property.

23.1.4.3. VERIFY_SUSPECT
This protocol verifies whether a suspected member is really dead by pinging that member once again.
This verification is performed by the coordinator of the cluster. The suspected member is dropped
from the cluster group if confirmed to be dead. The aim of this protocol is to minimize false suspicions.
Here's an example.

<VERIFY_SUSPECT timeout="1500"
 down_thread="false" up_thread="false"/>

The available attributes in the FD_SOCK element are listed below.

• timeout specifies how long to wait for a response from the suspected member before considering it
dead.

Failure Detection Protocols

223

23.1.4.4. FD versus FD_SOCK
FD and FD_SOCK, each taken individually, do not provide a solid failure detection layer. Let's look
at the the differences between these failure detection protocols to understand how they complement
each other:

• FD

• An overloaded machine might be slow in sending are-you-alive responses.

• A member will be suspected when suspended in a debugger/profiler.

• Low timeouts lead to higher probability of false suspicions and higher network traffic.

• High timeouts will not detect and remove crashed members for some time.

• FD_SOCK:

• Suspended in a debugger is no problem because the TCP connection is still open.

• High load no problem either for the same reason.

• Members will only be suspected when TCP connection breaks

• So hung members will not be detected.

• Also, a crashed switch will not be detected until the connection runs into the TCP timeout (between
2-20 minutes, depending on TCP/IP stack implementation).

The aim of a failure detection layer is to report real failures and therefore avoid false suspicions. There
are two solutions:

1. By default, JGroups configures the FD_SOCK socket with KEEP_ALIVE, which means that TCP
sends a heartbeat on socket on which no traffic has been received in 2 hours. If a host crashed
(or an intermediate switch or router crashed) without closing the TCP connection properly, we
would detect this after 2 hours (plus a few minutes). This is of course better than never closing the
connection (if KEEP_ALIVE is off), but may not be of much help. So, the first solution would be
to lower the timeout value for KEEP_ALIVE. This can only be done for the entire kernel in most
operating systems, so if this is lowered to 15 minutes, this will affect all TCP sockets.

2. The second solution is to combine FD_SOCK and FD; the timeout in FD can be set such that it is
much lower than the TCP timeout, and this can be configured individually per process. FD_SOCK
will already generate a suspect message if the socket was closed abnormally. However, in the
case of a crashed switch or host, FD will make sure the socket is eventually closed and the
suspect message generated. Example:

<FD_SOCK down_thread="false" up_thread="false"/>
<FD timeout="10000" max_tries="5" shun="true"
down_thread="false" up_thread="false" />

This suspects a member when the socket to the neighbor has been closed abonormally (e.g. process
crash, because the OS closes all sockets). However, f a host or switch crashes, then the sockets won't
be closed, therefore, as a seond line of defense, FD will suspect the neighbor after 50 seconds. Note

Chapter 23. JGroups Services

224

that with this example, if you have your system stopped in a breakpoint in the debugger, the node
you're debugging will be suspected after ca 50 seconds.

A combination of FD and FD_SOCK provides a solid failure detection layer and for this reason, such
technique is used accross JGroups configurations included within JBoss Application Server.

23.1.5. Reliable Delivery Protocols
Reliable delivery protocols within the JGroups stack ensure that data pockets are actually delivered
in the right order (FIFO) to the destination node. The basis for reliable message delivery is positive
and negative delivery acknowledgments (ACK and NAK). In the ACK mode, the sender resends the
message until the acknowledgment is received from the receiver. In the NAK mode, the receiver
requests retransmission when it discovers a gap.

23.1.5.1. UNICAST
The UNICAST protocol is used for unicast messages. It uses ACK. It is configured as a sub-element
under the JGroups Config element. If the JGroups stack is configured with TCP transport protocol,
UNICAST is not necessary because TCP itself guarantees FIFO delivery of unicast messages. Here is
an example configuration for the UNICAST protocol.

<UNICAST timeout="100,200,400,800"
down_thread="false" up_thread="false"/>

There is only one configurable attribute in the UNICAST element.

• timeout specifies the retransmission timeout (in milliseconds). For instance, if the timeout is
"100,200,400,800", the sender resends the message if it hasn't received an ACK after 100 ms the
first time, and the second time it waits for 200 ms before resending, and so on.

23.1.5.2. NAKACK
The NAKACK protocol is used for multicast messages. It uses NAK. Under this protocol, each
message is tagged with a sequence number. The receiver keeps track of the sequence numbers
and deliver the messages in order. When a gap in the sequence number is detected, the receiver
asks the sender to retransmit the missing message. The NAKACK protocol is configured as the
pbcast.NAKACK sub-element under the JGroups Config element. Here is an example configuration.

<pbcast.NAKACK max_xmit_size="60000" use_mcast_xmit="false"

 retransmit_timeout="300,600,1200,2400,4800" gc_lag="0"
 discard_delivered_msgs="true"
 down_thread="false" up_thread="false"/>

The configurable attributes in the pbcast.NAKACK element are as follows.

• retransmit_timeout specifies the retransmission timeout (in milliseconds). It is the same as the
timeout attribute in the UNICAST protocol.

Group Membership (GMS)

225

• use_mcast_xmit determines whether the sender should send the retransmission to the entire
cluster rather than just the node requesting it. This is useful when the sender drops the pocket -- so
we do not need to retransmit for each node.

• max_xmit_size specifies maximum size for a bundled retransmission, if multiple packets are
reported missing.

• discard_delivered_msgs specifies whether to discard delivery messages on the receiver nodes.
By default, we save all delivered messages. However, if we only ask the sender to resend their
messages, we can enable this option and discard delivered messages.

• gc_lag specifies the number of messages garbage collection lags behind.

23.1.6. Group Membership (GMS)
The group membership service (GMS) protocol in the JGroups stack maintains a list of active nodes.
It handles the requests to join and leave the cluster. It also handles the SUSPECT messages sent
by failure detection protocols. All nodes in the cluster, as well as the load balancer and client side
interceptors, are notified if the group membership changes. The group membership service is
configured in the pbcast.GMS sub-element under the JGroups Config element. Here is an example
configuration.

<pbcast.GMS print_local_addr="true"
 join_timeout="3000"
 down_thread="false" up_thread="false"
 join_retry_timeout="2000"
 shun="true"
 view_bundling="true"/>

The configurable attributes in the pbcast.GMS element are as follows.

• join_timeout specifies the maximum number of milliseconds to wait for a new node JOIN request to
succeed. Retry afterwards.

• join_retry_timeout specifies the maximum number of milliseconds to wait after a failed JOIN to re-
submit it.

• print_local_addr specifies whether to dump the node's own address to the output when started.

• shun specifies whether a node should shun itself if it receives a cluster view that it is not a member
node.

• disable_initial_coord specifies whether to prevent this node as the cluster coordinator.

• view_bundling specifies whether multiple JOIN or LEAVE request arriving at the same time are
bundled and handled together at the same time, only sending out 1 new view / bundle. This is is
more efficient than handling each request separately.

23.1.7. Flow Control (FC)
The flow control (FC) protocol tries to adapt the data sending rate to the data receipt rate among
nodes. If a sender node is too fast, it might overwhelm the receiver node and result in dropped packets
that have to be retransmitted. In JGroups, the flow control is implemented via a credit-based system.

Chapter 23. JGroups Services

226

The sender and receiver nodes have the same number of credits (bytes) to start with. The sender
subtracts credits by the number of bytes in messages it sends. The receiver accumulates credits for
the bytes in the messages it receives. When the sender's credit drops to a threshold, the receivers
sends some credit to the sender. If the sender's credit is used up, the sender blocks until it receives
credits from the receiver. The flow control protocol is configured in the FC sub-element under the
JGroups Config element. Here is an example configuration.

<FC max_credits="1000000"
down_thread="false" up_thread="false"
 min_threshold="0.10"/>

The configurable attributes in the FC element are as follows.

• max_credits specifies the maximum number of credits (in bytes). This value should be smaller than
the JVM heap size.

• min_credits specifies the threshold credit on the sender, below which the receiver should send in
more credits.

• min_threshold specifies percentage value of the threshold. It overrides the min_credits
attribute.

Note
Applications that use synchronous group RPC calls primarily do not require FC protocol in
their JGroups protocol stack because synchronous communication, where the hread that
makes the call blocks waiting for responses from all the members of the group, already
slows overall rate of calls. Even though TCP provides flow control by itself, FC is still
required in TCP based JGroups stacks because of group communication, where we
essentially have to send group messages at the highest speed the slowest receiver can
keep up with. TCP flow control only takes into account individual node communications
and has not a notion of who's the slowest in the group, which is why FC is required.

23.1.7.1. Why is FC needed on top of TCP ? TCP has its own flow
control !
The reason is group communication, where we essentially have to send group messages at the
highest speed the slowest receiver can keep up with. Let's say we have a cluster {A,B,C,D}. D is
slow (maybe overloaded), the rest is fast. When A sends a group message, it establishes TCP
connections A-A (conceptually), A-B, A-C and A-D (if they don't yet exist). So let's say A sends 100
million messages to the cluster. Because TCP's flow control only applies to A-B, A-C and A-D, but not
to A-{B,C,D}, where {B,C,D} is the group, it is possible that A, B and C receive the 100M, but D only
received 1M messages. (BTW: this is also the reason why we need NAKACK, although TCP does its
own retransmission).

Now JGroups has to buffer all messages in memory for the case when the original sender S dies and
a node asks for retransmission of a message of S. Because all members buffer all messages they
received, they need to purge stable messages (= messages seen by everyone) every now and then.
This is done by the STABLE protocol, which can be configured to run the stability protocol round time
based (e.g. every 50s) or size based (whenever 400K data has been received).

Fragmentation (FRAG2)

227

In the above case, the slow node D will prevent the group from purging messages above 1M, so every
member will buffer 99M messages ! This in most cases leads to OOM exceptions. Note that - although
the sliding window protocol in TCP will cause writes to block if the window is full - we assume in the
above case that this is still much faster for A-B and A-C than for A-D.

So, in summary, we need to send messages at a rate the slowest receiver (D) can handle.

23.1.7.2. So do I always need FC?
This depends on how the application uses the JGroups channel. Referring to the example above,
if there was something about the application that would naturally cause A to slow down its rate of
sending because D wasn't keeping up, then FC would not be needed.

A good example of such an application is one that makes synchronous group RPC calls (typically
using a JGroups RpcDispatcher.) By synchronous, we mean the thread that makes the call blocks
waiting for responses from all the members of the group. In that kind of application, the threads on A
that are making calls would block waiting for responses from D, thus naturally slowing the overall rate
of calls.

A JBoss Cache cluster configured for REPL_SYNC is a good example of an application that makes
synchronous group RPC calls. If a channel is only used for a cache configured for REPL_SYNC, we
recommend you remove FC from its protocol stack.

And, of course, if your cluster only consists of two nodes, including FC in a TCP-based protocol stack
is unnecessary. There is no group beyond the single peer-to-peer relationship, and TCP's internal flow
control will handle that just fine.

Another case where FC may not be needed is for a channel used by a JBoss Cache configured for
buddy replication and a single buddy. Such a channel will in many respects act like a two node cluster,
where messages are only exchanged with one other node, the buddy. (There may be other messages
related to data gravitation that go to all members, but in a properly engineered buddy replication use
case these should be infrequent. But if you remove FC be sure to load test your application.)

23.1.8. Fragmentation (FRAG2)
This protocol fragments messages larger than certain size. Unfragments at the receiver's side. It
works for both unicast and multicast messages. It is configured in the FRAG2 sub-element under the
JGroups Config element. Here is an example configuration.

 <FRAG2 frag_size="60000" down_thread="false" up_thread="false"/>

The configurable attributes in the FRAG2 element are as follows.

• frag_size specifies the max frag size in bytes. Messages larger than that are fragmented.

Note
TCP protocol already provides fragmentation but a fragmentation JGroups protocol is
still needed if FC is used. The reason for this is that if you send a message larger than
FC.max_bytes, FC protocol would block. So, frag_size within FRAG2 needs to be set to
always be less than FC.max_bytes.

Chapter 23. JGroups Services

228

23.1.9. State Transfer
The state transfer service transfers the state from an existing node (i.e., the cluster coordinator) to a
newly joining node. It is configured in the pbcast.STATE_TRANSFER sub-element under the JGroups
Config element. It does not have any configurable attribute. Here is an example configuration.

<pbcast.STATE_TRANSFER down_thread="false" up_thread="false"/>

23.1.10. Distributed Garbage Collection (STABLE)
In a JGroups cluster, all nodes have to store all messages received for potential retransmission
in case of a failure. However, if we store all messages forever, we will run out of memory. So, the
distributed garbage collection service in JGroups periodically purges messages that have seen by all
nodes from the memory in each node. The distributed garbage collection service is configured in the
pbcast.STABLE sub-element under the JGroups Config element. Here is an example configuration.

<pbcast.STABLE stability_delay="1000"
 desired_avg_gossip="5000"
 down_thread="false" up_thread="false"
 max_bytes="400000"/>

The configurable attributes in the pbcast.STABLE element are as follows.

• desired_avg_gossip specifies intervals (in milliseconds) of garbage collection runs. Value 0
disables this service.

• max_bytes specifies the maximum number of bytes received before the cluster triggers a garbage
collection run. Value 0 disables this service.

• stability_delay specifies delay before we send STABILITY msg (give others a change to send first).
If used together with max_bytes, this attribute should be set to a small number.

Note
Set the max_bytes attribute when you have a high traffic cluster.

23.1.11. Merging (MERGE2)
When a network error occurs, the cluster might be partitioned into several different partitions. JGroups
has a MERGE service that allows the coordinators in partitions to communicate with each other and
form a single cluster back again. The flow control service is configured in the MERGE2 sub-element
under the JGroups Config element. Here is an example configuration.

<MERGE2 max_interval="10000"
 min_interval="2000"
 down_thread="false" up_thread="false"/>

Other Configuration Issues

229

The configurable attributes in the FC element are as follows.

• max_interval specifies the maximum number of milliseconds to send out a MERGE message.

• min_interval specifies the minimum number of milliseconds to send out a MERGE message.

JGroups chooses a random value between min_interval and max_interval to send out the
MERGE message.

Note
The cluster states are not merged in a merger. This has to be done by the application.
If MERGE2 is used in conjunction with TCPPING, the initial_hosts attribute must
contain all the nodes that could potentially be merged back, in order for the merge process
to work properly. Otherwise, the merge process would not merge all the nodes even
though shunning is disabled. Alternatively use MPING, which is commonly used with TCP
to provide multicast member discovery capabilities, instead of TCPPING to avoid having
to specify all the nodes.

23.2. Other Configuration Issues

23.2.1. Binding JGroups Channels to a particular interface
In the Transport Protocols section above, we briefly touched on how the interface to which JGroups
will bind sockets is configured. Let's get into this topic in more depth:

First, it's important to understand that the value set in any bind_addr element in an XML configuration
file will be ignored by JGroups if it finds that system property jgroups.bind_addr (or a deprecated
earlier name for the same thing, bind.address) has been set. The system property trumps XML.
If JBoss Enterprise Application Platform is started with the -b (a.k.a. --host) switch, the Enterprise
Application Platform will set jgroups.bind_addr to the specified value.

Beginning with Enterprise Application Platform 4.2.0, for security reasons the Enterprise Application
Platform will bind most services to localhost if -b is not set. The effect of this is that in most cases
users are going to be setting -b and thus jgroups.bind_addr is going to be set and any XML setting will
be ignored.

So, what are best practices for managing how JGroups binds to interfaces?

• Binding JGroups to the same interface as other services. Simple, just use -b:

./run.sh -b 192.168.1.100 -c all

• Binding services (e.g., JBoss Web) to one interface, but use a different one for JGroups:

./run.sh -b 10.0.0.100 -Djgroups.bind_addr=192.168.1.100 -c all

Specifically setting the system property overrides the -b value. This is a common usage pattern; put
client traffic on one network, with intra-cluster traffic on another.

• Binding services (e.g., JBoss Web) to all interfaces. This can be done like this:

Chapter 23. JGroups Services

230

./run.sh -b 0.0.0.0 -c all

However, doing this will not cause JGroups to bind to all interfaces! Instead , JGroups will bind
to the machine's default interface. See the Transport Protocols section for how to tell JGroups to
receive or send on all interfaces, if that is what you really want.

• Binding services (e.g., JBoss Web) to all interfaces, but specify the JGroups interface:

./run.sh -b 0.0.0.0 -Djgroups.bind_addr=192.168.1.100 -c all

Again, specifically setting the system property overrides the -b value.

• Using different interfaces for different channels:

./run.sh -b 10.0.0.100 -Djgroups.ignore.bind_addr=true -c all

This setting tells JGroups to ignore the jgroups.bind_addr system property, and instead use
whatever is specfied in XML. You would need to edit the various XML configuration files to set the
bind_addr to the desired interfaces.

23.2.2. Isolating JGroups Channels
Within JBoss Enterprise Application Platform, there are a number of services that independently
create JGroups channels -- 3 different JBoss Cache services (used for HttpSession replication, EJB3
SFSB replication and EJB3 entity replication) along with the general purpose clustering service called
HAPartition that underlies most other JBossHA services.

It is critical that these channels only communicate with their intended peers; not with the channels
used by other services and not with channels for the same service opened on machines not meant
to be part of the group. Nodes improperly communicating with each other is one of the most common
issues users have with JBoss Enterprise Application Platform clustering.

Whom a JGroups channel will communicate with is defined by its group name, multicast address, and
multicast port, so isolating JGroups channels comes down to ensuring different channels use different
values for the group name, multicast address and multicast port.

To isolate JGroups channels for different services on the same set of Enterprise Application Platform
instances from each other, you MUST change the group name and the multicast port. In other words,
each channel must have its own set of values.

For example, say we have a production cluster of 3 machines, each of which has an HAPartition
deployed along with a JBoss Cache used for web session clustering. The HAPartition channels
should not communicate with the JBoss Cache channels. They should use a different group name and
multicast port. They can use the same multicast address, although they don't need to.

To isolate JGroups channels for the same service from other instances of the service on the network,
you MUST change ALL three values. Each channel must have its own group name, multicast address,
and multicast port.

For example, say we have a production cluster of 3 machines, each of which has an HAPartition
deployed. On the same network there is also a QA cluster of 3 machines, which also has an

Isolating JGroups Channels

231

HAPartition deployed. The HAPartition group name, multicast address, and multicast port for the
production machines must be different from those used on the QA machines.

23.2.2.1. Changing the Group Name
The group name for a JGroups channel is configured via the service that starts the channel.
Unfortunately, different services use different attribute names for configuring this. For HAPartition and
related services configured in the deploy/cluster-service.xml file, this is configured via a PartitionName
attribute. For JBoss Cache services, the name of the attribute is ClusterName.

The HAPartition and all the standard JBoss Cache services, make it easy for you to create unique
groups names simply by using the -g (a.k.a. –partition) switch when starting JBoss:

./run.sh -g QAPartition -b 192.168.1.100 -c all

This switch sets the jboss.partition.name system property, which is used as a component in the
configuration of the group name in all the standard clustering configuration files. For example,

<attribute name="ClusterName">Tomcat-${jboss.partition.name:Cluster}</
attribute>

23.2.2.2. Changing the multicast address and port
The -u (a.k.a. --udp) command line switch may be used to control the multicast address used by the
JGroups channels opened by all standard Enterprise Application Platform services.

/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c all

This switch sets the jboss.partition.udpGroup system property, which you can see referenced in all of
the standard protocol stack configs in JBoss Enterprise Application Platform:

<Config>
<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"

Unfortunately, setting the multicast ports is not so simple. As described above, by default there
are four separate JGroups channels in the standard JBoss Enterprise Application Platform all
configuration, and each should be given a unique port. There are no command line switches to set
these, but the standard configuration files do use system properties to set them. So, they can be
configured from the command line by using -D. For example,

 /run.sh -u 230.1.2.3 -g QAPartition -Djboss.hapartition.mcast_port=12345 -
Djboss.webpartition.mcast_port=23456 -
Djboss.ejb3entitypartition.mcast_port=34567 -
Djboss.ejb3sfsbpartition.mcast_port=45678 -b 192.168.1.100 -c all

Why isn't it sufficient to change the group name?

Chapter 23. JGroups Services

232

If channels with different group names share the same multicast address and port, the lower level
JGroups protocols in each channel will see, process and eventually discard messages intended for the
other group. This will at a minimum hurt performance and can lead to anomalous behavior.

Why do I need to change the multicast port if I change the address?

It should be sufficient to just change the address, but there is a problem on several operating systems
whereby packets addressed to a particular multicast port are delivered to all listeners on that port,
regardless of the multicast address they are listening on. So the recommendation is to change both
the address and the port.

23.3. JGroups Troubleshooting

23.3.1. Nodes do not form a cluster
Make sure your machine is set up correctly for IP multicast. There are 2 test programs that can be
used to detect this: McastReceiverTest and McastSenderTest. Go to the $JBOSS_HOME/server/
all/lib directory and start McastReceiverTest, for example:

java -cp jgroups.jar org.jgroups.tests.McastReceiverTest -mcast_addr
 224.10.10.10 -port 5555

Then in another window start McastSenderTest:

java -cp jgroups.jar org.jgroups.tests.McastSenderTest -mcast_addr
 224.10.10.10 -port 5555

If you want to bind to a specific network interface card (NIC), use -bind_addr 192.168.0.2, where
192.168.0.2 is the IP address of the NIC to which you want to bind. Use this parameter in both the
sender and the receiver.

You should be able to type in the McastSenderTest window and see the output in the
McastReceiverTest window. If not, try to use -ttl 32 in the sender. If this still fails, consult a system
administrator to help you setup IP multicast correctly, and ask the admin to make sure that multicast
will work on the interface you have chosen or, if the machines have multiple interfaces, ask to be told
the correct interface. Once you know multicast is working properly on each machine in your cluster,
you can repeat the above test to test the network, putting the sender on one machine and the receiver
on another.

23.3.2. Causes of missing heartbeats in FD
Sometimes a member is suspected by FD because a heartbeat ack has not been received for
some time T (defined by timeout and max_tries). This can have multiple reasons, e.g. in a cluster of
A,B,C,D; C can be suspected if (note that A pings B, B pings C, C pings D and D pings A):

• B or C are running at 100% CPU for more than T seconds. So even if C sends a heartbeat ack to B,
B may not be able to process it because it is at 100%

• B or C are garbage collecting, same as above.

• A combination of the 2 cases above

Causes of missing heartbeats in FD

233

• The network loses packets. This usually happens when there is a lot of traffic on the network, and
the switch starts dropping packets (usually broadcasts first, then IP multicasts, TCP packets last).

• B or C are processing a callback. Let's say C received a remote method call over its channel and
takes T+1 seconds to process it. During this time, C will not process any other messages, including
heartbeats, and therefore B will not receive the heartbeat ack and will suspect C.

234

Chapter 24.

235

JBoss Cache Configuration and
Deployment
JBoss Cache provides the underlying distributed caching support used by many of the standard
clustered services in a JBoss Enterprise Application Platform cluster. You can also deploy JBoss
Cache in your own application to handle custom caching requirements. In this chapter we provide
some background on the main configuration options available with JBoss Cache, with an emphasis on
how those options relate to the JBoss Cache usage by the standard clustered services the Enterprise
Application Platform provides. We then discuss the different options available for deploying a custom
cache in the Enterprise Application Platform.

Users considering deploying JBoss Cache for direct use by their own application are strongly
encouraged to read the JBoss Cache documentation available at http://www.jboss.org/jbosscache.

See also Section 16.2, “Distributed Caching with JBoss Cache” for information on how the standard
JBoss Enterprise Application Platform clustered services use JBoss Cache.

24.1. Key JBoss Cache Configuration Options
JBoss Enterprise Application Platform ships with a reasonable set of default JBoss Cache
configurations that are suitable for the standard clustered service use cases (e.g. web session
replication or JPA/Hibernate caching). Most applications that involve the standard clustered services
just work out of the box with the default configurations. You only need to tweak them when you are
deploying an application that has special network or performance requirements. In this section we
provide a brief overview of some of the key configuration choices. This is by no means a complete
discussion; for full details users interested in moving beyond the default configurations are encouraged
to read the JBoss Cache documentation available at http://www.jboss.org/jbosscache.

Most JBoss Cache configuration examples in this section use the JBoss Microcontainer schema
for building up an org.jboss.cache.config.Configuration object graph from XML. JBoss
Cache has its own custom XML schema, but the standard JBoss Enterprise Application Platform
CacheManager service uses the JBoss Microcontainer schema to be consistent with most other
internal Enterprise Application Platform services.

Before getting into the key configuration options, let's have a look at the most likely place that a user
would encounter them.

24.1.1. Editing the CacheManager Configuration
As discussed in Section 16.2.1, “The JBoss Enterprise Application Platform CacheManager Service”,
the standard JBoss Enterprise Application Platform clustered services use the CacheManager service
as a factory for JBoss Cache instances. So, cache configuration changes are likely to involve edits to
the CacheManager service.

Note
Users can also use the CacheManager as a factory for custom caches used by directly by
their own applications; see Section 24.2.1, “Deployment Via the CacheManager Service”.

Chapter 24. JBoss Cache Configuration and Deployment

236

The CacheManager is configured via the deploy/cluster/jboss-cache-manager.sar/META-
INF/jboss-cache-manager-jboss-beans.xml file. The element most likely to be edited is the
"CacheConfigurationRegistry" bean, which maintains a registry of all the named JBC configurations
the CacheManager knows about. Most edits to this file would involve adding a new JBoss Cache
configuration or changing a property of an existing one.

The following is a redacted version of the "CacheConfigurationRegistry" bean configuration:

<bean name="CacheConfigurationRegistry"

 class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">

 <!-- If users wish to add configs using a more familiar JBC config
 format
 they can add them to a cache-configs.xml file specified by this
 property.
 However, use of the microcontainer format used below is
 recommended.
 <property name="configResource">META-INF/jboss-cache-configs.xml</
property>
 -->

 <!-- The configurations. A Map<String name, Configuration config> -->
 <property name="newConfigurations">
 <map keyClass="java.lang.String"
 valueClass="org.jboss.cache.config.Configuration">

 <!-- The standard configurations follow. You can add your own and/or
 edit these. -->

 <!-- Standard cache used for web sessions -->
 <entry><key>standard-session-cache</key>
 <value>
 <bean name="StandardSessionCacheConfig"
 class="org.jboss.cache.config.Configuration">

 <!-- Provides batching functionality for caches that don't want
 to
 interact with regular JTA Transactions -->
 <property name="transactionManagerLookupClass">
 org.jboss.cache.transaction.BatchModeTransactionManagerLookup
 </property>

 <!-- Name of cluster. Needs to be the same for all members -->
 <property name="clusterName">
${jboss.partition.name:DefaultPartition}-SessionCache</property>
 <!-- Use a UDP (multicast) based stack. Need JGroups flow control
 (FC)
 because we are using asynchronous replication. -->

Editing the CacheManager Configuration

237

 <property name="multiplexerStack">
${jboss.default.jgroups.stack:udp}</property>
 <property name="fetchInMemoryState">true</property>

 <property name="nodeLockingScheme">PESSIMISTIC</property>
 <property name="isolationLevel">REPEATABLE_READ</property>
 <property name="cacheMode">REPL_ASYNC</property>

 more details of the standard-session-cache configuration
 </bean>
 </value>
 </entry>

 <!-- Appropriate for web sessions with FIELD granularity -->
 <entry><key>field-granularity-session-cache</key>
 <value>

 <bean name="FieldSessionCacheConfig"
 class="org.jboss.cache.config.Configuration">
 details of the field-granularity-standard-session-cache
 configuration
 </bean>

 </value>

 </entry>

 ... entry elements for the other configurations

 </map>
 </property>
</bean>

The actual JBoss Cache configurations are specified using the JBoss Microcontainer's
schema rather than one of the standard JBoss Cache configuration formats. When JBoss
Cache parses one of its standard configuration formats, it creates a Java Bean of type
org.jboss.cache.config.Configuration with a tree of child Java Beans for some of the more
complex sub-configurations (i.e. cache loading, eviction, buddy replication). Rather than delegating
this task of XML parsing/Java Bean creation to JBC, we let the Enterprise Application Platform's
microcontainer do it directly. This has the advantage of making the microcontainer aware of the
configuration beans, which in later Enterprise Application Platform 5.x releases will be helpful in
allowing external management tools to manage the JBC configurations.

The configuration format should be fairly self-explanatory if you look at the standard configurations the
Enterprise Application Platform ships; they include all the major elements. The types and properties
of the various java beans that make up a JBoss Cache configuration can be seen in the JBoss Cache
javadocs. Here is a fairly complete example:

<bean name="StandardSFSBCacheConfig"
 class="org.jboss.cache.config.Configuration">

Chapter 24. JBoss Cache Configuration and Deployment

238

 <!-- No transaction manager lookup -->

 <!-- Name of cluster. Needs to be the same for all members -->
 <property name="clusterName">${jboss.partition.name:DefaultPartition}-
SFSBCache</property>
 <!-- Use a UDP (multicast) based stack. Need JGroups flow control (FC)
 because we are using asynchronous replication. -->
 <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}</
property>
 <property name="fetchInMemoryState">true</property>

 <property name="nodeLockingScheme">PESSIMISTIC</property>
 <property name="isolationLevel">REPEATABLE_READ</property>
 <property name="cacheMode">REPL_ASYNC</property>

 <!-- Number of milliseconds to wait until all responses for a
 synchronous call have been received. Make this longer
 than lockAcquisitionTimeout.-->
 <property name="syncReplTimeout">17500</property>
 <!-- Max number of milliseconds to wait for a lock acquisition -->
 <property name="lockAcquisitionTimeout">15000</property>
 <!-- The max amount of time (in milliseconds) we wait until the
 state (ie. the contents of the cache) are retrieved from
 existing members at startup. -->
 <property name="stateRetrievalTimeout">60000</property>

 <!--
 SFSBs use region-based marshalling to provide for partial state
 transfer during deployment/undeployment.
 -->
 <property name="useRegionBasedMarshalling">false</property>
 <!-- Must match the value of "useRegionBasedMarshalling" -->
 <property name="inactiveOnStartup">false</property>

 <!-- Disable asynchronous RPC marshalling/sending -->
 <property name="serializationExecutorPoolSize">0</property>
 <!-- We have no asynchronous notification listeners -->
 <property name="listenerAsyncPoolSize">0</property>

 <property name="exposeManagementStatistics">true</property>

 <property name="buddyReplicationConfig">
 <bean class="org.jboss.cache.config.BuddyReplicationConfig">

 <!-- Just set to true to turn on buddy replication -->
 <property name="enabled">false</property>

 <!-- A way to specify a preferred replication group. We try
 and pick a buddy who shares the same pool name (falling
 back to other buddies if not available). -->

Editing the CacheManager Configuration

239

 <property name="buddyPoolName">default</property>

 <property name="buddyCommunicationTimeout">17500</property>

 <!-- Do not change these -->
 <property name="autoDataGravitation">false</property>
 <property name="dataGravitationRemoveOnFind">true</property>
 <property name="dataGravitationSearchBackupTrees">true</property>

 <property name="buddyLocatorConfig">
 <bean
 class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
 <!-- The number of backup nodes we maintain -->
 <property name="numBuddies">1</property>
 <!-- Means that each node will *try* to select a buddy on
 a different physical host. If not able to do so
 though, it will fall back to colocated nodes. -->
 <property name="ignoreColocatedBuddies">true</property>
 </bean>
 </property>
 </bean>
 </property>
 <property name="cacheLoaderConfig">
 <bean class="org.jboss.cache.config.CacheLoaderConfig">
 <!-- Do not change these -->
 <property name="passivation">true</property>
 <property name="shared">false</property>

 <property name="individualCacheLoaderConfigs">
 <list>
 <bean
 class="org.jboss.cache.loader.FileCacheLoaderConfig">
 <!-- Where passivated sessions are stored -->
 <property name="location">
${jboss.server.data.dir}${/}sfsb</property>
 <!-- Do not change these -->
 <property name="async">false</property>
 <property name="fetchPersistentState">true</property>
 <property name="purgeOnStartup">true</property>
 <property name="ignoreModifications">false</property>
 <property name="checkCharacterPortability">false</
property>
 </bean>
 </list>
 </property>
 </bean>
 </property>

 <!-- EJBs use JBoss Cache eviction -->
 <property name="evictionConfig">
 <bean class="org.jboss.cache.config.EvictionConfig">

Chapter 24. JBoss Cache Configuration and Deployment

240

 <property name="wakeupInterval">5000</property>
 <!-- Overall default -->
 <property name="defaultEvictionRegionConfig">
 <bean class="org.jboss.cache.config.EvictionRegionConfig">
 <property name="regionName">/</property>
 <property name="evictionAlgorithmConfig">
 <bean
 class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
 </property>
 </bean>
 </property>
 <!-- EJB3 integration code will programatically create
 other regions as beans are deployed -->
 </bean>
 </property>
</bean>

Basically, the XML specifies the creation of an org.jboss.cache.config.Configuration java
bean and the setting of a number of properties on that bean. Most of the properties are of simple
types, but some, such as buddyReplicationConfig and cacheLoaderConfig take various types
java beans as their values.

Next we'll look at some of the key configuration options.

24.1.2. Cache Mode
JBoss Cache's cacheMode configuration attribute combines into a single property two related
aspects:

Handling of Cluster Updates

This controls how a cache instance on one node should notify the rest of the cluster when it makes
changes in its local state. There are three options:
• Synchronous means the cache instance sends a message to its peers notifying them of the

change(s) and before returning waits for them to acknowledge that they have applied the same
changes. If the changes are made as part of a JTA transaction, this is done as part of a 2 phase-
commit process during transaction commit. Any locks are held until this acknowledgment is
received. Waiting for acknowledgement from all nodes adds delays, but it ensures consistency
around the cluster. Synchronous mode is needed when all the nodes in the cluster may access the
cached data resulting in a high need for consistency.

• Asynchronous means the cache instance sends a message to its peers notifying them of the
change(s) and then immediately returns, without any acknowledgement that they have applied the
same changes. It does not mean sending the message is handled by some other thread besides
the one that changed the cache content; the thread that makes the change still spends some time
dealing with sending messages to the cluster, just not as much as with synchronous communication.
Asynchronous mode is most useful for cases like session replication, where the cache doing the
sending expects to be the only one that accesses the data and the cluster messages are used to
provide backup copies in case of failure of the sending node. Asynchronous messaging adds a
small risk that a later user request that fails over to another node may see out-of-date state, but
for many session-type applications this risk is acceptable given the major performance benefits
asynchronous mode has over synchronous mode.

Transaction Handling

241

• Local means the cache instance doesn't send a message at all. A JGroups channel isn't even used
by the cache. JBoss Cache has many useful features besides its clustering capabilities and is a
very useful caching library even when not used in a cluster. Also, even in a cluster, some cached
data does not need to be kept consistent around the cluster, in which case Local mode will improve
performance. Caching of JPA/Hibernate query result sets is an example of this; Hibernate's second
level caching logic uses a separate mechanism to invalidate stale query result sets from the second
level cache, so JBoss Cache doesn't need to send messages around the cluster for a query result
set cache.

Replication vs. Invalidation

This aspect deals with the content of messages sent around the cluster when a cache changes its
local state, i.e. what should the other caches in the cluster do to reflect the change:
• Replication means the other nodes should update their state to reflect the new state on the sending

node. This means the sending node needs to include the changed state, increasing the cost of the
message. Replication is necessary if the other nodes have no other way to obtain the state.

• Invalidation means the other nodes should remove the changed state from their local state.
Invalidation reduces the cost of the cluster update messages, since only the cache key of the
changed state needs to be transmitted, not the state itself. However, it is only an option if the
removed state can be retrieved from another source. It is an excellent option for a clustered JPA/
Hibernate entity cache, since the cached state can be re-read from the database.

These two aspects combine to form 5 valid values for the cacheMode configuration attribute:
• LOCAL means no cluster messages are needed.

• REPL_SYNC means synchronous replication messages are sent.

• REPL_ASYNC means asynchronous replication messages are sent.

• INVALIDATION_SYNC means synchronous invalidation messages are sent.

• INVALIDATION_ASYNC means asynchronous invalidation messages are sent.

24.1.3. Transaction Handling
JBoss Cache integrates with JTA transaction managers to allow transactional access to the cache.
When JBoss Cache detects the presence of a transaction, any locks are held for the life of the
transaction, changes made to the cache will be reverted if the transaction rolls back, and any cluster-
wide messages sent to inform other nodes of changes are deferred and sent in a batch as part of
transaction commit (reducing chattiness).

Integration with a transaction manager is accomplished by setting the
transactionManagerLookupClass configuration attribute; this specifies the fully qualified class
name of a class JBoss Cache can use to find the local transaction manager. Inside JBoss Enterprise
Application Platform, this attribute would have one of two values:

• org.jboss.cache.transaction.JBossTransactionManagerLookup

This finds the standard transaction manager running in the application server. Use this for any
custom caches you deploy where you want caching to participate in any JTA transactions.

• org.jboss.cache.transaction.BatchModeTransactionManagerLookup

Chapter 24. JBoss Cache Configuration and Deployment

242

This is used in the cache configurations used for web session and EJB SFSB caching. It
specifies a simple mock TransactionManager that ships with JBoss Cache called the
BatchModeTransactionManager. This transaction manager is not a true JTA transaction
manager and should not be used for anything other than JBoss Cache. Its usage in JBoss
Enterprise Application Platform is to get most of the benefits of JBoss Cache's transactional
behavior for the session replication use cases, but without getting tangled up with end user
transactions that may run during a request.

Note
For caches used for JPA/Hibernate caching, the transactionManagerLookupClass
should not be configured. Hibernate internally configures the cache to use the same
transaction manager it is using for database access.

24.1.4. Concurrent Access
JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. Concurrency is configured via the nodeLockingScheme and isolationLevel
configuration attributes.

There are three choices for nodeLockingScheme:
• MVCC or multi-versioned concurrency control, is a locking scheme commonly used by modern

database implementations to control fast, safe concurrent access to shared data. JBoss Cache 3.x
uses an innovative implementation of MVCC as the default locking scheme. MVCC is designed to
provide the following features for concurrent access:
• Readers that don't block writers

• Writers that fail fast

It achieves this by using data versioning and copying for concurrent writers. The theory is that
readers continue reading shared state, while writers copy the shared state, increment a version id,
and write that shared state back after verifying that the version is still valid (i.e., another concurrent
writer has not changed this state first).

MVCC is the recommended choice for JPA/Hibernate entity caching.

• PESSIMISTIC locking involves threads/transactions acquiring either exclusive or non-exclusive
locks on nodes before reading or writing. Which is acquired depends on the isolationLevel
(see below) but in most cases a non-exclusive lock is acquired for a read and an exclusive lock
is acquired for a write. Pessimistic locking requires considerably more overhead than MVCC and
allows lesser concurrency, since reader threads must block until a write has completed and released
its exclusive lock (potentially a long time if the write is part of a transaction). A write will also be
delayed due to ongoing reads.

Generally MVCC is a better choice than PESSIMISTIC, which is deprecated as of JBoss Cache 3.0.
But, for the session caching usage in JBoss Enterprise Application Platform 5.0.0, PESSIMISTIC is
still the default. This is largely because for the session use case there are generally not concurrent
threads accessing the same cache location, so the benefits of MVCC are not as great.

• OPTIMISTIC locking seeks to improve upon the concurrency available with PESSIMISTIC by
creating a "workspace" for each request/transaction that accesses the cache. Data accessed by the

JGroups Integration

243

request/transaction (even reads) is copied into the workspace, which is adds overhead. All data is
versioned; on completion of non-transactional requests or commits of transactions the version of
data in the workspace is compared to the main cache, and an exception is raised if there are are
inconsistencies. Otherwise changes to the workspace are applied to the main cache.

OPTIMISTIC locking is deprecated but is still provided to support backward compatibility. Users are
encouraged to use MVCC instead, which provides the same benefits at lower cost.

The isolationLevel attribute has two possible values READ_COMMITTED and
REPEATABLE_READ which correspond in semantic to database-style isolation levels. Previous
versions of JBoss Cache supported all 5 database isolation levels, and if an unsupported isolation
level is configured, it is either upgraded or downgraded to the closest supported level.

REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions
of JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant
performance benefit over REPEATABLE_READ.

24.1.5. JGroups Integration
Each JBoss Cache instance internally uses a JGroups Channel to handle group communications.
Inside JBoss Enterprise Application Platform, we strongly recommend that you use the Enterprise
Application Platform's JGroups Channel Factory service as the source for your cache's Channel. In
this section we discuss how to configure your cache to get it's channel from the Channel Factory; if
you wish to configure the channel in some other way see the JBoss Cache documentation.

Caches obtained from the CacheManager Service

This is the simplest approach. The CacheManager service already has a reference to the Channel
Factory service, so the only configuration task is to configure the name of the JGroups protocol stack
configuration to use.

If you are configuring your cache via the CacheManager service's jboss-cache-manager-jboss-
beans.xml file (see Section 24.2.1, “Deployment Via the CacheManager Service”), add the following
to your cache configuration, where the value is the name of the protocol stack configuration.:

<property name="multiplexerStack">udp</property>

Caches Deployed via a -jboss-beans.xml File

If you are deploying a cache via a JBoss Microcontainer -jboss-beans.xml file (see Section 24.2.3,
“Deployment Via a -jboss-beans.xml File”), you need inject a reference to the Channel Factory
service as well as specifying the protocol stack configuration:

<property name="runtimeConfig">
 <bean class="org.jboss.cache.config.RuntimeConfig">
 <property name="muxChannelFactory"><inject bean="JChannelFactory"/></
property>
 </bean>
</property>
<property name="multiplexerStack">udp</property>

Caches Deployed via a -service.xml File

Chapter 24. JBoss Cache Configuration and Deployment

244

If you are deploying a cache MBean via -service.xml file (see Section 24.2.2, “Deployment Via
a -service.xml File”), CacheJmxWrapper is the class of your MBean; that class exposes a
MuxChannelFactory MBean attribute. You dependency inject the Channel Factory service into this
attribute, and set the protocol stack name via the MultiplexerStack attribute:

<attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/></
attribute>
<attribute name="MultiplexerStack">udp</attribute>

24.1.6. Eviction
Eviction allows the cache to control memory by removing data (typically the least frequently used
data). If you wish to configure eviction for a custom cache, see the JBoss Cache documentation
for all of the available options. For details on configuring it for JPA/Hibernate caching, see the
Eviction chapter in the "Using JBoss Cache as a Hibernate Second Level Cache" guide at http://
www.jboss.org/jbossclustering/docs/hibernate-jbosscache-guide-3.pdf. For web session caches,
eviction should not be configured; the distributable session manager handles eviction itself. For
EJB 3 SFSB caches, stick with the eviction configuration in the Enterprise Application Platform's
standard sfsb-cache configuration (see Section 16.2.1, “The JBoss Enterprise Application Platform
CacheManager Service”). The EJB container will configure eviction itself using the values included in
each bean's configuration.

24.1.7. Cache Loaders
Cache loading allows JBoss Cache to store data in a persistent store in addition to what it keeps in
memory. This data can either be an overflow, where the data in the persistent store is not reflected in
memory. Or it can be a superset of what is in memory, where everything in memory is also reflected
in the persistent store, along with items that have been evicted from memory. Which of these two
modes is used depends on the setting of the passivation flag in the JBoss Cache cache loader
configuration section. A true value means the persistent store acts as an overflow area written to
when data is evicted from the in-memory cache.

If you wish to configure cache loading for a custom cache, see the JBoss Cache documentation for all
of the available options. Do not configure cache loading for a JPA/Hibernate cache, as the database
itself serves as a persistent store; adding a cache loader is just redundant.

The caches used for web session and EJB3 SFSB caching use passivation. Next we'll discuss the
cache loader configuration for those caches in some detail.

24.1.7.1. CacheLoader Configuration for Web Session and SFSB Caches
HttpSession and SFSB passivation rely on JBoss Cache's Cache Loader passivation for storing
and retrieving the passivated sessions. Therefore the cache instance used by your webapp's
clustered session manager or your bean's EJB container must be configured to enable Cache Loader
passivaton.

In most cases you don't need to do anything to alter the cache loader configurations for the standard
web session and SFSB caches; the standard JBoss Enterprise Application Platform configurations
should suit your needs. The following is a bit more detail in case you're interested or want to change
from the defaults.

Cache Loaders

245

The Cache Loader configuration for the standard-session-cache config serves as a good
example:

<property name="cacheLoaderConfig">
 <bean class="org.jboss.cache.config.CacheLoaderConfig">
 <!-- Do not change these -->
 <property name="passivation">true</property>
 <property name="shared">false</property>

 <property name="individualCacheLoaderConfigs">
 <list>
 <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
 <!-- Where passivated sessions are stored -->
 <property name="location">
${jboss.server.data.dir}${/}field-session</property>
 <!-- Do not change these -->
 <property name="async">false</property>
 <property name="fetchPersistentState">true</property>
 <property name="purgeOnStartup">true</property>
 <property name="ignoreModifications">false</property>
 <property name="checkCharacterPortability">false</
property>
 </bean>
 </list>
 </property>
 </bean>
</property>

Some explanation:

• passivation property MUST be true

• shared property MUST be false. Do not passivate sessions to a shared persistent store,
otherwise if another node activates the session, it will be gone from the persistent store and also
gone from memory on other nodes that have passivated it. Backup copies will be lost.

• individualCacheLoaderConfigs property accepts a list of Cache Loader configurations. JBC
allows you to chain cache loaders; see the JBoss Cache docs. For the session passivation use case
a single cache loader is sufficient.

• class attribute on a cache loader config bean must refer to the configuration class for a cache
loader implementation (e.g. org.jboss.cache.loader.FileCacheLoaderConfig or
org.jboss.cache.loader.JDBCCacheLoaderConfig). See the JBoss Cache documentation
for more on the available CacheLoader implementations. If you wish to use JDBCCacheLoader
(to persist to a database rather than the filesystem used by FileCacheLoader) note the comment
above about the shared property. Don't use a shared database, or at least not a shared table in the
database. Each node in the cluster must have its own storage location.

• location property for FileCacheLoaderConfig defines the root node of the filesystem tree where
passivated sessions should be stored. The default is to store them in your JBoss Enterprise
Application Platform configuration's data directory.

Chapter 24. JBoss Cache Configuration and Deployment

246

• async MUST be false to ensure passivated sessions are promptly written to the persistent store.

• fetchPersistentState property MUST be true to ensure passivated sessions are included in the
set of session backup copies transferred over from other nodes when the cache starts.

• purgeOnStartup should be true to ensure out-of-date session data left over from a previous
shutdown of a server doesn't pollute the current data set.

• ignoreModifications should be false

• checkCharacterPortability should be false as a minor performance optimization.

24.1.8. Buddy Replication
Buddy Replication is a JBoss Cache feature that allows you to suppress replicating your data to all
instances in a cluster. Instead, each instance picks one or more 'buddies' in the cluster, and only
replicates to those specific buddies. This greatly helps scalability as there is no longer a memory and
network traffic impact every time another instance is added to a cluster.

If the cache on another node needs data that it doesn't have locally, it can ask the other nodes in the
cluster to provide it; nodes that have a copy will provide it as part of a process called "data gravitation".
The new node will become the owner of the data, placing a backup copy of the data on its buddies.
The ability to gravitate data means there is no need for all requests for data to occur on a node that
has a copy of it; any node can handle a request for any data. However, data gravitation is expensive
and should not be a frequent occurence; ideally it should only occur if the node that is using some
data fails or is shut down, forcing interested clients to fail over to a different node. This makes buddy
replication primarily useful for session-type applications with session affinity (a.k.a. "sticky sessions")
where all requests for a particular session are normally handled by a single server.

Buddy replication can be enabled for the web session and EJB3 SFSB caches. Do not add buddy
replication to the cache configurations used for other standard clustering services (e.g. JPA/Hibernate
caching). Services not specifically engineered for buddy replication are highly unlikely to work correctly
if it is introduced.

Configuring buddy replication is fairly straightforward. As an example we'll look at the buddy replication
configuration section from the CacheManager service's standard-session-cache config:

<property name="buddyReplicationConfig">
 <bean class="org.jboss.cache.config.BuddyReplicationConfig">

 <!-- Just set to true to turn on buddy replication -->
 <property name="enabled">true</property>

 <!-- A way to specify a preferred replication group. We try
 and pick a buddy who shares the same pool name (falling
 back to other buddies if not available). -->
 <property name="buddyPoolName">default</property>

 <property name="buddyCommunicationTimeout">17500</property>

 <!-- Do not change these -->
 <property name="autoDataGravitation">false</property>

Deploying Your Own JBoss Cache Instance

247

 <property name="dataGravitationRemoveOnFind">true</property>
 <property name="dataGravitationSearchBackupTrees">true</property>

 <property name="buddyLocatorConfig">
 <bean
 class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
 <!-- The number of backup copies we maintain -->
 <property name="numBuddies">1</property>
 <!-- Means that each node will *try* to select a buddy on
 a different physical host. If not able to do so
 though, it will fall back to colocated nodes. -->
 <property name="ignoreColocatedBuddies">true</property>
 </bean>
 </property>
 </bean>
</property>

The main things you would be likely to configure are:

• buddyReplicationEnabled -- true if you want buddy replication; false if data should be
replicated to all nodes in the cluster, in which case none of the other buddy replication configurations
matter.

• numBuddies -- to how many backup nodes should each node replicate its state.

• buddyPoolName -- allows logical subgrouping of nodes within the cluster; if possible, buddies will
be chosen from nodes in the same buddy pool.

The ignoreColocatedBuddies switch means that when the cache is trying to find a buddy, it will if
possible not choose a buddy on the same physical host as itself. If the only server it can find is running
on its own machine, it will use that server as a buddy.

Do not change the settings for autoDataGravitation, dataGravitationRemoveOnFind and
dataGravitationSearchBackupTrees. Session replication will not work properly if these are
changed.

24.2. Deploying Your Own JBoss Cache Instance
It's quite common for users to deploy their own instances of JBoss Cache inside JBoss Enterprise
Application Platform for custom use by their applications. In this section we describe the various ways
caches can be deployed.

24.2.1. Deployment Via the CacheManager Service
The standard JBoss clustered services that use JBoss Cache obtain a reference to their cache
from the Enterprise Application Platform's CacheManager service (see Section 16.2.1, “The JBoss
Enterprise Application Platform CacheManager Service”). End user applications can do the same
thing; here's how.

Section 24.1.1, “Editing the CacheManager Configuration” shows the configuration of the
CacheManager's "CacheConfigurationRegistry" bean. To add a new configuration, you would add an
additional element inside that bean's newConfigurations <map>:

Chapter 24. JBoss Cache Configuration and Deployment

248

<bean name="CacheConfigurationRegistry"

 class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">

 <property name="newConfigurations">
 <map keyClass="java.lang.String"
 valueClass="org.jboss.cache.config.Configuration">

 <entry><key>my-custom-cache</key>
 <value>
 <bean name="MyCustomCacheConfig"
 class="org.jboss.cache.config.Configuration">
 details of the my-custom-cache configuration
 </bean>
 </value>
 </entry>

See Section 24.1.1, “Editing the CacheManager Configuration” for an example configuration.

24.2.1.1. Accessing the CacheManager
Once you've added your cache configuration to the CacheManager, the next step is to provide a
reference to the CacheManager to your application. There are three ways to do this:

• Dependency Injection

If your application uses the JBoss Microcontainer for configuration, the simplest mechanism is to
have it inject the CacheManager into your service.

<bean name="MyService" class="com.example.MyService">
 <property name="cacheManager"><inject bean="CacheManager"/></property>
</bean>

• JNDI Lookup

Alternatively, you can find look up the CacheManger is JNDI. It is bound under
java:CacheManager.

import org.jboss.ha.cachemanager.CacheManager;

public class MyService {
 private CacheManager cacheManager;

 public void start() throws Exception {
 Context ctx = new InitialContext();
 cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
 }

Deployment Via the CacheManager Service

249

}

• CacheManagerLocator

JBoss Enterprise Application Platform also provides a service locator object that can be used to
access the CacheManager.

import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
 private CacheManager cacheManager;

 public void start() throws Exception {
 CacheManagerLocator locator =
 CacheManagerLocator.getCacheManagerLocator();
 // Locator accepts as param a set of JNDI properties to help in
 lookup;
 // this isn't necessary inside the Enterprise Application Platform
 cacheManager = locator.getCacheManager(null);
 }
}

Once a reference to the CacheManager is obtained; usage is simple. Access a cache by passing
in the name of the desired configuration. The CacheManager will not start the cache; this is the
responsibility of the application. The cache may, however, have been started by another application
running in the cache server; the cache may be shared. When the application is done using the cache,
it should not stop. Just inform the CacheManager that the cache is no longer being used; the manager
will stop the cache when all callers that have asked for the cache have released it.

import org.jboss.cache.Cache;
import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
 private CacheManager cacheManager;
 private Cache cache;

 public void start() throws Exception {
 Context ctx = new InitialContext();
 cacheManager = (CacheManager) ctx.lookup("java:CacheManager");

 // "true" param tells the manager to instantiate the cache if
 // it doesn't exist yet
 cache = cacheManager.getCache("my-cache-config", true);

 cache.start();
 }

Chapter 24. JBoss Cache Configuration and Deployment

250

 public void stop() throws Exception {
 cacheManager.releaseCache("my-cache-config");
 }
}

The CacheManager can also be used to access instances of POJO Cache.

import org.jboss.cache.pojo.PojoCache;
import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
 private CacheManager cacheManager;
 private PojoCache pojoCache;

 public void start() throws Exception {
 Context ctx = new InitialContext();
 cacheManager = (CacheManager) ctx.lookup("java:CacheManager");

 // "true" param tells the manager to instantiate the cache if
 // it doesn't exist yet
 pojoCache = cacheManager.getPojoCache("my-cache-config", true);

 pojoCache.start();
 }

 public void stop() throws Exception {
 cacheManager.releasePojoCache("my-cache-config");
 }
}

24.2.2. Deployment Via a -service.xml File
As in JBoss 4, you can also deploy a JBoss Cache instance as an MBean service via a -
service.xml file. The primary difference from JBoss 4 is the value of the code attribute in
the mbean element. In JBoss 4, this was org.jboss.cache.TreeCache; in JBoss 5 it is
org.jboss.cache.jmx.CacheJmxWrapper. Here's an example:

<?xml version="1.0" encoding="UTF-8"?>

<server>
 <mbean code="org.jboss.cache.jmx.CacheJmxWrapper"
 name="foo:service=ExampleCacheJmxWrapper">

 <attribute name="TransactionManagerLookupClass">
 org.jboss.cache.transaction.JBossTransactionManagerLookup
 </attribute>

Deployment Via a -jboss-beans.xml File

251

 <attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/></
attribute>

 <attribute name="MultiplexerStack">udp</attribute>
 <attribute name="ClusterName">Example-EntityCache</attribute>
 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>
 <attribute name="CacheMode">REPL_SYNC</attribute>
 <attribute name="InitialStateRetrievalTimeout">15000</attribute>
 <attribute name="SyncReplTimeout">20000</attribute>
 <attribute name="LockAcquisitionTimeout">15000</attribute>
 <attribute name="ExposeManagementStatistics">true</attribute>

 </mbean>
</server>

The CacheJmxWrapper is not the cache itself (i.e. you can't store stuff in it). Rather, as it's name
implies, it's a wrapper around an org.jboss.cache.Cache that handles integration with JMX.
CacheJmxWrapper exposes the org.jboss.cache.Cache via its CacheJmxWrapperMBean
MBean interfaces Cache attribute; services that need the cache can obtain a reference to it via that
attribute.

24.2.3. Deployment Via a -jboss-beans.xml File
Much like it can deploy MBean services described with a -service.xml, JBoss Enterprise
Application Platform 5 can also deploy services that consist of Plain Old Java Objects (POJOs) if
the POJOs are described using the JBoss Microcontainer schema in a -jboss-beans.xml file.
You create such a file and deploy it, either directly in the deploy dir, or packaged in an ear or sar.
Following is an example:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->
 <bean name="ExampleCacheConfig"
 class="org.jboss.cache.config.Configuration">

 <!-- Externally injected services -->
 <property name="runtimeConfig">
 <bean name="ExampleCacheRuntimeConfig"
 class="org.jboss.cache.config.RuntimeConfig">
 <property name="transactionManager">
 <inject bean="jboss:service=TransactionManager"
 property="TransactionManager"/>
 </property>
 <property name="muxChannelFactory"><inject
 bean="JChannelFactory"/></property>
 </bean>
 </property>

Chapter 24. JBoss Cache Configuration and Deployment

252

 <property name="multiplexerStack">udp</property>
 <property name="clusterName">Example-EntityCache</property>
 <property name="isolationLevel">REPEATABLE_READ</property>
 <property name="cacheMode">REPL_SYNC</property>
 <property name="initialStateRetrievalTimeout">15000</property>
 <property name="syncReplTimeout">20000</property>
 <property name="lockAcquisitionTimeout">15000</property>
 <property name="exposeManagementStatistics">true</property>

 </bean>

 <!-- Factory to build the Cache. -->
 <bean name="DefaultCacheFactory"
 class="org.jboss.cache.DefaultCacheFactory">
 <constructor factoryClass="org.jboss.cache.DefaultCacheFactory" />
 </bean>

 <!-- The cache itself -->
 <bean name="ExampleCache" class="org.jboss.cache.Cache">
 <constructor factoryMethod="createCache">
 <factory bean="DefaultCacheFactory"/>
 <parameter class="org.jboss.cache.config.Configuration"><inject
 bean="ExampleCacheConfig"/></parameter>
 <parameter class="boolean">false</false>
 </constructor>
 </bean>

 <bean name="ExampleService" class="org.foo.ExampleService">
 <property name="cache"><inject bean="ExampleCache"/></property>
 </bean>

</deployment>

The bulk of the above is the creation of a JBoss Cache Configuration object; this is the same
as what we saw in the configuration of the CacheManager service (see Section 24.1.1, “Editing
the CacheManager Configuration”). In this case we're not using the CacheManager service as a
cache factory, so instead we create our own factory bean and then use it to create the cache (the
"ExampleCache" bean). The "ExampleCache" is then injected into a (fictitious) service that needs it.

An interesting thing to note in the above example is the use of the RuntimeConfig object. External
resources like a TransactionManager and a JGroups ChannelFactory that are visible to the
microcontainer are dependency injected into the RuntimeConfig. The assumption here is that in
some other deployment descriptor in the Enterprise Application Platform, the referenced beans have
already been described.

Using the configuration above, the "ExampleCache" cache will not be visible in JMX. Here's an
alternate approach that results in the cache being bound into JMX:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

Deployment Via a -jboss-beans.xml File

253

 <!-- First we create a Configuration object for the cache -->
 <bean name="ExampleCacheConfig"
 class="org.jboss.cache.config.Configuration">

 same as above

 </bean>

 <bean name="ExampleCacheJmxWrapper"
 class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="foo:service=ExampleCacheJmxWrapper",

 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
 registerDirectly=true)
 </annotation>

 <property name="configuration"><inject bean="ExampleCacheConfig"/></
property>

 </bean>

 <bean name="ExampleService" class="org.foo.ExampleService">
 <property name="cache"><inject bean="ExampleCacheJmxWrapper"
 property="cache"/></property>
 </bean>

</deployment>

Here the "ExampleCacheJmxWrapper" bean handles the task of creating the cache from the
configuration. CacheJmxWrapper is a JBoss Cache class that provides an MBean interface for a
cache. Adding an <annotation> element binds the JBoss Microcontainer @JMX annotation to the bean;
that in turn results in JBoss Enterprise Application Platform registering the bean in JXM as part of the
deployment process.

The actual underlying org.jboss.cache.Cache instance is available from the CacheJmxWrapper
via its cache property; the example shows how this can be used to inject the cache into the
"ExampleService".

254

Part IV. Performance Tuning

Chapter 25.

257

JBoss Enterprise Application Platform
5 Performance Tuning

25.1. Introduction
Developing applications and deploying them to an application server does not guarantee best
performance without performance tuning of the applications and server. Performance tuning involves
ensuring your application does not consume resources unnecessarily while ensures best performance
of the applications and application server.

Application design, hardware/network profile, operating system, application software development,
testing and deployment all play a major role in performance tuning. A bottleneck in performance
therefore could be caused by these factors not just your application. Recent studies show that most
performance problems are the result of the applications not the middleware or the operating systems.
This could be associated with the technological developments in computer software, hardware and
networking which has increased their reliability.

Improvement of application design and undertaking performance review of your applications before
implementation is vital to avoiding bottlenecks after implementation. To undertake a performance
review you need to setup a test environment undertake and analyse the test results. To effectively
undertake a review, you also need to identify peak application workload times and the difference from
normal workload periods. Peak workload times could be during the day, week, certain periods of the
month, quarter or year. In understanding peaks workloads it is advisable not to go by averages as the
peaks may be much more than the averages calculated over a period. The system requirements are
bound by the peaks in the workload not the averages. On undertaking tuning it is recommended to
carry out a few more tests and tuning of your system until a satisfactory performance is achieved.

25.2. Hardware tuning
To develop a suitable hardware configuration that suits the performance of your applications on the
JBoss Enterprise Application Platform, you need to understand the impact the selected hardware
configuration may have on other applications and overall operating system performance.

To understand hardware performance tuning issues, it is also very critical to understand the hardware
architecture of your system.

25.2.1. CPU (Central Processing Unit)
The CPU is the central processing unit of your computer which consists of:
• a control unit which receives and decides what type of instructions it has received,

• CPU registers that store intermediate processing information temporarily,

• a program counter which holds the location of the succeeding executable tasks,

• instruction register that stores currently executing tasks,

• CPU cache which is a limited memory that holds data currently being processed by the CPU.

Understanding your CPU architecture can be helpful in identifying your CPU specifications
and how it works. For AMD CPU's please refer to http://www.amd.com/us-en/Processors/

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html

Chapter 25. JBoss Enterprise Application Platform 5 Performance Tuning

258

ProductInformation/0,,30_118,00.html for more information. For Intel CPU's please refer to http://
www.intel.com/products/processor/index.htm?iid=subhdr+prod_proc for more information.

25.2.2. RAM (Random Access Memory)
Random access memory (RAM) is the next level of storage that can be used to hold executing
programs and/or data. RAM chips provides a higher amount of storage than the CPU cache and can
improve computer performance. Storing data or programs frequently used in RAM can highly improve
performance as they can be retrieved faster than from the hard disk drives.

RAM is crucial for example when tuning your database management system to manage buffer cache.
This would involve storing frequently used database information in RAM for quick application access
while taking caution not to affect overall performance of other applications and operating system.

25.2.3. Hard Disk
Unlike the CPU and RAM, hard disk drives do not require a power source to retain information/data.
In case of power loss, information stored in the CPU and RAM is lost while that stored in the hard disk
is retained but may be corrupted depending on the type of operation that was in progress during the
power loss.

However retrieval and storage of information from disk drives takes much longer as they use
mechanical heads to read and write information to the cylinders of the disk. Storage areas in RAM and
in the CPU can be accessed with equal speed while on the hard disk, movement of the disk head to
the requested disk block/blocks where information is stored is necessary.

Practices such as disk defragmentation and cleanups can help improve file retrieval and overall
performance of your applications. It is therefore crucial to manage the disk storage carefully with
the retrieval and processing of data in mind. You also need to identify a suitable file system for your
operating system to ensure the best performance possible.

Understanding the main architectural differences and issues that may occur with different computer
hardware profiles can help identify a suitable hardware performance and disaster management
strategy that would be suitable for your needs.

25.3. Operating System Performance Tuning
Most modern operating systems now ship with performance tuning or profiling tools that can help you
monitor CPU, memory, hard disk and network usage in realtime.

On Windows the task manager and performance monitor can be helpful in identifying system
performance bottlenecks while in unix based operating systems top and ps are used for the same
purpose. Linux distributions such as Red Hat Enterprise Linux and Fedora provide a graphical user
interface System Monitor that is useful to monitor system performance.

Operating system performance tuning is about resource management to respond to individual
requests. Managing operating system scalability on the other hand involves managing resource
consumption with varying volumes (low to very high) of requests.

Overall operational performance metrics that are critical for the business such as response time to
user requests, database, network, CPU and memory performance among other metrics should be
identified and tested and logged in realtime where possible or with system rollouts

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html
http://www.intel.com/products/processor/index.htm?iid=subhdr+prod_proc
http://www.intel.com/products/processor/index.htm?iid=subhdr+prod_proc

Networking

259

For clustered environments, understanding and monitoring your cluster's performance and identifying
overloads early is critical to system failure prevention.

25.3.1. Networking
Network configurations may contribute to performance bottlenecks and may be hard to detect. For
example a user may get an error on their browser when trying to load a web application on a dialup
connection while the same page may load on a broadband internet connection. The main issue in this
scenario may be bandwidth and may not be obviosly displayed in the error message displayed.

Identifying network architecture and infrastructure is therefore critical in performance tuning and fixing
system bottlenecks.

Most modern operating systems provide you with network hardware configuration tools while some
hardware manufacturers may also provide extended network hardware configuration tools with their
drivers.

Most operating systems support different communication protocols which you can tweak. Factors such
as TCP buffer memory space, connection buffer limits and acknowledgement options among others
should be take into account in your network design.

Deciding to turn DNS lookups on or off in your web servers can also affect your performance but
may be necessary to turn on for high security environments. Factoring this and allocating necessary
resources or hardware can help improve system performance.

25.4. Tuning the JVM
For java based applications, it is recommended to also be familiar with tuning of your Java Virtual
Machine (JVM). Some key aspects of your JVM that need tweaking include managing out of memory
exceptions, java heap settings and garbage collection. Please refer to the JDK 5 documentation on
http://java.sun.com/j2se/1.5.0/docs/ for further discussions on this.

25.5. Tuning your applications
Good application design and development practices are critical to ensuring satisfactory application
performance. Data reads or writes and processing by your applications may cause performance
bottlenecks due to factors such as timeouts on remote servers memory allocation or network issues
among other factors. Understanding how each application works is therefore crucial in identifying
performance bottlenecks. Setting expected time duration each code part is expected to take can help
develop realistic benchmarks against which the applications can be reviewed. These benchmarks
should take into account high and low peak usage times for the applications and not averages as
these may highly vary from the peak times.

In addition, using benchmarking tools to test your applications may be a quick way to pinpoint issues
in your code which can often be causes for performance bottlenecks. Iterative tests are recommended
to identify cache and other hardware issues that may arise due to startup or other factors.

The JBoss Application Server web console http://localhost:8080/web-console/ provides you with
monitoring tools starting with the JVM Hardware environment statistics on the default page and access
to monitoring tools and snapshots.

http://java.sun.com/j2se/1.5.0/docs/
http://localhost:8080/web-console/

Chapter 25. JBoss Enterprise Application Platform 5 Performance Tuning

260

Performance Monitor v/s Profiler
A performance monitor informs you on overall application performance such as requests
per second. Profiling tools such as JBoss Profiler1 will tell you how long it is taking your
application to service a request, and how often it services certain types of requests. This
can usually be broken down all the way to the individual methods. For example, how many
times a method was called and the average/maximum/minimum amount of time spent in
the method.

It is also important to take caution not to create bottlenecks for other applications while fixing a
performance issue in one application.

25.5.1. Instrumentation
Applications should always be instrumented for performance analysis. In most cases, it is evident that
performance requirements and peak workloads examined before production are incorrect compared
to during production. Without instrumentation of your applications, you will lack accurate tracking
data. Workloads on your applications can also change over time, as the business size, models or
environment changes.

Instrumentation in the past would have had to be embedded in the application. Today, there are many
solutions for instrumentation that do not require developers to code. Commercial products, and the
JBoss AOP framework can be used for just this purpose. You can also turn on call statistics in the
containers, and Hibernate statistics. For more on this please refer to the AOP and Hibernate project
pages.

25.6. Tuning JBoss Application Server
Before tuning the JBoss Enterprise Application Platform, please ensure that you are familiar with its
components outlined in the introduction section of this book. You should also be familiar with any
particular services your application may use on the application server and tune them to improve
performance. It is also important to establish optimal database connections used by your applications
and set these on the application server. This section discusses these among other JBoss Application
Server performance tuning topics.

25.6.1. Memory usage
Memory usage of Java applications including the JBoss Enterprise Application Platform is dictated by
the heap space allocated. You could therefore as an example, reduce 1GB heap space you currently
have allocated to 800MB to save space.

There are several instances where the Java Virtual Machine (JVM) may report OutOfMemoryError
even when it is not really out of its available memory. The JVM may report an out of memory error
when it is really out of memory or when only a segment or generation of the heap space is exhausted
as most modern JVM's divide the heap space into generations/segments. Another example could be
inability of the operating system (occurs on Linux/Unix systems)to create new threads for the JVM.

Running out of memory generates an Error that is not likely to be masked in a catch block because it
is an Error rather than an Exception. This is important since one often sees theories expressed about
OutOfMemoryError being reported erroneously. That is very unlikely, although OOMEs do occur when
the heap has plenty of memory or plenty of recoverable memory. An OOME is also thrown when the
permanent memory is exhausted and that is not part of the heap per se. That is a JVM specific area

http://www.jboss.org/jbossprofiler/

Database Connection

261

of memory where information on loaded classes is maintained. If you have a mountain of classes (e.g,
a lot of EJBs and JSP pages) you can easily exhaust this area. Oftentimes an application will fail to
deploy or fail to redeploy. Increase your permanent memory space as follows to avoid OOMEs. The
default with the -server switch is 64 megabytes:

-XX:MaxPermSize?=128m

Note this is in addition to the heap. In this case we have 512M heap, 128M permanent space for a
total of 640 megabytes. Don't forget the JVM itself takes up a chunk of system memory and there is
also two megs per thread of stack space. That can add up with a lot of HTTP/S processors.

-XX:MaxPermSize?=128m -Xmx512m (total of 640 megabytes allocated from system - this is not
the total size of the VM and does not include the space the VM allocates for the "C heap" or stack
space)

On Windows, you can set this in the <JBOSS_HOME>\bin\run.bat file by setting

JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx512m -XX:MaxPermSize?=128m

The HotSpot Java Virtual Machine ships with J2SE 1.4.2 and above and consists of various garbage
collection tools which you can use to collect garbage collection information that you can use to
tune your applications. You can find more information on the HotSpot Virtual machine on http://
java.sun.com/docs/hotspot/gc1.4.2/.

The jvmstat toolkit2 is recommended for the Hotspot JVM and can help give you a precise picture of
your permanent memory space and the other segments on the heap. Please visit the link above for
more information on the toolkit.

25.6.1.1. VFS Tuning

25.6.1.1.1. VFS Cache Tuning
Magic about the caching settings...

25.6.1.1.2. Annotation Scaning Tuning
Magic about controlling annotations scaning...

25.6.2. Database Connection
Database performance tuning involves changing the initial database conceptual schema to improve
performance. Irrespective of type, overall database management system performance tuning involves
effective and efficient use of your hardware (Hard disk, CPU and RAM) and improving database read's
and writes.

Resource limits set by your operating system may also set limits on your database management
system. A database administrator can analyse a database and identify performance bottlenecks
through taking the above factors into consideration and adjusting the necessary database
management system parameters such as writing dirty buffers to disk, checkpoints and log file
rotations. In some instances hardware upgrades may also be necessary to improve database
performance.

2 http://java.sun.com/performance/jvmstat/

http://java.sun.com/docs/hotspot/gc1.4.2/
http://java.sun.com/docs/hotspot/gc1.4.2/
http://java.sun.com/performance/jvmstat/
http://java.sun.com/performance/jvmstat/

Chapter 25. JBoss Enterprise Application Platform 5 Performance Tuning

262

Database connections can be costly to establish and manage. Applications that create new
connections to the database with every transaction or query and then close that connection add a
great deal of overhead. Having a very small connection pool will also throttle the applications as
the JBoss Enterprise Application Platform by default queues the request for a default of 30,000
milliseconds (30 seconds) before cancellation and throwing an exception.

We recommend reliance on data source definitions you can setup in the deploy directory of the JBoss
Enterprise Application Platform and utilizing the connection pool settings. Connection pooling in the
JBoss Enterprise Application Platform allows you to easily monitor your connection usage from the
JMX console to determine proper sizing. Your database management system may also shipped with
tools that allow you to monitor connections.

Depending on the databases implemented, please ensure you create a data source file in the deploy
directory of your configuration as shown below:

<JBoss_Home>/server/<your_configuration>/deploy/

The filename should be in the following formats:

<yourdatabasename>-ds.xml

Note
Please note that the name of the file must end with -ds.xml in order for the JBoss
application server to recognize it as a data source file. The Hypersonic database data
source file for example is named hsqldb-ds.xml.

The example below is a sample Hypersonic database data source file. Please note that this file
contains more comments or descriptions for the respective tags. For a full view of this file, and its
comments, please refer to the hsqldb-ds.xml in the deploy directory of your configuration.

More examples
More examples of datasource definition files for supported external databases can be
found in the <JBoss_Home>/docs/examples/jca directory.

...
<datasources>
 <local-tx-datasource>

 <!-- The jndi name of the DataSource, it is prefixed with java:/ -->
 <!-- Datasources are not available outside the virtual machine -->
 <jndi-name>DefaultDS</jndi-name>

 <!-- For server mode db, allowing other processes to use hsqldb over tcp.
 This requires the org.jboss.jdbc.HypersonicDatabase mbean.
 <connection-url>jdbc:hsqldb:hsql://${jboss.bind.address}:1701</connection-
url>
 -->
 <!-- For totally in-memory db, not saved when jboss stops.

Database Connection

263

 The org.jboss.jdbc.HypersonicDatabase mbean is required for proper db
 shutdown
 <connection-url>jdbc:hsqldb:.</connection-url>
 -->
 <!-- For in-process persistent db, saved when jboss stops.
 The org.jboss.jdbc.HypersonicDatabase mbean is required for proper db
 shutdown
 -->
 <connection-url>jdbc:hsqldb:${jboss.server.data.dir}${/}hypersonic
${/}localDB</connection-url>

 <!-- The driver class -->
 <driver-class>org.hsqldb.jdbcDriver</driver-class>

 <!-- The login and password. Do not enter plain text for production
 databases. Please see Security section for more information -->
 <user-name>sa</user-name>
 <password></password>

 <!--example of how to specify class that determines if exception means
 connection should be destroyed-->
 <!--exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.DummyExceptionSorter</
exception-sorter-class-name-->

 <!-- this will be run before a managed connection is removed from the pool
 for use by a client-->
 <!--<check-valid-connection-sql>select * from something</check-valid-
connection-sql> -->

 <!-- The minimum database connections managed in a pool/sub-pool. Pools
 are lazily constructed on first use -->
 <min-pool-size>5</min-pool-size>

 <!-- The maximum database connections managed in a pool/sub-pool -->
 <max-pool-size>20</max-pool-size>

 <!-- The time before an unused connection is destroyed -->
 <!-- NOTE: This is the check period. It will be destroyed somewhere
 between 1x and 2x this timeout after last use -->
 <!-- TEMPORARY FIX! - Disable idle connection removal, HSQLDB has a
 problem with not reaping threads on closed connections -->
 <idle-timeout-minutes>0</idle-timeout-minutes>

 <!-- sql to call when connection is created
 <new-connection-sql>some arbitrary sql</new-connection-sql>
 -->

 <!-- sql to call on an existing pooled connection when it is obtained from
 pool

Chapter 25. JBoss Enterprise Application Platform 5 Performance Tuning

264

 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-
sql>
 -->

 <!-- example of how to specify a class that determines a connection is
 valid before it is handed out from the pool
 <valid-connection-checker-class-
name>org.jboss.resource.adapter.jdbc.vendor.DummyValidConnectionChecker</
valid-connection-checker-class-name>
 -->

 <!-- Whether to check all statements are closed when the connection is
 returned to the pool,
 this is a debugging feature that should be turned off in production -->
 <track-statements/>

 <!-- Use the getConnection(user, pw) for logins
 <application-managed-security/>
 -->

 <!-- Use the security domain defined in conf/login-config.xml -->
 <security-domain>HsqlDbRealm</security-domain>

 <!-- Use the security domain defined in conf/login-config.xml or the
 getConnection(user, pw) for logins. The security domain takes precedence.
 <security-domain-and-application>HsqlDbRealm</security-domain-and-
application>
 -->

 <!-- HSQL DB benefits from prepared statement caching which stores recent
 prepared statements for future use. The prepared-statement-cache-size
 indicates the number of prepared statements to store in the cache. -->
 <prepared-statement-cache-size>32</prepared-statement-cache-size>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml
 (optional) -->
 <metadata>
 <type-mapping>Hypersonic SQL</type-mapping>
 </metadata>

 <!-- When using in-process (standalone) mode -->
 <depends>jboss:service=Hypersonic,database=localDB</depends>
 <!-- Uncomment when using hsqldb in server mode
 <depends>jboss:service=Hypersonic</depends>
 -->
 </local-tx-datasource>

 <!-- Uncomment if you want hsqldb accessed over tcp (server mode)
 <mbean code="org.jboss.jdbc.HypersonicDatabase"
 name="jboss:service=Hypersonic">
 <attribute name="Port">1701</attribute>

Other key configurations

265

 <attribute name="BindAddress">${jboss.bind.address}</attribute>
 <attribute name="Silent">true</attribute>
 <attribute name="Database">default</attribute>
 <attribute name="Trace">false</attribute>
 <attribute name="No_system_exit">true</attribute>
 </mbean>
 -->

 <!-- For hsqldb accessed from jboss only, in-process (standalone) mode --
>
 <mbean code="org.jboss.jdbc.HypersonicDatabase"
 name="jboss:service=Hypersonic,database=localDB">
 <attribute name="Database">localDB</attribute>
 <attribute name="InProcessMode">true</attribute>
</mbean>

</datasources>

25.6.3. Other key configurations
Other key configurations required for performance tuning of your application server include the
<JBoss_Home>/server/<your_configuration>/deployers/jbossweb.deployer/
server.xml file that sets your HTTP requests pool.

JBoss Enterprise Application Platform 5 has a robust thread pooling, that should be sized
appropriately. The server has a jboss-service.xml file in the <JBoss_Home>/server/
<your_configuration>/conf directory that defines the system thread pool. There is a setting that
defines the behavior if there isn't a thread available in the pool for execution. The default is to allow the
calling thread to execute the task. You can monitor the queue depth of the system thread pool through
the JMX Console, and determine from that if you need to make the pool larger.

The default configuration is appropriate for development, but not necessarily for a production
environment. In the default configuration, console logging is enabled. Console logging is ideal for
development, especially within the IDE, as you get all the log messages to show in the IDE console
view. In a production environment, console logging is very expensive and is not recommended. Turn
down the verbosity level of logging if its not necessary. Please note that the less you log, the less I/O
will be generated, and the better the overall throughput will be.

Other performance tuning aspects include Caching, Clustering and Replication which are discussed in
the respective Chapters in this book.

266

Part V. Index

269

Index
A
AOP (see JBoss AOP)

C
Configuration

databases, 105

D
DataSource

deployment type, 13

E
EAR (see Enterprise Application)
Enterprise Application

deployment type, 13
Exploded Deployment, 14

F
Frequently Asked Questions, 129

H
Hot deployment

disabling, 9
implementation, 9

J
JAX-WS (see Web Services)
JBoss AOP

applying aspects, 87
aspect oriented framework, 85
creating aspects, 87

JBoss Enterprise Application Platform
architecture, 5
bootstrap, 9
JMX Microkernel, 1
microcontainer, 1
performance tuning, 257
Server interface implementation, 9
transactions, 89

JBoss Enterprise Application Platform 5
Performance Tuning

performance, 257
JBoss Messaging

about, 95
JBoss Microcontainer

*-jboss-beans.xml deployment type, 13

beans deployment type, 13
project modules, 16

JBoss Transactions, 89
JBoss5 Virtual Deployment Framework

virtual deployment framework, 77
JBossWS

Web Services, 19
JMS (see JBoss Messaging)

M
MC (see JBoss Microcontainer)

P
Performance

JBoss Enterprise Application Platform 5
Performance Tuning, 257

Pooling
JBossJCA, 125

Profiles
all, 14
default, 14
minimal, 14
standard, 14
web, 14

ProfileService
bootstrap, 9

R
Remoting

about, 93

S
SAR (see Service Archive)
Server Configuration (see Server Profile)
Server Profile

definition, 14
Service Archive

*-service.xml deployment type, 13
deployment type, 13

V
Virtual Deployment Framework (see JBoss5
Virtual Deployment Framework)

W
WAR (see Web Application)
Web Application

deployment type, 13
Web Services

web services, 19

270

	Administration And Configuration Guide
	Table of Contents
	What this Book Covers
	Chapter 1. Introduction
	1.1. JBoss Enterprise Application Platform Use Cases

	Part I. JBoss Enterprise Application Platform Infrastructure
	Chapter 2. JBoss Enterprise Application Platform 5 architecture
	2.1. The JBoss Enterprise Application Platform Bootstrap
	2.2. Hot Deployment

	Part II. JBoss Enterprise Application Platform 5 Configuration
	Chapter 3. Deployment
	3.1. Deployable Application Types
	3.2. Standard Server Profiles

	Chapter 4. Microcontainer
	4.1. An overview of the Microcontainer modules
	4.2. Configuration
	4.3. References

	Chapter 5. Web Services
	5.1. The need for web services
	5.2. What web services are not
	5.3. Jboss Web Services Attachment support with XOP (XML-binary Optimized Packaging) and SwA
	5.4. Using SwaRef with JAX-WS endpoints
	5.5. MTOM/XOP
	5.6. Enabling MTOM per endpoint
	5.6.1. The MTOM enabled SOAP 1.1 binding ID

	5.7. Document/Literal
	5.8. Document/Literal (Bare)
	5.9. Document/Literal (Wrapped)
	5.10. RPC/Literal
	5.11. RPC/Encoded
	5.12. Web Service Endpoints
	5.13. Plain old Java Object (POJO)
	5.14. The endpoint as a web application
	5.15. Packaging the endpoint
	5.16. Accessing the generated WSDL
	5.17. EJB3 Stateless Session Bean (SLSB)
	5.18. Endpoint Provider
	5.19. WebServiceContext
	5.20. Web Service Clients
	5.20.1. Service
	5.20.1.1. Service Usage
	5.20.1.2. Handler Resolver
	5.20.1.3. Executor

	5.20.2. Dynamic Proxy
	5.20.3. WebServiceRef
	5.20.4. Dispatch
	5.20.5. Asynchronous Invocations
	5.20.6. Oneway Invocations

	5.21. Common API
	5.21.1. Handler Framework
	5.21.1.1. Logical Handler
	5.21.1.2. Protocol Handler
	5.21.1.3. Service endpoint handlers
	5.21.1.4. Service client handlers

	5.21.2. Message Context
	5.21.2.1. Accessing the message context
	5.21.2.2. Logical Message Context
	5.21.2.3. SOAP Message Context

	5.21.3. Fault Handling

	5.22. DataBinding
	5.22.1. Using JAXB with non annotated classes

	5.23. Attachments
	5.23.1. MTOM/XOP
	5.23.1.1. Supported MTOM parameter types
	5.23.1.2. Enabling MTOM per endpoint

	5.23.2. SwaRef
	5.23.2.1. Using SwaRef with JAX-WS endpoints
	5.23.2.2. Starting from WSDL

	5.24. Tools
	5.24.1. Bottom-Up (Using wsprovide)
	5.24.2. Top-Down (Using wsconsume)
	5.24.3. Client Side
	5.24.4. Command-line & Ant Task Reference
	5.24.5. JAX-WS binding customization

	5.25. Web Service Extensions
	5.25.1. WS-Addressing
	5.25.1.1. Specifications
	5.25.1.2. Addressing Endpoint
	5.25.1.3. Addressing Client

	5.25.2. WS-BPEL
	5.25.3. WS-Eventing
	5.25.3.1. Specifications
	5.25.3.2. Collaboration
	5.25.3.3. Setup an event source endpoint
	5.25.3.4. The WSDL that describes an event source
	5.25.3.5. Emitting notifications

	5.25.4. WS-Security
	5.25.4.1. Endpoint configuration
	5.25.4.2. Server side WSSE declaration (jboss-wsse-server.xml)
	5.25.4.3. Client side WSSE declaration (jboss-wsse-client.xml)
	5.25.4.3.1. Client side key store configuration

	5.25.4.4. Installing the BouncyCastle JCE provider (JDK 1.4)
	5.25.4.5. Keystore, truststore - What?

	5.25.5. WS-Transaction
	5.25.6. XML Registries
	5.25.6.1. Apache jUDDI Configuration
	5.25.6.2. JBoss JAXR Configuration
	5.25.6.3. JAXR Sample Code
	5.25.6.4. Troubleshooting
	5.25.6.5. Resources

	5.25.7. WS-Policy
	5.25.7.1. Specification
	5.25.7.2. Using policies in a user provided WSDL
	5.25.7.3. Using policies with JBoss annotations

	5.26. JBossWS Extensions
	5.26.1. Proprietary Annotations
	5.26.1.1. EndpointConfig
	5.26.1.2. WebContext
	5.26.1.3. SecurityDomain

	5.27. Web Services Appendix
	5.28. References

	Chapter 6. JBoss5 Virtual Deployment Framework
	6.1. MainDeployerImpl
	6.2. JBoss5StructureDeployerClasses
	6.3. Deployer Helper and Base Classes
	6.4. Current Deployers
	6.5. Virtual File System JBoss5VirtualFileSystem

	Chapter 7. JBoss AOP
	7.1. Some key terms
	7.2. Creating Aspects in JBoss AOP
	7.3. Applying Aspects in JBoss AOP

	Chapter 8. JBoss Transactions
	8.1. Why you need JBoss Transactions
	8.2. JBoss Transactions Java EE 5 Support
	8.3. JBoss Transactions Web Services Support
	8.4. How JBossTS address these issues

	Chapter 9. Remoting
	9.1. Summary of JBoss Remoting Features
	9.2. JBoss Remoting Configuration in the JBoss Enterprise Application Platform

	Chapter 10. JBoss Messaging
	10.1. Configuring JBoss Messaging
	10.1.1. Configuring the SecurityStore
	10.1.2. SecurityStore Attributes

	10.2. Configuring the ServerPeer
	10.3. Server Attributes
	10.3.1. ServerPeerID
	10.3.2. DefaultQueueJNDIContext
	10.3.3. DefaultTopicJNDIContext
	10.3.4. PostOffice
	10.3.5. DefaultDLQ
	10.3.6. DefaultMaxDeliveryAttempts
	10.3.7. DefaultExpiryQueue
	10.3.8. DefaultRedeliveryDelay
	10.3.9. MessageCounterSamplePeriod
	10.3.10. FailoverStartTimeout
	10.3.11. FailoverCompleteTimeout
	10.3.12. DefaultMessageCounterHistoryDayLimit
	10.3.13. ClusterPullConnectionFactory
	10.3.14. DefaultPreserveOrdering
	10.3.15. RecoverDeliveriesTimeout
	10.3.16. SuckerPassword
	10.3.17. StrictTCK
	10.3.18. Destinations
	10.3.19. MessageCounters
	10.3.20. MessageCountersStatistics
	10.3.21. SupportsFailover
	10.3.22. PersistenceManager
	10.3.23. JMSUserManager
	10.3.24. SecurityStore

	10.4. MBean operations of the ServerPeer MBean
	10.4.1. DeployQueue
	10.4.2. UndeployQueue
	10.4.3. DestroyQueue
	10.4.4. DeployTopic
	10.4.5. UndeployTopic
	10.4.6. DestroyTopic
	10.4.7. ListMessageCountersHTML
	10.4.8. ResetAllMesageCounters
	10.4.9. ResetAllMesageCounters
	10.4.10. EnableMessageCounters
	10.4.11. DisableMessageCounters
	10.4.12. RetrievePreparedTransactions
	10.4.13. ShowPreparedTransactions

	Chapter 11. Use Alternative Databases with JBoss Enterprise Application Platform
	11.1. How to Use Alternative Databases
	11.2. Install JDBC Drivers
	11.2.1. Special notes on Sybase
	11.2.2. Configuring JDBC DataSources

	11.3. Creating a DataSource for the External Database
	11.4. Common configuration for DataSources and ConnectionFactorys
	11.4.1. General
	11.4.2. XA
	11.4.3. Security parameters
	11.4.3.1. Pooling parameters
	11.4.3.2. Security and Pooling

	11.5. Change Database for the JMS Services
	11.6. Support Foreign Keys in CMP Services
	11.7. Specify Database Dialect for Java Persistence API
	11.8. Change Other JBoss Enterprise Application Platform Services to Use the External Database
	11.8.1. The Easy Way
	11.8.2. The More Flexible Way

	11.9. A Special Note About Oracle DataBases
	11.10. DataSource configuration
	11.11. Parameters specific for java.sql.Driver usage
	11.12. Parameters specific for javax.sql.XADataSource usage
	11.13. Common DataSource parameters
	11.14. Generic Datasource Sample
	11.15. Configuring a DataSource for remote usage
	11.16. Configuring a DataSource to use login modules

	Chapter 12. Pooling
	12.1. Strategy
	12.2. Transaction stickness
	12.3. Workaround for Oracle
	12.4. Pool Access
	12.5. Pool Filling
	12.6. Idle Connections
	12.7. Dead connections
	12.7.1. Valid connection checking
	12.7.2. Errors during SQL queries
	12.7.3. Changing/Closing/Flushing the pool
	12.7.4. Other pooling

	Chapter 13. Frequently Asked Questions
	13.1. I have problems with Oracle XA?

	Part III. Clustering Guide
	Chapter 14. Introduction and Quick Start
	14.1. Quick Start Guide
	14.1.1. Initial Preparation
	14.1.2. Launching a JBoss Enterprise Application Platform Cluster
	14.1.3. Web Application Clustering Quick Start
	14.1.4. EJB Session Bean Clustering Quick Start
	14.1.5. Entity Clustering Quick Start

	Chapter 15. Clustering Concepts
	15.1. Cluster Definition
	15.2. Service Architectures
	15.2.1. Client-side interceptor architecture
	15.2.2. External Load Balancer Architecture

	15.3. Load-Balancing Policies
	15.3.1. Client-side interceptor architecture
	15.3.2. External load balancer architecture

	Chapter 16. Clustering Building Blocks
	16.1. The HAPartition Service
	16.1.1. DistributedReplicantManager Service
	16.1.2. DistributedState Service
	16.1.3. Custom Use of HAPartition

	16.2. Distributed Caching with JBoss Cache
	16.2.1. The JBoss Enterprise Application Platform CacheManager Service
	16.2.1.1. Standard Cache Configurations
	16.2.1.2. Cache Configuration Aliases

	Chapter 17. Clustered JNDI Services
	17.1. How it works
	17.2. Client configuration
	17.2.1. For clients running inside the application server
	17.2.1.1. Accessing HA-JNDI Resources from EJBs and WARs -- Environment Naming Context
	17.2.1.2. Why do this programmatically and not just put this in a jndi.properties file?
	17.2.1.3. How can I tell if things are being bound into HA-JNDI that shouldn't be?

	17.2.2. For clients running outside the application server

	17.3. JBoss configuration
	17.3.1. Adding a Second HA-JNDI Service

	Chapter 18. Clustered Session EJBs
	18.1. Stateless Session Bean in EJB 3.0
	18.2. Stateful Session Beans in EJB 3.0
	18.2.1. The EJB application configuration
	18.2.2. Optimize state replication
	18.2.3. CacheManager service configuration

	18.3. Stateless Session Bean in EJB 2.x
	18.4. Stateful Session Bean in EJB 2.x
	18.4.1. The EJB application configuration
	18.4.2. Optimize state replication
	18.4.3. The HASessionState service configuration
	18.4.4. Handling Cluster Restart
	18.4.5. JNDI Lookup Process
	18.4.6. SingleRetryInterceptor

	Chapter 19. Clustered Entity EJBs
	19.1. Entity Bean in EJB 3.0
	19.1.1. Configure the distributed cache
	19.1.2. Configure the entity beans for cache
	19.1.3. Query result caching

	19.2. Entity Bean in EJB 2.x

	Chapter 20. HTTP Services
	20.1. Configuring load balancing using Apache and mod_jk
	20.1.1. Download the software
	20.1.2. Configure Apache to load mod_jk
	20.1.3. Configure worker nodes in mod_jk
	20.1.4. Configuring JBoss to work with mod_jk

	20.2. Configuring HTTP session state replication
	20.2.1. Enabling session replication in your application
	20.2.2. Using FIELD level replication

	20.3. Monitoring session replication
	20.4. Using Clustered Single Sign On
	20.4.1. Configuration
	20.4.2. SSO Behavior
	20.4.3. Limitations
	20.4.4. Configuring the Cookie Domain

	Chapter 21. JBoss Messaging Clustering Notes
	21.1. Unique server peer id
	21.2. Clustered destinations
	21.3. Clustered durable subs
	21.4. Clustered temporary destinations
	21.5. Non clustered servers
	21.6. Message ordering in the cluster
	21.7. Idempotent operations
	21.7.1. Clustered connection factories

	Chapter 22. Clustered Deployment Options
	22.1. Clustered Singleton Services
	22.1.1. HASingleton Deployment Options
	22.1.1.1. HASingletonDeployer service
	22.1.1.2. Mbean deployments using HASingletonController
	22.1.1.3. HASingleton deployments using a Barrier

	22.1.2. Determining the master node
	22.1.2.1. HA singleton election policy

	22.2. Farming Deployment

	Chapter 23. JGroups Services
	23.1. Configuring a JGroups Channel's Protocol Stack
	23.1.1. Common Configuration Properties
	23.1.2. Transport Protocols
	23.1.2.1. UDP configuration
	23.1.2.2. TCP configuration
	23.1.2.3. TUNNEL configuration

	23.1.3. Discovery Protocols
	23.1.3.1. PING
	23.1.3.2. TCPGOSSIP
	23.1.3.3. TCPPING
	23.1.3.4. MPING

	23.1.4. Failure Detection Protocols
	23.1.4.1. FD
	23.1.4.2. FD_SOCK
	23.1.4.3. VERIFY_SUSPECT
	23.1.4.4. FD versus FD_SOCK

	23.1.5. Reliable Delivery Protocols
	23.1.5.1. UNICAST
	23.1.5.2. NAKACK

	23.1.6. Group Membership (GMS)
	23.1.7. Flow Control (FC)
	23.1.7.1. Why is FC needed on top of TCP ? TCP has its own flow control !
	23.1.7.2. So do I always need FC?

	23.1.8. Fragmentation (FRAG2)
	23.1.9. State Transfer
	23.1.10. Distributed Garbage Collection (STABLE)
	23.1.11. Merging (MERGE2)

	23.2. Other Configuration Issues
	23.2.1. Binding JGroups Channels to a particular interface
	23.2.2. Isolating JGroups Channels
	23.2.2.1. Changing the Group Name
	23.2.2.2. Changing the multicast address and port

	23.3. JGroups Troubleshooting
	23.3.1. Nodes do not form a cluster
	23.3.2. Causes of missing heartbeats in FD

	Chapter 24. JBoss Cache Configuration and Deployment
	24.1. Key JBoss Cache Configuration Options
	24.1.1. Editing the CacheManager Configuration
	24.1.2. Cache Mode
	24.1.3. Transaction Handling
	24.1.4. Concurrent Access
	24.1.5. JGroups Integration
	24.1.6. Eviction
	24.1.7. Cache Loaders
	24.1.7.1. CacheLoader Configuration for Web Session and SFSB Caches

	24.1.8. Buddy Replication

	24.2. Deploying Your Own JBoss Cache Instance
	24.2.1. Deployment Via the CacheManager Service
	24.2.1.1. Accessing the CacheManager

	24.2.2. Deployment Via a -service.xml File
	24.2.3. Deployment Via a -jboss-beans.xml File

	Part IV. Performance Tuning
	Chapter 25. JBoss Enterprise Application Platform 5 Performance Tuning
	25.1. Introduction
	25.2. Hardware tuning
	25.2.1. CPU (Central Processing Unit)
	25.2.2. RAM (Random Access Memory)
	25.2.3. Hard Disk

	25.3. Operating System Performance Tuning
	25.3.1. Networking

	25.4. Tuning the JVM
	25.5. Tuning your applications
	25.5.1. Instrumentation

	25.6. Tuning JBoss Application Server
	25.6.1. Memory usage
	25.6.1.1. VFS Tuning
	25.6.1.1.1. VFS Cache Tuning
	25.6.1.1.2. Annotation Scaning Tuning

	25.6.2. Database Connection
	25.6.3. Other key configurations

	Part V. Index
	Index

